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Abstract. In this study various numerical schemes for simulating 2D laminar reacting
gas flows, as typically found in Chemical Vapor Deposition (CVD) reactors, are proposed
and compared. These CVD systems are generally modeled by means of many stiffly coupled
elementary gas phase reactions between a large number of reactants and intermediate
species. The purpose of this study is to develop robust and efficient solvers for the stiff
heat-reaction system, whereby the velocities are assumed to be given. For non-stationary
CVD simulation, an optimal combination in terms of efficiency and robustness between
time integration, nonlinear solvers and linear solvers has to be found. Besides stability,
which is important due to the stiffness of the problem, the preservation of non-negativity
of the species is crucial. It appears that this extra condition on time integration methods
is much more restrictive towards the time-step than stability. For a set of suitable time
integration methods necessary conditions are represented. We conclude with a comparison
of the workload between the selected time integration methods. This comparison has been
done for a 2D test problem. The test problem does not represent a practical process, but
represents only the computational problems.

1 Introduction

In Chemical Vapor Deposition (CVD) literature, and also other reactive flow literature,
one is usually looking for the steady state solution of the species equations (1). The usual
strategy to find this steady state solution is to perform a (damped/relaxed) Newton itera-
tion with an (arbitrary) initial solution. Then, hopefully, the Newton iteration converges
to the steady state. In the case of Newton divergence artificial time stepping is performed
to find a better initial solution for the next Newton iteration.
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In our research we are not looking for the steady state solution only, but we also want
the transient solution. In order to simulate this transient, we have to use a time integration
method that can handle stiff problems. In this paper we present suitable time integration
methods for stiff problems. Furthermore, we compare these integration methods by their
performance, in terms of efficiency.

2 Model for CVD Simulation

The mathematical model describing the CVD process consists of a set of PDEs with
appropriate boundary and initial conditions, which describe the gas flow, the transport
of energy, the transport of species and reactions in the reactor.

The gas mixture in the reactor is assumed to behave as a continuum. The gas flow in
the reactor is assumed to be laminar. Since no large velocity gradients appear in CVD
gas flows, viscous heating due to dissipation will be neglected. We also neglect the effects
of pressure variations in the energy equation. The composition of the N component gas
mixture is described in terms of the dimensionless mass fractions ωi = ρi

ρ
, i = 1, . . . , N ,

having the property
∑N

i=1 ωi = 1. The transport of mass, momentum and heat are
described respectively by the continuity equation, the Navier-Stokes equations and the
transport equation for thermal energy expressed in terms of temperature T . See, for
instance, Kleijn4 and Van Veldhuizen6.

We assume that in the gas-phase K reversible reactions take place. For the kth reaction
the net molar reaction rate is denoted as R

g
k

(

mole
m3·s

)

. For an explicit description of the net
molar reaction rate, we refer to Kleijn4 and Van Veldhuizen6. The mass diffusion flux is
decomposed into concentration diffusion and thermal diffusion. In this study we describe
ordinary diffusion in terms of effective diffusion coefficients D

′
i, such that we obtain

∂(ρωi)

∂t
= −∇ · (ρvωi) + ∇ · (ρD

′
i∇ωi) + ∇ · (DT

i ∇(lnT )) + mi

K
∑

k=1

νikR
g
k, (1)

where D
T
i the multi-component thermal diffusion coefficient for species i.

The main focus of our research is on efficient solvers for the above species equation(s)
(1). Typically the time scales of the slow and fast reaction terms differ orders of magnitude
from each other, and from the time scales of the diffusion and advection terms, leading
to extremely stiff systems.

2.1 Simplified System

Since our research focuses on solving the species equations (1), we will only solve the
coupled system of N species equations, where N denotes the number of gas-species in
the reactor. The velocity field, temperature field, pressure field and density field are
computed via another simulation package developed by Kleijn5. Other simplifications are
the omission of surface reactions and thermal diffusion.
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We consider a CVD process,which is a simplification of the CVD process considered in
Kleijn5, that deposits silicon Si from silane SiH4. The gas-mixture consists of the carrier
gas helium and 6 reactive species that satisfy the reaction mechanism

G1 : SiH4 ⇄ SiH2 + H2,
G2 : Si2H6 ⇄ SiH4 + SiH2,
G3 : Si2H6 ⇄ H2SiSiH2 + H2,
G4 : SiH2+Si2H6 ⇄ Si3H8, and,
G5 : 2SiH2 ⇄ H2SiSiH2.

z

substrate

r

Outflow

35 cm.

