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Abstract

Efficient parallel algorithms are required to simulate incompressible turbulent flows in complex two- and three-dimensional
domains. The incompressible Navier–Stokes equations are discretized in general coordinates on a structured grid. For a flow
on a general domain we use an unstructured decomposition of the domain into subdomains of simple shape, with a structured
grid inside each subdomain. We have developed a parallel block-preconditioned GCR method to solve the resulting systems
of linear equations. The method can be smoothly varied between a coarse grain parallel method in which the subdomain
problems are solved accurately with an inner iteration process and a fine grain parallel method when only a preconditioner
is used to approximate the solution on the blocks. Parallel performance results for Boussinesq flow in a cavity are included.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Efficient parallel algorithms are required to simulate
incompressible turbulent flows in complex two- and
three-dimensional domains. We consider the incom-
pressible Navier–Stokes equations:

∂u
∂t

− 1

Re
�u + u∇ · u + ∇p = f, ∇ · u = 0,

where Re is the Reynolds number. These equations
are discretized in general coordinates using a stag-
gered finite volume method on a structured grid (see
[3,17,27,28]). For a flow on a general domain we use
an unstructured decomposition of the domain into sub-

∗ Corresponding author.
E-mail address: c.vuik@math.tudelft.nl (C. Vuik).

1 Present address: CWI, P.O. Box 94079, 1090 GB Amsterdam,
Netherlands.

domains of simple shape, with a structured grid in-
side each subdomain. We have developed a parallel
block-preconditioned GCR method to solve the result-
ing systems of linear equations.

Let V n and Pn represent the algebraic vectors con-
taining velocity and pressure unknowns at time tn, re-
spectively. Application of the backward Euler method
in time yields

V n+1 − V n
�t

= F(V n)V n+1 − GPn+1, (1)

DVn+1 = 0, (2)

where (1) represents the discretized momentum equa-
tion and (2) the discretized incompressibility condi-
tion. The matrix F is the linearized spatial discretiza-
tion of the convection and stress in the Navier–Stokes
equations, G the discretized gradient operator, and D
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the discretized divergence operator. To solve (1) and
(2) with the time-accurate pressure correction method
[21], these equations are approximated by

(Prediction)
V ∗ − V n
�t

= F(V n)V ∗ − GPn, (3)

V n+1 − V n
�t

= F(V n)V ∗ − GPn+1, (4)

DVn+1 = 0. (5)

Subtraction of (3) from (4) gives

V n+1 − V ∗

�t
= −G(Pn+1 − Pn). (6)

Taking the discretized divergence of both sides of (6)
and using (5) results in the pressure correction equa-
tion:

(Projection) DG�P = DV∗

�t
, (7)

where�P = Pn+1−Pn. After the pressure correction
�P has been computed from (7), it is substituted into
(6), which leads to:

(Correction) V n+1 = V ∗ −�t G�P. (8)

In summary, the pressure correction method consists
of three steps: (i) computation of V ∗ from (3), (ii)
computation of�P from (7) and computation of V n+1

from (8). The linear systems are solved by a Krylov
subspace method with an ILU [23,24] or a multigrid
[30] preconditioner.

The linear systems (3) and (7) are solved with GCR
[10,20] using a block-diagonal preconditioner based
on a non-overlapping domain decomposition [6,9,29].
This allows us to handle more general domains with
a structured discretization, by decomposing the do-
main into regions which are topologically similar to a
square or cube, within each of which the grid is struc-
tured. The block-diagonal structure additionally facil-
itates parallelization, allowing us to handle very large
domains in which memory limitations come into play.

Additionally, the independent blocks of the precon-
ditioner can be solved as precisely as desired using
an inner iteration procedure [5,6]. Thus, our method
can be smoothly varied between a coarse grain paral-
lel method when the subdomain problems are solved
accurately [4], to a fine grain parallel method when

only one subdomain iteration is done in every domain
decomposition iteration (compare [25]).

