
Deflation accelerated parallel preconditioned

Conjugate Gradient method in Finite Element

problems

F.J. Vermolen, C. Vuik and A. Segal1

Delft University of Technology, Department of Applied Mathematical Analysis, Mekelweg 4,

2628 CD, Delft, The Netherlands, F.J.Vermolen@math.tudelft.nl

Summary. We describe the algorithm to implement a deflation acceleration in a preconditioned

Conjugate Gradient method to solve the system of linear equations from a Finite Element

discretization. We focus on a parallel implementation in this paper. Subsequently we describe

the data-structure. This is followed by some numerical experiments. The experiments indicate

that our method is scalable.

1 Introduction

Large linear systems occur in many scientific and engineering applications. Often these
systems result from a discretization of model equations. The systems tend to become very
large for three-dimensional problems. Some models involve time and space as independent
parameters and therefore it is necessary to solve such a linear system efficiently at each
time-step.

In this paper we only consider symmetric positive definite (SPD) discretization ma-
trices. Since the matrices are sparse in our applications, we use an iterative method to
solve the linear system. In order to get a fast convergence method we use a precondi-
tioned Conjugate Gradient method, where incomplete Choleski factorization is used as
a preconditioner. This method is very suitable for parallellization.

The present study involves a parallellization of the Conjugate Gradient method in
which the inner products, the matrix-vector multiplication and preconditioning are par-
allellized. This parallellization is done by the use of domain decomposition, where the
domain of computation is divided into subdomains and the overall discretization matrix
is divided over the subdomains. To each subdomain we allocate a processor. A well-known
problem is that the parallellized method is not scalable: the number of CG-iterations and
wall-clock time increase as the number of subdomains increases. To make the method
scalable one uses a coarse grid correction (see for an overview and introduction Smith et
al [6]) or the deflation method. In [3] it is shown that deflation gives a larger acceleration
to the parallel preconditioned CG-method. The idea to use deflation for large linear sys-
tems of equations is not new. Among others, Nicholaides [4] and Vuik et al [8, 1, 10, 9]
apply this method to solve large ill-conditioned linear systems. The result of deflation is
that the components of the solution in the direction of the eigenvectors corresponding to
the extremely small eigenvalues are projected to zero. The effective condition number of
the resulting singular system becomes more favourable. In the present paper we deal with
”algebraic” deflation vectors. For more details on the various types of deflation vectors
we refer to [8] and [7].

We assume that the domain of computation Ω consists of a number of disjoint sub-
domains Ωj , i ∈ {1, . . . , m}, such that ∪m

j=1
Ωj = Ω. To each subdomain we allocate a

2 F.J. Vermolen, C. Vuik and A. Segal

processor and a deflation vector, zj, for which we define

zj =

1, for (x, y) ∈ Ωj ,

0, for (x, y) ∈ Ω \ Ωj .

(1)

In case of Finite Volume methods we have to distinguish between cell-centered and vertex-
centered discretization. In the cell-centered the deflation vector is not defined on the in-
terfaces between consecutive subdomains. In the vertex-centered case, however, we have
an overlap at the interface points. In this paper we use a Finite Element discretization,
which is always vertex-centered by its construction. The subdomains may be considered
as ”super”-elements consisting of a set of finite elements. The global stiffness matrix is
never constructed, only the ”super”-element matrix is constructed. Matrix-vector multi-
plication is carried out per ”super”-element and only after adding of the contributions
of each ”super”-element the global vector is obtained. In this way parallellization of the
Finite Element method can be done in a natural way. For the interface points we use the
concept of ”average overlap”, which is explained as follows: Given a deflation vector zj

on an interfacial node that is shared by Ωj and p neighbours of Ωj , then we set at this
point:

zj =
1

p + 1
. (2)

The deflation method is applied successfully to problems from transport in porous media
where coefficients abruptly change several orders of magnitude [9]. In the present paper
we consider a Galerkin Finite Element discretization of the Laplace equation with a
Dirichlet and a Neumann boundary condition at ΓD and ΓN respectively (note that
ΓN ∪ ΓD = ∂Ω):

{

−∆u = f, (x, y) ∈ Ω

u = ũ(x, y), for (x, y) ∈ ΓD,
∂u

∂n
= 0, for (x, y) ∈ ΓN

(3)

where u denotes the solution and ũ represents a given function. The resulting discretiza-
tion matrix is symmetric positive definite. The domain is divided into subdomains and
the resulting system of linear equations is solved by the use of a parallellized Deflated
ICCG. In the text the algorithm is given and the issues of data-structure for the parallel-
lization of the solution method are described. Subsequently, we describe some numerical
experiments. For more mathematical background we refer to [1, 10, 7].