30 cm.

Inflow

10 cm.

Figure 1: Reactor geometry

The studied reactor configuration is illustrated in Figure 1. As computational domain
we take, because of axisymmetry, one half of the r−z plane. The pressure in the reactor is
1 atm. From the top a gas-mixture, consisting of silane, with mass fraction fin,SiH4

= 0.001,
and helium (the rest), enters the reactor with a uniform temperature Tin = 300 K and a
uniform velocity uin. At a distance of 10 cm. below the inlet a non rotating susceptor
with temperature T = 1000 K and a diameter 30 cm. is placed.

We emphasize that this test-problem is not representing a practical process, but rep-
resenting its computational problems. Further details on the test-problem can be found
in Van Veldhuizen6.

3 Properties of Numerical Methods for Solving the Species Equations

As seen in the previous section the species eqns. (1) are PDEs of the advection-
diffusion-reaction type. In order to have a unique solution appropriate boundary condi-
tions and initial values have to be chosen.

To approximate the solution we use the Method of Lines (MOL), i.e., first discretize
in space and then in time, resulting into the ODE system

w′(t) = F (t, w(t)), 0 < t ≤ T, w(0) given. (2)

In (2) F (t, w(t)) is spatially discretized convection, diffusion and reactions. For spatial
discretization a finite volume hybrid scheme is used, which uses a central scheme for
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Peclet numbers less than 2 and locally first order upwinding whenever the Peclet number
is larger than 2. The next step is to integrate the ODE system (2) with an appropriate time
integration method. We note that the stiff reaction terms in CVD motivates to integrate
parts of F (t, w(t)) implicitly. In general, due to the nonlinearities in the reaction term,
(huge) nonlinear systems have to be solved.

The topic of this research is to find the best combination of time integration, non-
linear and linear solvers in terms of efficiency. Note that if the computational cost of
one time step is (very) expensive, then a time integration method that needs more, but
computational cheaper, time steps is better in terms of efficiency.

Besides the efficiency criteria, also some other properties are desired for the numerical
methods. As already mentioned in Section 2 the system of species equations is stiff.
Following Hundsdorfer et al.2, we say that stiffness indicates a class of problems for which
implicit methods perform (much) better than explicit methods. The eigenvalues of the
Jacobian δf

δy
play certainly a role in this decision, but quantities such as the dimension of

the system and the smoothness of the solution are also important.

3.1 Positivity

A natural property for mass fractions is that they are non-negative. As a consequence,
it should also hold for the mathematical model, spatial and time integration of the process.
While the first one is obvious, the latter two should not introduce any (small) negative
components causing blow up of the solution. It appears that this extra condition on time
integration methods is much more restrictive towards the time step than stability. We
remark that positivity for spatial discretization with central scheme can be assured by
locally first order upwinding.

An ODE system w′(t) = F (t, w(t)), t ≥ 0, is called positive if w(0) ≥ 0 implies
w(t) ≥ 0 for all t > 0. It is easy to prove that linear systems w′(t) = Aw(t) are
positive if and only if aij ≥ 0 for i 6= j. See Van Veldhuizen7. For general nonlinear
semi-discretizations w′(t) = F (t, w(t)), it appears that unconditional positivity is a very
restrictive requirement. Suppose that F (t, w(t)) satisfies the condition :

Condition 3.1 There is an α > 0, with α as large as possible, such that ατ ≤ 1 and

v + τF (t, v) ≥ 0 for all t ≥ 0, v ≥ 0. (3)

Application of Euler Forward to the nonlinear system w′(t) = F (t, w(t)) gives

wn+1 = wn + τF (tn, wn). (4)

Provided that wn ≥ 0, Condition 3.1 guarantees positivity for wn+1 computed via Euler
Forward (4). Furthermore, assume that F (t, w(t)) also satisfies :

Condition 3.2 For any v ≥ 0, t ≥ 0 and τ > 0 the equation

u = v + τF (t, u), (5)
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has a unique solution that depends continuously on τ and v.

In Hundsdorfer et al.2 it has been proven that Condition 3.1 and 3.2 imply positivity for
Euler Backward for any step-size τ . We remark that Condition 3.2, unlike Condition 3.1,
is not easy to be verified. As has been remarked in Hundsdorfer et al.2, it is sufficient to
hold that F (t, v) is continuously differentiable, and

‖I − τJF (t, v)‖ ≤ C, for any v ∈ R
n, t ≥ 0 and τ > 0, (6)

where C is a positive constant and JF (t, v) the Jacobian matrix of derivatives of F (t, v)
with respect to v.

