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SUMMARY
Oil reservoirs generally contain several layers with highly varying permeabilities.
Hence modeling oil and water flows often involves solving partial differential equations
with very large contrasts in the coefficients. Since the injection and
production wells are very small compared to dimensions of the reservoir, the
injection wells and production wells are modelled by the use of deltafunctions appearing
in the right hand side of the partial differential equation for the pressure. In the presentation we consider a
reservoir
that consists of several layers with extreme contrasts of the permeability
at the interfaces between the adjacent layers. Further, the finite element mesh is refined in
the vicinity of the production and injection wells.

The finite element discretization of the above equation gives a stiffness matrix with
extremely varying coefficients and hence the spectrum consists of large eigenvalues and
eigenvalues that are almost zero, which gives a very high condition number. Hence a very
bad convergence behavior for an iterative solver such as the conjugate
gradient method results. A preconditioner, like ILU, removes almost all the small
eigenvalues, however, some small eigenvalues due to the large ratio of the coefficients
at the interfaces persist. These small eigenvalues are removed by deflation based on a set
of vectors that approximate the span of the corresponding eigenvectors.

Herewith the speed of convergence is successfully enhanced and the computational cost
are reduced significantly. By the use of a
proper choice for the deflation vectors, we show that the speed of convergence of our
method does not depend on either the value of the contrasts in the coefficients or on the number
of layers with varying coefficients. Further, the method is scalable in a parallel computing
environment.
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1 Introduction

Commercial reservoir simulators are widely used to model single- and multi-phase flow pro-
cesses in oil and gas reservoirs, see for instance the work of Aziz and Settari [1] page 18–24.
The simulators solve the governing equations taking into account specific constitutive relations
and thermodynamic processes. Often the simulators are based on Finite Volume techniques
that are used to solve the governing equations. Since the subsurface reservoirs usually con-
tain several layers with abruptly varying properties, such as the permeability, and since these
interfaces between the adjacent layers are curved in general, the implementation of Finite
Element techniques is more straightforward.

In the present paper, we will consider the Finite Element discretization of an elliptic
partial different equation. This will give a large, but sparse, system of linear equations to be
solved at each time-step. For such a large sparse system of linear equations it is more efficient
to use an iterative method to solve it.

We only consider symmetric positive definite (SPD) matrices. Presently, direct methods
(such as a Choleski-decomposition) are available to solve such a linear system. However,
for large sparse coefficient matrices fill-in causes a loss of efficiency (in computer memory
and number of floating point operations). For such a case iterative methods are a better
alternative. Furthermore, if a time integration is necessary, then the solution of the previous
time-step can be used as a starting vector for the algorithm to get the result on the next
time-step. This too supports the use of iterative methods.

Iterative methods such as Gauss-Seidel, Jacobi, SOR, and Chebyshev-methods can be
used, however, convergence is in general slow and it is often very expensive to determine
good estimates of parameters on which they depend. To avoid these problems, the conjugate
gradient method is used. We deal with an application from transport in porous media where
we encounter extreme contrasts in the coefficients of the partial differential equation or a very
large domain of computation for which we favor the use of parallel computing. The large
contrasts are caused by the layered domain with extreme contrasts in permeability.

Here a preconditioning is necessary and we use a standard incomplete Choleski factoriza-
tion as a preconditioner for the conjugate gradient method (ICCG) to improve the convergence
behavior. The improvement is caused by the removal of very small eigenvalues resulting from
a discretization with a high resolution. For the case that the permeability changes abruptly
between adjacent layers, say a factor of the order of 107, then, preconditioning does not re-
move all very small eigenvalues, and hence, convergence still remains very bad. For this case
deflation is applied as a projection to remove effect of the small eigenvalues. An other noto-
rious problem pops up in parallel computation in combination with a block preconditioner.
The parallel computation aims at making the problem scalable, that is, the total computa-
tion speed should be inversely proportional with the number of processors used. However,
due to the inaccuracy of block preconditioning with respect to the preconditioning of the full
problem, the number of conjugate gradient iterations increases drastically, which deteriorates
the scalability of the problem: the number of needed CG iterations becomes dependent on
the number of processors used. Hence, the efficiency of the method decreases. In this paper
we will see that the use of deflation will provide a constant number of conjugate gradient
iterations, which makes the method scalable.