Efficient parallel implementation of GCR method
requires, in addition to the preconditioner, a proper
handling of the matrix vector multiplication and inner
products. For a matrix vector product only nearest
neighbor communications are required, which is ef-
ficient on most parallel computers. Inner products,
on the other hand, require global communications;
therefore, the focus has been on reducing the number
of inner products [11,18], overlapping inner product
communications with computation [8], or increasing
the number of inner products that can be computed
with a single communication [2,16].

The details of our domain decomposition algorithm
are given in Section 2.1. Our motivation for using
GCR as the acceleration method is given in Section
2.2. Various orthogonalization methods, which can be
used in GCR are discussed in Section 2.3. Speedup
results are presented in Section 3.

2. The block-preconditioned GCR method

We begin by describing in detail our block-diagonal
preconditioner, the Krylov subspace method used to
accelerate the iterations, and its parallelization aspects,
especially the question of an orthogonalization proce-
dure.

2.1. The block Gauss–Jacobi preconditioner

The pressure correction algorithm, (3)–(8) is used
for the solution of the Navier–Stokes equations on
the global domain �. Let the domain be the union of
M non-overlapping subdomains �m,m = 1, . . . ,M .
Eqs. (3) and (7) are solved using domain decompo-
sition. We require that the subdomains intersect reg-
ularly, i.e. the grid lines are continuous across block
interfaces. The correction of V ∗ in Eq. (8) is indepen-
dently carried out in all blocks.

When discretized on the global grid, both the mo-
mentum equation (3) and the pressure equation (7) can
be written as a linear system

Av = f (9)

with either A = S(V n) := (1/�t)I − F(V n) and
v = V ∗ for the momentum equation or A = DG
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and v = �P for the pressure correction equation.
If we decompose A into blocks such that each block
corresponds to all unknowns in a single subdomain,
with a small modification for the momentum equation
(see further on), then we get the block system

A11 · · · A1M
...

. . .
...

AM1 · · · AMM






x1
...

xM


 =



b1
...

bM


 . (10)

In this system, one observes that the diagonal blocks
Amm express coupling among the unknowns defined on
a common subdomain (�m), whereas the off-diagonal
blocks Amn,m �= n represent coupling across sub-
domain boundaries. The only nonzero off-diagonal
blocks are those corresponding to neighboring sub-
domains.

The unaccelerated domain decomposition iteration
for Eq. (9) is analogous to a classical iteration of the
form:

vm+1 = vm +K−1(f − Avm) (11)

with the block Gauss–Jacobi method matrixK defined
as

K =



A11

. . .

ANN


 .

When (11) is used, systems of the form Kv = r have
to be solved. Since there is no overlap the diagonal
blocks Ammvm = rm,m = 1, . . . , N can be solved
in parallel. In our approach these systems are solved
by an iterative method. An important point is the re-
quired tolerance of these inner iterations (see [5,12]).
Since the number of inner iterations may vary from
one subdomain to another, and in each outer iteration,
the effective operator K̂−1 ≈ K−1 is nonlinear and
varies in each outer iteration.

Our choice of approximate solution methods is
motivated by the results obtained in [5,12], where
GMRES was used to approximately solve sub-
domain problems to within fixed tolerances of
10−4, 10−3, 10−2 and 10−1. Additionally, a block-
wise application of the RILU(D) preconditioner has
been used [24].

We cannot apply the above described block
Gauss–Jacobi algorithm directly to the momentum

matrix S because the normal velocity components on
the block interfaces belong to two blocks. Instead, we
first augment the matrix S in the following way. It is
sufficient to consider a decomposition into two blocks
(N = 2). Let the velocity unknowns be divided into
three sets:

1. the set consisting of velocities belonging to block
1, excluding the normal velocities at the block
interface,

2. the set consisting of the normal velocities at the
interface,

3. the set consisting of velocities belonging to block
2, excluding the normal velocities at the block
interface.