2 Deflated Incomplete Choleski preconditioned Conjugate

Gradient Method

In this section we describe the deflated method for the symmetric positive definite
discretization matrix A. Let Z = (z1 . . . zm) represent the matrix whose columns
consist of the deflation vectors zj, as defined in equations (1) and (2). The matrix
Z is chosen such that its column space approximates the eigenspace of these eigen-
vectors that correspond to the smallest eigenvalues. We, then, define the projection
P := I − AZ(ZT AZ)−1ZT := I − AZE−1ZT . It is shown in [7] that the matrix PA

is positive semi-definite (and hence singular). Kaasschieter [2] showed convergence of

Parallel deflated ICCG method 3

original domain

subdomain 1 subdomain 2

Fig. 1. Domain decomposition for a vertex centered discretization.

the Conjugate Gradient method for cases in which the matrix is singular. Let b be the
right-hand side vector and x be the solution vector, then we solve

Ax = b. (4)

After application of deflation by left multiplication of the above equation by P , we obtain

PAx = Pb. (5)

Since PA is singular the solution is not unique. We denote the solution that is obtained
by use of the ICCG method on equation (5) by x̃. To get the solution x we use

x = (I − PT)x + PT x. (6)

It is shown in [7] that PT x̃ = PT x, hence the solution of equation (5) can be used. The
second part (I−PT)x = Z(ZT AZ)−1ZT b is relatively cheap to compute. Hence the solu-
tion x is obtained by addition of the two contributions, i.e. x = PT x̃+ Z(ZT AZ)−1ZT b.
For completeness we give the algorithm of the Deflated ICCG:

4 F.J. Vermolen, C. Vuik and A. Segal

Algorithm 1 (DICCG [9]):
k = 0, r̃

0
= Pr

0
, p

1
= z

0
= L−T L−1r̃

0

while ||r̃k||2 > ε

k = k + 1, αk =
r̃T

k−1
zk−1

pT
k
PAp

k

xk = xk−1
+ αp

k
, r̃k = r̃k−1

− αkPAp
k

zk = L−T L−1r̃k, βk =
r̃T

k zk

r̃T
k−1

zk−1

p
k−1

= zk + βkp
k

end while

The inner products, matrix vector multiplication and vector updates in the above algo-
rithm are easy to parallellize. Parallellization of the incomplete Choleski preconditioned
Conjugate Gradient method has been done before by Perchat et al [5]. We use a restric-
tion and a prolongation operator and block preconditioners for the preconditioning step
in the above algorithm. Note that it is necessary to have a symmetric preconditioner.
This is obtained by choosing the restriction and prolongation matrices as transposes of
each other. Let rk be the residual after k CG-iterations and N be the total number of
subdomains, then overall preconditioning is expressed in matrix form by:

zk =

(

N
∑

i=1

RT
i M−1

i Ri

)

rk. (7)

Here zk represents the updated residual after preconditioning. Further, Ri and Mi respec-
tively denote the restriction operator and block preconditioner. We will limit ourselves
to the issues of the implementation of the data-structure needed for the parallel imple-
mentation of deflation. The above algorithm is a standard ICCG except for the lines that
contain the matrix P .

3 Data-structure of the deflation vectors for parallellization

To create P and Pv we need to make zj and to compute Azj , zT
i Azj and Pv. To do this

efficiently we make use of the sparsity pattern of the deflation vectors zj . We create the
vectors zj in the subdomain Ωj only and send essential parts to its direct neighbours.
We explain the data-structure and communication issues for a rectangular example. In
the explanation we use the global numbering from the left part of Figure 2. Note that in
the implementation the local numbering is used in the communication and calculation
part. The global numbering is used for post-processing purposes only. The example can
be generalized easily to other configurations. The situation is displayed in Figure 2.