For references related to the Deflated ICCG method we refer to the overview given in [11]
and [10]. The DICCG method has already been successfully used for complicated magnetic
field simulations [2]. A related method is recently presented in [7]. In [3] deflation is used
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to accelerate block-IC preconditioners combined with Krylov subspace methods in a parallel
computing environment. We note that this list of references is far from complete.

The DICCG method is related to coarse grid correction, which is used in domain de-
composition methods [4, 7]. Therefore insight in a good choice of the deflation vectors can
probably be used to devise comparable strategies for coarse grid correction approaches. In
Nabben & Vuik [6] it is shown that deflation is more efficient than the balancing preconditioner
introduced by Mandel [5].

Part of the present paper is a compilation of earlier results on deflation by one of the
authors and here it serves to introduce the concept of deflation into the computational geo-
sciences community. New is the consideration of anisotropies. The paper is organized as
follows. First the model equations are presented as a motivation of the benchmark problem,
which has all the mathematical difficulties that occur in the real model. Subsequently the
numerical solution method using deflation is introduced. This is followed by some numerical
experiments and some conclusions are drawn.

2 Model equations

The elliptic partial differential equation that we use as a benchmark problem for the appli-
cation of the deflated preconditioned conjugate method is applicable in general in flow in
porous media, such as salt/fresh water flow, flow in oil reservoirs etc. Therefore, the model
is simplified to

−div k grad p = 0, for x ∈ Ω

∂p

∂n
= 0, on ∂ΩN , p = 1, on ∂ΩD,

(1)

where ∂Ω = ∂ΩN ∪∂ΩD, ∂ΩN ∩∂ΩD = ∅ and k is allowed to vary abruptly over the interfaces
of adjacent subdomains. It is easy to see that the exact solution of this problem is p = 1 on
Ω.

A weak form of the above benchmark problem is given by

(P1)















Find p ∈ H1(Ω) (p|∂ΩD
= 1) such that

∫

Ω

k grad p · grad vdA = 0 for all v ∈ H1
0 (Ω)(v|∂ΩD

= 0).
(2)

This problem is solved by the use of a standard Galerkin Finite Element Method, with

p =

n+nD
∑

i=1

pivi (vi|∂ΩD
= 0 for i ∈ {1, . . . , n}), with piecewise linear element functions vi. In

our examples we take a set of subdomains with

k(x) =







kmin = 10−7, x ∈ ΩL,

kmax = 1, x ∈ ΩH ,
(3)

where we suppose that the closure of the domain Ω consists of the union of non-overlapping
ΩL and ΩH , that is Ω = ΩL ∪ ΩH ∪ ∂ΩHL and ΩH ∩ ΩL = ∅, further ∂ΩHL denotes the
interface between the adjacent subdomains. We assume that the subdomains are not con-
nected. Further, we define ε := kmin/kmax = kmin. In some applications, the high and low
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mobility respectively correspond to sand and shale layers. We will also use this terminology
to refer to the high and low permeability layers. From the Galerkin discretization it follows
inmediately that accross an interface the coefficients in the discrete equation varies several
orders of magnitude.

Discretization by the use of Galerkin’s method results into a matrix-vector equation of
type

Ax = b, (4)

where A ∈ R
n×n, x ∈ R

n and b ∈ R
n respectively represent the discretization (or stiffness-)

matrix, solution vector and right-hand side vector. Using a FEM approach the discretization
matrix is sparse, symmetric and positive definite (SPD). We use preconditioned conjugate
gradient methods to solve this problem. Furthermore, the discretization is chosen such that
the interfaces between consecutive layers coincide with gridpoints. For the case of large jumps
in the coefficient k the condition of the discretization-matrix is very large. The remainder of
the paper is devoted to the efficient solution of the above matrix-vector equation when n is
large.

