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Abstract. A black box multigrid preconditioner is described for second order elliptic
partial differential equations, to be used in pressure calculations in a pressure correction
method. The number of cells in each direction is not restricted as for standard multigrid,
but completely arbitrary. Fine tuning for cache hits is described. A comparison is made
with wall clock times of conventional preconditioners.
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1 INTRODUCTION

We will describe a black box multigrid method for second order elliptic partial differen-
tial equations discretized on structured grids. To provide motivation and background we
consider the nonstationary incompressible Navier-Stokes equations. After discretization
in space we obtain a differential-algebraic system of the following form:

ut +N(u) +Gph = 0, (1)

Du = 0, (2)

where u and ph are algebraic vectors containing the velocity and pressure unknowns re-
spectively. N is a non-linear algebraic operator, whereas G and D are linear. Recent
implementations of boundary fitted curvilinear grids with further references to the liter-
ature can be found in [9].

An efficient method to solve (1) is the pressure correction method [2]. Taking the explicit
Euler method as an example, we obtain:

u∗ − un

τ
+N(un) +Gpn−1/2 = 0,

DG δp =
Du∗

τ
, (3)

un+1 = u∗ + τGδp, pn+1/2 = pn−1/2 + δp.

The principles and the time accuracy of pressure correction methods are discussed in
[1, 5]. In curvilinear coordinates it is not necessarily true that D = GT so the operator
DG is not necessarily symmetric.

Almost all of the computational effort to complete a time step goes into computing δp.
Experience shows that this remains true for implicit time stepping schemes. Hence an
efficient method is required to solve these equations and since the operator DG is similar
to a discretization of a second order partial differential equation, multigrid seems attrac-
tive. In our case this is the Laplace equation, but we will not restrict ourselves to this
case, since in curvilinear coordinates variable coefficients are involved. A disadvantage of
conventional multigrid is the requirement that the number of cells in every direction be
divisible by a power of 2. This power has to be at least equal to the number of coarse
grids that will be used. One of our primary aims is to remove this restriction.

2 MULTIGRID PRECONDITIONING

For an introduction to multigrid methods the reader is referred to [8]. We shall only
sketch the basic idea. Suppose one has to solve a discrete problem with generic discretiza-
tion parameter h:

Ahuh = fh, uh, fh ∈ Uh.

2



C. Vuik, J. van Kan, and P. Wesseling

Most iterative methods are very well suited to reduce the high frequency (or rough)
component in the error and ill suited to reduce the low frequency (or smooth) component.
If on the other hand a solution would be known to a discretization with a coarser generic
discretization parameter H :

AHuH = fH , uH , fH ∈ UH ,

then this coarse grid solution could be used as the basis for an approximation to the
smooth component of the fine grid solution uh. For this an interpolation procedure is
needed, or more generally a map from UH to Uh called the prolongation P . Now vh = PuH

is used as an initial estimate for an iterative process on the fine level h. Since the error in
this initial estimate will mainly consist of a rough component this will converge rapidly.
We use a Galerkin-like method to obtain a coarse grid discretization. This comes down
to solving

RAhPuH = Rfh,

so AH = RAhP and fH = Rfh. It is a natural step to use multigrid as a preconditioner
for a Krylov subspace method (Bi-CGSTAB [4], or GMRES [3]).

We experimented with two smoothers: alternating damped line Jacobi and alternating
zebra. In our 2D calculations there was almost no difference between Jacobi and Zebra.
We took npre = 0 and npost = 1 or 2. These choices give the smallest wall clock times,
though not necessarily the smallest number of iterations. Note, that one smoothing step
for Jacobi/Zebra consists of two iterations, one horizontal sweep and one vertical sweep
(three sweeps in 3D). The reason for this is to make the algorithm more robust in the
presence of stretched cells (see [8]).

3 THEORETICAL RESULTS

In this section we present optimal values for the damping parameter. Thereafter a
restriction and prolongation are given for arbitrary number of points in each direction.