However, in practice the solutions of the resulting nonlinear systems have to be approx-
imated, which might introduce small negative components. In the case that the negative
components of the solution are the result of rounding errors, then it is justified to set them
equal to zero. In the case one has negative components in the solution as consequence
of the nonlinear (Newton) solver, then the most common method to avoid negative con-
centrations is clipping. This means that when a mass species is negative, it it set equal
to zero. Clipping has the disadvantage that mass is no longer preserved. In practice it is
better to avoid clipping.

In our experience negative concentrations are avoided by implementing a variable step
size algorithm. In that case clipping can be avoided. We briefly explain the variable time
stepping algorithm as it is implemented in our code. Consider an attempted step from
tn to tn+1 = tn + τn with time step size τn. Suppose an estimate Dn of order p̂ of the
norm of the local error is available. Then, if Dn < Tol this step τn is accepted, whereas if
Dn > Tol the step is rejected and redone with a smaller time step size τn. The new step
size is computed as

τnew = r · τ, r =

(

Tol

Dn

)
1

p̂+1

. (7)

It is also possible to put bounds on the growth factor r of the new step size. This is
simply done by giving bounds on r. If the new time step introduces negative species or
Newton divergence, we adjust it, by taking τ = 1

2
τ , such that positivity is assured.

We conclude this section with the claim that Euler Backward is the only time integra-
tion that is unconditionally positive. For a proof we refer to Bolley et al.1. This means
that for any higher order (implicit) time integration method a time step criterion is needed
to ensure preservation of non-negativity.

4 Suitable Time Integration Methods (TIM)

In this section we briefly present integration methods that are suitable, from a theoretic
point of view, for the time integration of the species equations. More comprehensive
descriptions are given in Hundsdorfer et al.2 and Van Veldhuizen6. At the end of this
section we will also make some remarks on the linear and nonlinear solvers.
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From the previous section it is clear that the Euler Backward method is a suitable
method to perform time integration. It has the advantage of being unconditionally pos-
itive. Disadvantages for the transient simulations are the first order consistency and the
probably high computational costs for one time step. The latter is due to the fact that
the succeeding approximations are computed in an implicit way.

4.1 Time Integration Methods

We will discuss a selection of time integration methods that have good properties in
both stability and positivity, or Total Variation Diminishing (TVD).

Rosenbrock Methods

The two stage Rosenbrock method ROS2

wn+1 = wn + b1k1 + b2k2

k1 = τF (wn) + γτAk1

k2 = τF (wn + α21k1) + γ21τAk1 + γτAk2, (8)

with A = F ′(wn) is the Jacobian matrix of F (wn), and b1 = 1 − b2, α21 = 1
2b2

and
γ21 = − γ

b2
, is interesting. The method is second order accurate for arbitrary γ as long as

b2 6= 0. The stability function is given as

R(z) =
1 + (1 − 2γ)z + (γ2 − 2γ + 1

2
)z2

(1 − γz)2
. (9)

For γ ≥ 1
4

the method is unconditionally stable and for γ+ = 1 + 1
2

√
2, we have the

property that R(z) ≥ 0, for all negative real z. For diffusion-reaction problems, which
have negative real eigenvalues, this property ensures positivity of the solution. It appears
that the second order Rosenbrock method performs quite well for advection diffusion
reaction equations with respect to the positivity property, as has been shown in Verwer
et al.8. In Verwer et al.8 it is conjectured that the property R(z) ≥ 0 for all negative real
z plays a role.

We conclude this section with a remark on the implementation of the ROS2 scheme
(10). We implemented the ROS2 scheme with the parameters b1 = b2 = 1

2
and γ = γ+.

In order to avoid the matrix vector multiplication in the second stage the equivalent form

wn+1 = wn +
3

2
k̃1 +

1

2
k̃2,

k̃1 = τF (wn) + γτAk̃1,

k̃2 = τF (wn + k̃1) − 2k̃1 + γτAk̃2, (10)

where k̃1 = k1 and k̃2 = k2 − k1, is implemented.
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Backward Differentiation Formulas (BDF)

The k-step BDF methods are implicit, of order k and defined as

k
∑

j=0

αjwn+j = τF (tn+k, wn+k), n = 0, 1, . . . , (11)

which uses the k past values wn, . . . , wn+k−1 to compute wn+k. Remark that the most
advanced level is tn+k instead of tn+1. The 1-step BDF method is Backward Euler. The
2-step method is

3

2
wn+2 − 2wn+1 +

1

2
wn = τF (tn+2, wn+2), (12)

and the three step BDF is given by

11

6
wn+3 − 3wn+2 +

3

2
wn+1 −

1

3
wn = τF (tn+3, wn+3). (13)

Remark 4.1 A disadvantage of linear multi-step methods is that the first k − 1 approxi-
mations cannot be computed with the linear k-step scheme. To compute the first (k − 1)
approximations, one could use for the first step a BDF 1-step method, for the second
approximation a BDF 2-step method, . . . and for the (k − 1)st approximation a BDF
(k − 1)-step scheme.