3 Deflation

It is known that the use of classical preconditioners does not solve the problem of the slow
convergence of the conjugate gradient method if ε is very small . This holds if the parameter
k changes abruptly over the interfaces. This also holds if parallel computation is used with
blockwise preconditioning even without large contrasts of permeability. In order to deal with
the bad convergence, deflation on equation (4) is applied. First we briefly describe the idea
of the use of deflation, which is applied to high contrasts and to parallel computing.

Let A be a symmetric positive definite matrix that results from a finite element discretiza-
tion problem (1), suppose further that the number of layers with high permeability kmax whose
boundary does not (partly) co-incide with ∂ΩD where the solution is prescribed explicitly.

Then, since the quantity k
∂p

∂n
is continuous in the whole domain of computation, the dis-

cretization matrix that would only correspond to this layer would almost be singular due to
kmin ≪ kmax. Therefore, the number of excessively small eigenvalues (in the order of ε) due
to the abrupt changes of the permeability is given by the total number of high permeability
layers whose is intersection with ∂ΩD is empty. This result is proven as a theorem by Vuik
et al. [12]. The convergence behavior of the (preconditioned) conjugate gradient method
is determined by the condition of the matrix, which is the ratio of the largest and smallest
absolute value of the eigenvalues of the matrix. The trick to cope with this bad condition
of the matrix causing the slow convergence rate is as follows: The span, that is the linear
combination, of the eigenvectors that correspond to these small eigenvalues is approximated
by the span of a set of vectors, referred to as deflation vectors, that are produced more easily
than the actual eigenvectors and further they will be sparse. Suppose that the number of
eigenvalues of O(ε) is m, and let z1, . . . , zm be the deflation vectors that approximate the span
of the eigenvectors corresponding to the m very small eigenvalues of A and let the matrix Z
be defined by Z := [z1 z2 . . . zm], and

P := I − AZ(ZT AZ)−1ZT . (5)

Here I is the identity matrix. Suppose that V = [vm+1 . . . vn] contains eigenvectors of the
matrix A, then, since the eigenvectors of a symmetric matrix are orthogonal, the vectors

 

10th European Conference on the Mathematics of Oil Recovery — Amsterdam, The Netherlands  
4 - 7 September 2006 

 



4

vm+1, . . . , vn are orthogonal, hence these eigenvectors are also eigenvectors of the matrix PA.
Furthermore it can be seen by elementary linear algebra that PAZ = 0 and that P 2 = P ,
hence P is a projection and the vectors Az1, . . . , Azm are within the nullspace of P . Hence,
the following holds: Let the spectrum of A be given by {λ1, . . . , λm, λm+1, . . . , λn}, with
|λi| ≪ |λj | for i ∈ {1, . . . ,m} and j ∈ {m + 1, . . . , n}, then, the spectrum of PA is given by
{0, . . . , 0, λm+1, . . . , λn}. In Vermolen et al. [9] it is proved that Az1, . . . , Azm is a basis of
the nullspace of P . Equation (4) is solved by first solving

PAx = Pb, (6)

where PA has the same eigenvalues as A except that the excessively small eigenvalues of the
order of ε of A are replaced with zero. The matrix PA is singular, hence the solution of
the above equation is not uniquely defined. Kaasschieter proved that the effective condition
number for the conjugate gradient method is determined by the ratio of the smallest and
largest absolute value of the non-zero eigenvalues. The matrix PA is singular and the solution
of equation (6) is not uniquely defined, therefore its solution is projected by

x = (I − P T )x + P T x = Z(ZTAZ)−1Zb + P T x. (7)

It is shown in Vermolen et al. [9] that P T x is uniquely defined and hence x is unique.
Several choices for the deflation vectors z1, . . . , zm exist, where the auxiliary condition is

that their span should approximate the span of the eigenvectors from the eigenvalues of A
that are O(ε). For a survey on the various deflation vectors, we refer to Vermolen et al. [9]
and Vuik et al. [10]. In the present study we will use the so-called algebraic deflation vectors,
which are defined by

zi =











1, x ∈ Ωi,

∈ {0, 1}, x ∈ ∂Ωi

0, x ∈ Ω \ Ωi

(8)

Here zi corresponds to subdomain Ωi. On the boundary layer, the deflation vector is either
one or zero, depending on the permeability of the layer Ωi. If the permeability is high, i.e.