With respect to these sets of unknowns, the matrix
S(V n) has the block form

S(V n) =



S11 S12 S13

S21 S22 S23

S31 S32 S33


 . (12)

The system of equations S(V n)V ∗ = f can be aug-
mented, doubling the interface unknowns to arrive at

S̄(V n)V̄ ∗ =



S11 S12 0 S13

S21 S22 0 S23

S21 0 S22 S23

S31 0 S32 S33






V̄ ∗

1

V̄ ∗
2

V̄ ′∗
2

V̄ ∗
3




=



f1

f2

f2

f3


 . (13)

The solution of Eq. (13) satisfies V̄ ∗
2 = V̄ ′∗

2 whenever
S22 is invertible (see [19]) and in this case, Eq. (13)
is equivalent to the original system of equations
S(V n)V ∗ = f . In view of Eq. (10), we have

A11 =
[
S11 S12

S21 S22

]
and A22 =

[
S22 S23

S32 S33

]
,

(14)

so that the domain decomposition for the momentum
equation has been described.
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2.2. The GCR method

The block Gauss–Jacobi iteration (11) described
in Section 2.1 can be accelerated by a Krylov sub-
space method. To do so, we choose K−1 as the pre-
conditioner. Due to the approximate solution of the
subdomain problems the effective preconditioner is
nonlinear and varies in each outer iteration. We choose
the GCR method [10,20] because it can be used with
a variable preconditioner, and furthermore is quite
flexible for use with restart/truncation strategies when
the number of iterations exceeds the prescribed limit
ntrunc. In practice, truncated GCR converges faster
than restarted GCR. If the number of outer iterations
is less than ntrunc an optimized version of the GCR
method is used [22].

The preconditioned GCR method is given by the
following algorithm.

Algorithm. gcr

Given: initial guess x0
r0 = b − Ax0
for k = 1, . . . , convergence

Solve Kṽ = rk−1 (approximately)
q̃ = Aṽ
[qk, vk] = orthonorm(q̃, ṽ, qi, vi, i < k)
γ = qT

k rk−1
Update: xk = xk−1 + γ vk
Update: rk = rk−1 − γ qk

end

The vectors qk and vk are distributed over the pro-
cessors in the same way as the solution vector xk . All
vectors qi, vi, i ≤ k are stored in memory. The func-
tion orthonorm( ) takes input vectors q̃ and ṽ, orthog-
onalizes q̃ with respect to the qi, i < k, and returns
the modified vectors qk such that ‖qk‖2 = 1. In order
to preserve the relation q̃ = Aṽ, equivalent operations
are done with ṽ.

Apart from the preconditioner, the main challenges
to parallelization of GCR is parallel computation of the
inner products, which require global communication
and therefore do not scale. Much of the literature on
parallel Krylov subspace methods and parallel orthog-
onalization methods has focused on performing sev-
eral iterations before orthogonalizing, so that a number
of vectors can be orthogonalized simultaneously with
a single communication. However, this is not possible

using a preconditioner which varies in each iteration.
For this reason, we need a method for orthogonalizing
a new vector against an orthonormal basis of vectors.

2.3. Orthogonalization methods

A disadvantage of the modified Gram–Schmidt
method in parallel is that the number of inner prod-
ucts increases proportionally to the iteration number
and these inner products must be computed using suc-
cessive communications. This is not the case if one
uses the classical Gram–Schmidt method. In this al-
gorithm all necessary inner products can be computed
with a single global communication. Unfortunately,
the classical Gram–Schmidt method is unstable with
respect to rounding errors, so this method is rarely
used. On the other hand, Hoffmann [14] gives experi-
mental evidence indicating that a two-fold application
of the classical Gram–Schmidt method is stable. An-
other method which has been suggested is the parallel
implementation of Householder transformations, in-
troduced by Walker [26]. Below we reformulate this
method for GCR (see also [12]).

In the Householder orthogonalization we use the
notation ak to represent the kth column of a matrix A
and a(i) to represent the ith component of a vector a.
Let a matrix A ∈ Rn×m,m ≤ n with linearly indepen-
dent columns be factored as QZ, where Q is orthogo-
nal and Z is upper triangular. Then the kth column of
A is given by ak = Qzk and the columns ofQ form an
orthonormal basis for the span of the columns of A.