For the 2-step BDF method we obtain positivity, under Conditions 3.1 and 3.2, of w′(t) =
F (t, w(t)) whenever ατ ≤ 1

2
, provided that w1 is computed from w0 by a suitable starting

procedure, i.e., w1 has been computed such that w1 ≥ 0 holds. For a derivation we refer
to Hundsdorfer et al.2 and Van Veldhuizen6.

IMEX Runge-Kutta Chebyshev Methods

The second order Runge-Kutta Chebyshev method is given as

wn0 = wn,

wn1 = wn + µ̃1τF (tn + c0τ, wn0),

wnj = (1 − µj − νj)wn + µjwn,j−1 + νjwn,j−2 + j = 1, . . . , s

+µ̃1τF (tn + cj−1τ, wn,j−1) + γ̃jτF (tn + c0τ, wn0), (14)

wn+1 = wns.

The coefficients µ̃1, µj, νj , µ̃j and γ̃j are available in analytical form for s ≥ 2 :

µ̃1 = b1ω1 and for j = 2, . . . , s, (15)

µj =
2bjω0

bj−1
, νj =

−bj

bj−2
, µ̃j =

2bjω1

bj−1
, γ̃j = −aj−1µ̃j, (16)
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where

b0 = b2, b1 =
1

ω0

, bj =
T ′′

j (ω0)

(T ′
j(ω0))2

, j = 2, . . . , s, (17)

with

ω0 = 1 +
ε

s2
, and ω1 =

T ′
s(ω0)

T ′′
s (ω0)

. (18)

Furthermore,

c0 = 0, c1 = c2, cj =
T ′

s(ω0)

T ′′
s (ω0)

T ′′
j (ω0)

T ′
j(ω0)

, cs = 1, (19)

and,
aj = 1 − bjTj(ω0). (20)

In (17) - (20) Tj(x) are the Chebyshev polynomials of the first kind satisfying the recursion

Tj(x) = 2xTj−1(x) − Tj−2(x), j = 2, . . . , s, (21)

with T0(x) = 1 and T1(x) = x. Furthermore, in (18) ε is a free parameter. In Figure 2 its
stability region is given. The parameter β(s) moves to −∞ when the number of stages s

increases. For ε small, by which we mean ε
s2 ≪ 1, the stability bound β(s) satisfies

β(s) ≈ 2

3

(

s2 − 1
)

(

1 − 2

15
ε

)

. (22)

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−5

0

5

β(s)

Second Order Chebyshev Polynomial

Figure 2: Stability region of (14) for s = 5.

The IMEX extension of (14) is as follows. Suppose we have an ODE system w′(t) =
F (t, w(t)), where F (t, w(t)) can be split as

F (t, w(t)) = FE(t, w(t)) + FI(t, w(t)). (23)

In (23) the term FI(t, w(t)) is the part of F which is (supposed to be) too stiff to be inte-
grated by an explicit Runge-Kutta Chebyshev method. Obviously, the term FE(t, w(t))
is the moderate stiff part of F that can be integrated in an explicit manner using RKC
methods. The first stage of (14) becomes in the IMEX-RKC scheme

wn1 = wn + µ̃1τFE(tn + c0τ, wn0) + µ̃1τFI(tn + c1τ, wn1), (24)
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with µ̃1 as defined before. Note that the highly stiff part of F is treated implicitly. The
other (s−1) subsequent stages of (14) will be modified in a similar way, such that in each
of the remaining s − 1 stages the solution of a system of nonlinear algebraic equations

wnj − µ̃1τFI(tn + cjτ, wnj) = vj, (25)

with vj a given vector, is required.
With respect to stability of this IMEX extension of (14) we remark that the implicit

part is unconditionally stable, whereas the stability condition for the explicit part remains
unchanged. For more background we refer to Verwer et al.9, 10.