Ωi ⊂ ΩH , then, the interface value is one, else it is zero, i.e. Ωi ⊂ ΩL. In Vermolen et al. [9] it
is proven that the span of this set of deflation vectors approximates the span of the eigenvectors
corresponding to the eigenvalues of O(ε). This choice of deflation vectors is referred to as

algebraic. An other option is to choose the value at the interface equal to
k

kmin + kmax

,

this is called algebraic weighting. An other option is to choose the deflation vectors such
that they satisfy the Laplace equation in the low permeability layer and and that they are
constant in the high permeability layer. For these physics based deflation vectors, only for
high permeability layers whose boundary has no intersection with the Dirichlet boundary
∂ΩD deflation vectors are attributed.

4 Numerical experiments

The principle of deflation is applied to reservoirs with layers of extreme contrasts in perme-
ability and in parallel computing. In Figure 2 some results for seven layers with alternating
permeability are shown. In Figure 2 the error ||xk − xtrue||2 is shown as a function of the
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Figure 1: Left: Number of iterations. Right: Wall-clock time
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Figure 2: The error as a function of the iteration number for various types of deflation.

iteration number k for various deflation vectors and for the case without deflation. It can be
seen that the use of deflation is crucially important

For a description of the parallel implementation of the deflation method, we refer to
Vermolen et al. [8]. As a preconditioner we use the incomplete Choleski method. The
domain is divided into layers of equal permeability. To each layer a processor is attributed.
In Figure 1 the number of conjugate gradient iterations and wall clock time have been plotted
as a function of the number of blocks. The total domain of computation is enlarged as the
number of blocks increases. It can be seen for the deflated methods (both sequential and
parallel) that the number of iterations and wall clock time do not or hardly depend on the
number of subdomains, that is, the size of the overall domain of computation. We remark
that qualitatively the same holds for the coarse grid correction, see Nabben & Vuik, although
the actual speed of deflation is larger.

Further, we investigate the influence of anisotropies of the permeability of the medium on
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Figure 3: Left: Number of iterations for a nonisotropic medium with k1 = 1, k2 = 5 and
k3 = 10. Right: Number of iterations for an nonisotropic medium with kx = 10, ky = 5 and
kz = 1.
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Figure 4: Number of iterations for a anisotropic medium with kx = 1, ky = 5 and kz = 1000.
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the convergence behavior, that is

− div (kx
∂u

∂x
, ky

∂u

∂y
, kz

∂u

∂z
) = 0, (9)

with otherwise the same boundary conditions as in equation (1). As in the other simulations,
the stacking has been done in the z-direction. If the permeability is high in the direction of
the adjacent layers, then, it is observed that the scalability of the deflated parallel method
changes, see Figures 3 (left) and 4. The simulations with more processors indicate that the
deflation makes the number of iterations scalable if the number of processors is very large. In
Figure 3 (right) it can be seen that choosing the permeability high in a different direction from
the stacking direction, influences the scalability less significantly. More research is needed to
explain these results.

5 Conclusions

The usual Choleski preconditioning still leaves the discretization matrix with an excessively
large condition number and hence the convergence of the preconditioned conjugate gradient
is still unacceptably slow. Deflation improves the speed of convergence very much. Deflation
even improves the speed of convergence if the adjacent layers do not differ in permeability in
a parallel computing environment. Hence for reservoir simulators deflation is a very usefull
technique because of the large scale computing, which needs a parallel computing setting and
because of the abrupt changes of parameters accross the interfaces between adjacent layers.
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