In Figure 2 on each subdomain Ωi a deflation vector zi is created. For all the interface
nodes (say numbers 3, 8, 13, 12, 11 of Ω1) the number of neighbours is determined, then
equation (2) is applied to determine the value of the corresponding entry of z1. This
implies that it is necessary to have a list of interface nodes for each subdomain and to
have a list with the number of neighbouring subdomains on which a particular interface
node is located. However, this information is not sufficient. For example the vector Az1

must be computed and also be multiplied with vectors zj. The vector Az1 has non-
zero entries not only inside the domain Ω1 and on its interfaces, but also in its direct

Parallel deflated ICCG method 5

1 2 3 4 5

109876

11 12 13 14 15

19 20181716

21 22 23 24 254 3
Ω Ω

1 ΩΩ
2

4 3

2
1 2 3

4 5 6

7 98

1 2 3

4 5 6

7 8 9
1 2 3

4 5 6

7 8 9

21

4 5 6

7 8 9

3

Ω Ω

ΩΩ
1

Fig. 2. A sketch of division of Ω into subdomains Ω1, . . . , Ω4. Left figure represents the global

numbering of the unknowns, right figure represents the local numbering.

neighbours, i.e. the points 4, 9, 14, 16, 17, 18, 19. Therefore we also need to extend
the vectors z1 with these points to have a well defined matrix-vector multiplication. In
the same way the vectors Azj , j ∈ {2, 3, 4} have non-zero entries in Ω1. For the other
deflation vectors we proceed analogously.

We further explain the computational part which is relevant to processor 1, i.e. sub-
domain ω1 only, the other subdomains are dealt with similarly. For example Az2 will
have a non-zero contribution in all interface points of Ω1 and Ω2 but also in the points
2, 7 and 12. All vectors in common points of any subdomain and Ω1 are given the global
value, i.e. the value that is the result of addition. This requires communication between
Ω1 and this particular subdomain. This is in contrast to the matrix A, which is stored
only locally per subdomain without the addition at common interfaces. So to compute
Az2 on Ω1 we need an extra list of neighbouring points of Ω2 in domain Ω1 that are
not on the common interface. This, however, is not sufficient. For example the value of
Az2 in nodal point 12 also has a contribution of Ω4. So in Ω1 we need an extra list of
points on common sides of Ω1 and Ωj that are direct neighbours of Ωk (j 6= k) but are
not on the interface of Ω1 and Ωk. For example node 12 is a common point of Ω1 and
Ω4 and a neighbour of Ω2, further Ω4 is a neighbour of Ω2. After communication and
addition of the values of Az at these particular nodes, the matrix E, consisting of the
inner products, is calculated and sent to processor 1.

Then, for a given vector v we compute at each processor its inner product with
zi (zT

i v). Then all these inner products are sent to processor 1 (Ω1) where y =

E−1
(

zT
1

v zT
2
v zT

3
v zT

4
v
)T

is computed by Choleski and subsequently the results are sent
to all the other neighbouring processors. Then, Pv = v−ZAy is computed locally. All the
steps are displayed schematically in algorithm 2, where we explain the situation for a case
with two processors. Mark that E has a profile structure where the profile is defined by
the numbering pattern of the subdomains. Hence for a block structure in two dimensions
we obtain a similar sparsity pattern for E as for a two-dimensional discretization. If,
however, a layered structure is used, then E gets the same pattern as a one-dimensional
discretization matrix.

6 F.J. Vermolen, C. Vuik and A. Segal

Algorithm 2 (Parallellization of Deflation) P = I − AZ(ZT AZ)−1ZT .

Processor 1 Processor 2
Make z1 Make z2

Communication
Make Az1, AzΓ

2
Make Az2, AzΓ

1

Communication
Az1 = Az1 + AzΓ

1 Az2 = Az2 + AzΓ
2

E11 = zT
1
Az1 E22 = zT

2
Az2

E12 = zT
1
AzΓ

2
E22 = zT

2
AzΓ

1

Send E to proc 1
Choleski decomp E

Pv =
v − AZE−1ZT v

Compute zT
1

v Compute zT
2

v

Send zT
2

v

y = E−1

(

zT
1
v

z2v

)

Send y to proc 2
v − y1Az1 − y2AzΓ

2
v − y2Az2 − y1AzΓ

1

4 Numerical experiments

To illustrate the advantage of the deflation method we present the number of CG-
iterations and wall-clock time as a function of the number of layers (left and right graphs
respectively in Figure 3). We start with one layer and extend the domain of computation
with one horizontal layer, which is placed on top. This is done consecutively up to 7
layers. In the examples we choose the number of elements the same in each layer. The
problem size increases as the number of layers increases. It can be seen that if deflation
is not used then the convergence will take more time since the number of CG iterations
increases. The use of deflation yields that the number of iterations and wall-clock time
for the parallel case does not depend on the number of layers. This is also observed for
the number of CG-iterations for the sequential computations. This makes the method
scalable.