We constructQ as the product of a series of House-
holder reflections, Q = P1 · · ·Pm, used to transform
A into Z. The matrices Pi = I − 2(wiwT

i /w
T
i wi),

with w
(j)
i = 0 for j < i have the property:

Pi(Pi−1 · · ·P1)ai = zi .
Suppose one has already produced k orthonormal

basis vectors. To compute wk+1 one must first apply
the previous reflections to ak+1 as described in [26]:
ã = Pk · · ·P1ak+1 = (I − 2WkL

−1
k W

T
k )ak+1, where

Wk is the matrix whose columns are w1, . . . , wk , and
where

Lk =




1

2wT
2w1 1

...
. . .

2wT
k w1 · · · 2wT

k wk−1 1


 .
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Note especially that in the (k + 1)th iteration one
must compute the last row of Lk , which is the vec-
tor (2wT

k Wk−1, 1), as well as the vector WT
k ak+1.

This requires 2k − 1 inner products, but they may
all be computed using only a single global communi-
cation.

Let â be the vector obtained by setting the first
k elements of ã to zero. The vector wk+1 is cho-
sen as: wk+1 = â + sign(â(k+1))‖â‖2ek+1. In prac-
tice, the vectors wk are normalized to length one.
The length of wk+1 can be expressed as ‖wk+1‖2 =
(2α2 − 2αâ(k+1))1/2, where α = sign(â(k+1))‖â‖2.
The (k + 1)th column of Q is the new orthonormal
basis vector:

qk+1 = 1

α

[
ak+1 −

k∑
i=1

ã(i)qi

]
.

Within the GCR algorithm, the linear combination
with the same coefficients must be applied to the vi to
obtain vk+1.

In Table 1 we summarize the round-off properties
and the amount of work and communication for the
following orthogonalization methods (for details see
[12]):

• classical Gram–Schmidt (CGS),
• reorthogonalized classical Gram–Schmidt (RCGS),
• modified Gram–Schmidt (MGS),
• Householder (HH).

Comparing the costs we expect that the wall-clock
time for RCGS and HH are comparable. When com-
munication is slow (large latency) compared to com-
putation, one expects that these methods are faster than
MGS, with of course a preference for RCGS. Other-
wise, when computational costs dominate, MGS is the
fastest method because it requires fewer floating point
operations.

Table 1
Properties of the various orthogonalization methods

Round-off daxpy ddot Communications

CGS Bad 2k k 1
MGS Good 2k k k
RCGS Good 3k 2k 2
HH Good 3k 2k 3

3. Numerical experiments

In this section we illustrate the parallel performance
of the block Gauss–Jacobi preconditioned GCR
method when implemented within the Navier–Stokes
software DeFT [27]. Numerical experiments were
performed on a network of workstations (NOW)
consisting of Hewlett–Packard 700-series machines
connected by a 10 MB ethernet and on a Cray T3E.

The test problem considered was a two-dimensional
Boussinesq flow [7] on (0, 1)× (0, 1). The governing
equations are given by

∂u
∂t

− 1

Re
�u + u∇ · u + ∇p = g

Gr

Re2
T , (15)

∇ · u = 0, (16)

dT

dt
− 1

Re Pr
�2T + u · ∇T = 0 (17)

with g = (0,−1) and boundary conditions u(0, y) =
u(1, y) = u(x, 0) = u(x, 1) = 0, T (0, y) =
1, T (1, y) = 0, and ∂T /∂y(x, 0) = ∂T /∂y(x, 1) = 0.
The Reynolds, Prandtl and Grashof numbers were
taken to be Re = 1,Pr = 0.71 (air) and Gr = 1500,
respectively. The simulation was carried out for 10
timesteps of size �t = 0.05 to diffuse the influence
of start-up latencies. It is known that due to the tem-
perature difference a circulating flow arises, with the
number of vortices depending on the Grashof num-
ber. This recirculation makes the momentum equation
(15) and heat transport equation (17) relatively dif-
ficult to solve. Since the domain is rectangular, it is
easily decomposed into various block configurations.