4.2 Nonlinear and Linear Solvers

In all TIM from Section 4.1, except for the ROS2 scheme, nonlinear systems F (x) = 0,
x ∈ R

n have to be solved. The Newton iteration is, with its second order convergence, an
obvious choice. The disadvantage of having local convergence will disappear if one uses a
line-search algorithm, such that the succeeding iterates are norm reducing, i.e.,

‖F (xk+1)‖ ≤ ‖F (xk)‖ k = 0, 1, 2, . . . , (26)

for some norm in R
n. More background information can be found in Kelley3 and Van

Veldhuizen6.
In the Newton iteration linear systems have to be solved. In most 2D applications

direct solvers like LU factorization are still applicable. To reduce the amount of work one
usually reorders the unknowns, in order to reduce the bandwidth of the matrix. Also in
our case it is possible to reduce the bandwidth of the Jacobian considerably. The way to
do this is described in Van Veldhuizen7.

For 3D problems direct solvers (LU factorization) are no longer applicable. To approx-
imate the solution of the linear systems one has to switch to iterative linear solvers like,
for instance, Krylov Subspace methods. On the last topic research is still in progress.

5 Numerical Results

In this section we compare the performance of the TIM of Section 4.1 for solving
the species equations. If necessary, nonlinear systems will be solved by the full Newton
iteration. Linear systems will be solved using the LU factorization with rearranging, as
mentioned in Section 4.2. As mentioned before, the velocity, temperature, density and
pressure field are computed by Kleijn 5. The experiments are done in FORTRAN. The
computations are done on a serial Pentium 4 (2.8 GHz) computer with 1Gb memory
capacity. Moreover, the code is compiled with FORTRAN g77 on LINUX.

At t = 0 we start with the zero concentration profile for all species, except the carrier
gas, and let the reactive specie silane SiH4 enter the reactor at the inflow boundary. Then,
we stop the simulation at steady state, which is reached when the relative change of the
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solution vector is less than 10−6, i.e.,

‖un+1 − un‖
‖un‖

≤ 10−6. (27)

For a comparison between the workloads of the various TIM, we look to the amount of
CPU time, the number of time steps and the total number of Newton iterations (if needed)
it takes to reach steady state.

The solutions computed by different TIM also have been compared with a reference
solution uref , which has been computed with high accuracy. It appeared that the solutions
of the different TIM, denoted by uTIM , all had the same quality, by which we mean that

‖uTIM − uref‖
‖uref‖

= O(10−7). (28)

For all TIM a variable step size controller is implemented as described in Section 3.1.
Moreover, for the IMEX-RKC scheme an algorithm is implemented which determines the
number of stages s based on the estimated time step size given by the time step size
controller. For a comprehensive description of this algorithm we refer to Van Veldhuizen7

and Verwer et al.10.
In Figure 3 the residual ‖F (w(t))‖2 versus the time step, for different TIM except the

IMEX-RKC scheme, is given. In Figure 4 the time step size versus time step is given
for the same TIM. Results for the IMEX-RKC scheme are given in Figure 5. Recall that
F (w(t)) is the right hand side of the semi-discretization (2). We conclude with the contour
plots of the steady state solution in Figure 6.

TIM CPU time # time steps # Newton iterations
Euler Backward 1061 CPU sec 120 236

ROS2 579 CPU sec 190 -
BDF-2 689 CPU sec 99 182

IMEX-RKC 13000 CPU sec 1127 9075

Table 1: Workloads of various TIM

6 Conclusions

Based on Table 1, we conclude that for this 2D test-problem Rosenbrock is the cheapest
TIM to solve the system of specie equations (1). The ‘bad’ performance of the IMEX RKC
scheme is due to that per time step s nonlinear systems have to be solved. Although these
nonlinear systems are cheaper to solve, it did not pay off in this 2D test case. However,
this property can become interesting in 3D simulations.
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Figure 3: Residual ‖F (w(t))‖2 versus time step for Euler Backward (EB), second order Rosenbrock
(ROS2) and the BDF-2 method (BDF)

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

EB
ROS2
BDF

Figure 4: Time step size versus time step for Euler Backward (EB), second order Rosenbrock (ROS2)
and the BDF-2 method (BDF)
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time step
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Figure 6: Contour plots of the mass fractions of SiH4 (a), SiH2 (b), H2SiSiH2 (c), Si2H6 (d), Si3H8 (e)
and H2 (f). The outflow boundary is situated on r = 15.0 cm. to r = 17.5 cm.
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