Jacobi damping parameter
Consider a discretization of the anisotropic Laplace equation on the square (0, 1)× (0, 1):

εx(uj−1,k − 2ujk + uj+1,k) + εy(uj,k−1 − 2ujk + uj,k+1) = fjk, (4)

with εx = ex/∆x2, εy = ey/∆y2. The resulting matrix is A = εxDx + εyDy. Let Nx =
εxDx − 2εy. The damped line Jacobi iteration in x-direction with damping parameter ω
is given by

Nxu
n+1 = Nxu

n − ω(Aun − f). (5)

For the error en we have
en+1 = en − ωN−1

x Aen. (6)
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Let us first consider the eigenvalues µx of the matrix Mx = N−1
x A. The eigenvalues λx

of the Jacobi iteration matrix will then be given by λx = 1− ωµx. The smoothing effect
of a complete alternating Jacobi cycle can, assuming that the two smoothing operators
commute, be given by the factor σ = (1− ωµx)(1− ωµy).

In [6] it is proven that for damped alternating line Jacobi the optimal value of the damping
parameter satisfies (2ω − 1) = (1 − 1

2
ω)2 in 2D and (2ω − 1) = (1 − 1

2
ω)3 in 3D. Since

0 < ω < 1 this leads to ωopt = 0.7085 in 2D and ωopt = 0.6528 in 3D.

Restriction and prolongation
The usual implementations of black box multigrid use odd numbers of grid points in both
x– and y–direction on all levels. The advantage of this becomes apparent if we look at a 1D
interval: the two extreme points of the interval belong to the grid on all levels. These are
not necessarily boundary points but unknowns adjacent to or on the boundary, depending
on the type and implementation of the boundary condition. Since a black box multigrid
method bases itself solely on matrix and right-hand side it should work independently of
the type of boundary condition. As we have implemented the black box solver, we allow
any number of points in either direction. We describe prolongation to a fine level and
restriction to a coarse level in one dimension only. The actual restriction/prolongation in
two or three dimensions is obtained by chaining several of these restrictions/prolongations
along different coordinate directions.

If the fine level has 2N+1 points, the restriction will be standard vertex centered to N+1
points. The prolongation P will be obtained by linear interpolation and the restriction
will be its transpose : R = P T . If the fine level has an even number of points we take for
the restriction N+1 points cell centered. The interpolation is given by

u2j =
3

4
Uj +

1

4
Uj+1, (7)

u2j+1 =
1

4
Uj +

3

4
Uj+1, j = 0, . . . , N − 1, (8)

and the restriction by

W0 =
1

2
w0, (9)

Wj =
1

2
w2j−1 +

1

2
w2j, j = 1, N − 1, (10)

WN =
1

2
w2N−1. (11)
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4 IMPLEMENTATION CONSIDERATIONS

A profile of the preconditioner reveals that it spends about 80% of its time doing
matrix vector multiplications. So optimizing the matrix vector multiplication is of prime
importance in achieving optimal speed. This will be largely machine dependent, but on a
variety of computers good use can be made of the cache. If an operand is in the cache it
can be accessed an order of magnitude faster than when it has to be got from conventional
memory. On most architectures when an element is accessed in conventional memory a
whole contiguous block is loaded into the cache. There are cache optimization techniques
that exploit this fact very elegantly, but there you have to have control over what goes into
the cache and what not. This is usually impossible in standard programming languages.

The following implementation of v = Au (2D) would be optimal in Fortran:

c preset: v(i,j) = 0, i = 0...nx, j = 0...ny

do ip = 1, 9

do j = 1, ny-1

do i = 1, nx-1

ix = i - 1 + mod (ip - 1, 3)

iy = j - 1 + (ip - 1) / 3

v (i, j) = v (i, j) + a(i, j, ip) * u (ix, iy)

end do

end do

end do

Experiments have shown, however, that making the ip-loop the innermost loop makes
the multiplication about twice as fast. And unrolling the ip-loop gains another factor
of about 1.3. The explanation for this typical behavior has to be found in that the
above implementation reloads the vectors v and u nine times, whereas the alternative
implementation reloads them only three times.

5 NUMERICAL EXPERIMENTS

In this section we present results of the computing time incurred to solve the pressure
equations in various flow problems. Since the Reynolds number does not influence the
pressure equation it will not be given.

5.1 Flow in a curved channel

We consider the flow in a curved channel [7]. On the fixed walls a no-slip condition is
given, whereas on the inflow a uniform velocity is given. Finally a free outflow condition
is proposed at the outlet.