Further, we present the number of iterations as a function of the number of layers as
in the preceeding example for three methods: no projection, coarse grid correction and
deflation. The results are shown in Figure 4 (left graph). It can be seen that both the
coarse grid correction and the deflation methods are scalable, however deflation gives
the best results. This is in agreement with the analysis as presented in [3] where it is
proven that the deflated method converges faster than the coarse grid correction. The
same behaviour is observed if the domain is extended in a blockwise distribution of added
subdomains (see the right graph in Figure 4).

5 Conclusions

The deflation technique has been implemented successfully in a parallellized and sequen-
tial ICCG method to solve an elliptic problem by the use of finite elements. The domain

Parallel deflated ICCG method 7

1 2 3 4 5 6 7
0

50

100

150

200

250

300

number of layers

ite
ra

tio
ns

no deflation seq.
deflation seq.
no deflation par.
deflation par.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

number of layers

W
al

l c
lo

ck
 ti

m
e

no deflation seq.
deflation seq.
no deflation par.
deflation par.

Fig. 3. Left figure: The number of iterations as a function of the number of layers for deflated

and non-deflated parallellized and sequential ICCG method. Right figure: The wall clock-time

as a function of the number of layers for deflated and non-deflated parallellized and sequential

ICCG method.

1 2 3 4 5 6 7
50

100

150

200

250

300

350

number of subdomains

nu
m

be
r

of
 it

er
at

io
ns

no projection
coarse grid correction
deflation

1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

500

550

number of subdomains

nu
m

be
r

of
 it

er
at

io
ns

no projection
coarse grid correction
deflation

Fig. 4. The number of iterations as a function of the number of layers for the parallellized

ICCG method for three methods: no projection, coarse grid correction and deflation. Left graph:

layered extension of the domain of computation, Right graph: blockwise extension of the domain

of computation.

decomposition can be chosen blockwise and layerwise. Some numerical experiments are
shown in the present paper. Further, the number of iterations and wall-clock time be-
come independent of the number of added layers if deflation is applied in a parallel
ICCG method. Hence deflation is favourable in both sequential and parallel computing
environments.

References

1. J. Frank and C. Vuik. On the construction of deflation-based preconditioners. SIAM J. Sci.

Comput., pages 442–462, 2001.

2. E. F. Kaasschieter. Preconditioned Conjugate Gradients for solving singular systems. Jour-

nal of Computational and Applied Mathematics, 24:265–275, 1988.

8 F.J. Vermolen, C. Vuik and A. Segal

3. R. Nabben and C. Vuik. A comparison of deflation and coarse grid correction applied to

porous media flow. Technical report 03-10, Delft University of Technology, Delft University

of Technology, Delft, The Netherlands, 2003.

4. R.A. Nicholaides. Deflation of Conjugate Gradients with applications to boundary value

problems. SIAM J. Numer. Anal., 24:355–365, 1987.

5. E. Perchat, L. Fourment, and T. Coupez. Parallel incomplete factorisations for generalised

Stokes problems: application to hot metal forging simulation. Report, EPFL, Lausanne,

2001.

6. B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition. Cambridge University Press,

Cambridge, 1996.

7. F.J. Vermolen, C. Vuik, and A. Segal. Deflation in preconditioned Conjugate Gradient

methods for finite element problems. J. Comput. Meth. in Sc. and Engng., to appear, 2003.

8. C. Vuik, A. Segal, L. el Yaakoubli, and E. Dufour. A comparison of various deflation vectors

applied to elliptic problems with discontinuous coefficients. Appl. Numer. Math., 41:219–

233, 2002.

9. C. Vuik, A. Segal, and J. A. Meijerink. An efficient preconditioned CG method for the

solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput.

Phys., 152:385–403, 1999.

10. C. Vuik, A. Segal, J. A. Meijerink, and G. T. Wijma. The construction of projection vectors

for a Deflated ICCG method applied to problems with extreme contrasts in the coefficients.

J. Comput. Phys., 172:426–450, 2001.