Our multigrid preconditioner is made such that every grid-size can be handled. It appears
from experiments that for this problem the number of iterations and the efficiency is indeed
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independent on the grid-size (see Table 1). The final grid-size 23×87 is a worst case. For
this choice the coarse grid-sizes are odd and even alternately. The number of iterations
is more or less the same for all grid-sizes, whereas the CPU time per unknown increases
with a factor 2 in the worst case problem.

grid iterations CPU
16× 64 5 0.08
13× 60 5 0.06
15× 63 5 0.08
17× 66 6 0.07
18× 65 5 0.07
23× 87 6 0.17

Table 1: Number of iterations and CPU time measured in milliseconds per unknown for various grid-sizes

Finally we compare the GMRES and Bi-CGSTAB acceleration methods with the multi-
grid preconditioner and an ILU preconditioner with 8 diagonals of fill-in in the upper- and
lower triangular matrix. The results are given in Figure 1. It appears for this problem that
the combination GMRES with a multi-grid preconditioner is optimal also for relatively
small problems. It is to be noted, however, that Bi-CGSTAB requires fewer intermediate
vectors to be stored. But in the context of flow problems the number of vectors required
by GMRES to solve the pressure never presents a problem: the storage used for the
momentum matrix on the previous time level can be used for that.
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Figure 1: The efficiency of the various methods, measured in CPU time in milliseconds per unknown
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5.2 Flow in a cube

We consider the flow in a cube on an nx × nx × nx grid. The flow is prescribed at
the left, there are no-slip boundary conditions on bottom, top, front and back faces and
a free outflow on the right side of the cube. Table 2 contains the number of iterations
and CPU time to solve the pressure equation. Again the number of iterations for the
multigrid method is independent of the grid-size. Furthermore GMRES/multigrid is an
efficient method also for small grid sizes.

nx GMRES/multigrid GMRES/ILU
iterations CPU iterations CPU

8 4 0.07 14 0.07
16 4 0.85 17 0.91
32 4 8.1 24 16.4

Table 2: Number of iterations and CPU time for the cube

5.3 Flow in a rectangular channel

Finally we consider the flow in a rectangular channel, with length l, width w, and
height h. The flow of the fluid is in the length direction. The boundary conditions are:
a uniform inflow at the left-hand plane, an outflow condition at the right-hand plane,
and a no-slip condition at the other planes. In Table 3 the results for various values of
l, w, and h are given using a 16 × 16 × 16 grid. Varying h in the same way as w leads
to comparable results. It appears that the rate of convergence of GMRES/multi-grid
deteriorates considerably when the grid cells are stretched in the direction of the flow. At
this moment we are trying to alleviate this drawback.

l × w × h GMRES/multi-grid GMRES/ILU
iterations CPU iterations CPU

1× 1× 1 4 0.85 17 0.91
5× 1× 1 14 2.64 19 1.03
10× 1× 1 24 4.30 22 1.26
1× 5× 1 8 1.5 19 1.03
1× 10× 1 9 1.65 24 1.33

Table 3: Number of iterations and CPU time for the rectangular channel
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6 CONCLUSIONS

We have shown how restrictions on the number of grid cells can be removed in multigrid
methods without incurring an efficiency penalty. A black box implementation of the
multigrid method has been incorporated in an existing flow code to solve the pressure
equation. A simple smoother with excellent parallelization potential is used, namely
alternating line Jacobi with fixed optimal damping parameter. Efficiency and robustness
are enhanced by Krylov subspace acceleration. Some considerations have been presented
on the implementation that will improve cache usage. Applications to two- and three-
dimensional flows have been presented.

The code is available by anonymous ftp at

ftp://ta.twi.tudelft.nl/pub/nw/vankan/multigrid

8



C. Vuik, J. van Kan, and P. Wesseling

REFERENCES

[1] A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comp., 22:745–
762, 1968.

[2] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with a free surface. The Physics of Fluids, 8:2182–2189,
1965.

[3] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for
solving non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856–869, 1986.

[4] H.A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 13:631–644,
1992.

[5] J.J.I.M. Van Kan. A second-order accurate pressure correction method for viscous
incompressible flow. SIAM J. Sci. Stat. Comp., 7:870–891, 1986.

[6] J.J.I.M. Van Kan, C. Vuik, and P. Wesseling. Fast pressure calculation for 2D and 3D
time dependent incompressible flows. submitted.

[7] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the
GMRES method. Int. J. Num. Meth. Fluids, 16:507–523, 1993.

[8] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, Chichester,
1992.

[9] P. Wesseling, A. Segal, and C.G.M. Kassels. Computing flows on general three-
dimensional nonsmooth staggered grids. J. Comp. Phys., 149:333–362, 1999.

9