In the inner iteration process, blocks were solved
to various accuracies using GMRES with a restart of
40, preconditioned with the relaxed incomplete factor-
ization, RILU(α), of [1] using a relaxation parameter
α = 0.975 for the pressure correction equation (7) and
α = 1 for the momentum and transport equations. In
the extreme case, we perform no GMRES iterations
and use only the RILU preconditioner on the blocks.
For the outer iterations, GCR was used with a Krylov
subspace of dimension 25 and employing the Jackson
and Robinson truncation strategy [15,22].

The timings listed in this section are wall-clock
times obtained with MPI timing routines, and indicate
the time spent in the linear solver part of the code. In
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Table 2
Wall-clock time and iteration counts given in parentheses for a
Gauss–Jacobi and block Gauss–Jacobi preconditioning (RILU)

Blocks Subgrid Gauss–Jacobi Block Gauss–Jacobi

Momentum Pressure Momentum Pressure

2 × 2 24 × 24 13.8 (119) 9.0 (144) 4.8 (39) 2.6 (38)
60 × 60 159 (301) 101 (390) 62.6 (91) 21.2 (69)

3 × 3 24 × 24 25.2 (180) 19.7 (226) 8.7 (60) 6.1 (64)

particular, they do not include time required to con-
struct the matrices.

In all of our tests, we observed very similar behav-
ior for the transport equation (17) as for the pressure
equation (7), so we will neglect the discussion of the
transport equation in the following sections.

3.1. Comparison with diagonal scaling

As a basis for comparison of the effectiveness of
the block preconditioner, we ran a few tests using
a simple diagonal scaling (Gauss–Jacobi) precondi-
tioner. This preconditioner is very popular in a paral-
lel computing environment. Table 2 gives wall-clock
times and iteration counts using both preconditioners.
The table indicates that the number of iterations re-
quired for convergence with diagonal preconditioning
is quite large and increases drastically as the grid is
refined. Furthermore, the block Gauss–Jacobi pre-
conditioner needs much less wall-clock time than the
Gauss–Jacobi preconditioner.

3.2. Comparison with serial block preconditioner

To measure the cost of parallelization, we compare
the parallel and sequential computation times using
the block Gauss–Jacobi preconditioners. Tables 3 and
4 give the speedup factors on a Cray T3E for the mo-

Table 3
Attained speedups over sequential implementation (momentum
equation, 24 × 24 subgrid resolution)

Blocks GMR6 GMR2 GMR1 RILU(1)

4 3.7 3.6 3.6 3.4
9 8.1 7.5 7.4 7.0

16 14.0 12.9 12.6 12.2
25 18.4 17.1 16.6 16.4

Table 4
Attained speedups over sequential implementation (pressure equa-
tion, 24 × 24 subgrid resolution)

Blocks GMR6 GMR2 GMR1 RILU(0.95)

4 3.2 3.0 2.9 2.6
9 6.4 5.9 5.4 5.0

16 10.5 9.3 9.2 9.3
25 14.2 9.9 9.6 12.1

mentum and pressure equations, respectively, using
the approximate solvers or the RILU preconditioner
on the blocks. The subdomain approximations will be
denoted as follows:

• GMR6: restarted GMRES with a tolerance of 10−6,
• GMR2: restarted GMRES with a tolerance of 10−2,
• GMR1: restarted GMRES with a tolerance of 10−1,
• RILU: one application of an RILU preconditioner.

The trends are as expected: when the blocks are
solved very accurately, the relative cost of communi-
cation to computation is low, giving a high speedup
in parallel; whereas for the less accurate approxima-
tions, the communications are relatively more expen-
sive, and a lower speedup is observed. In general, the
parallel efficiency is quite high for a small number of
blocks but decreases as the number of blocks is in-
creased. The speedups are higher for the momentum
equation than for the pressure equation.

For the pressure equation the speedups of GMR1
and GMR2 are less than expected when 25 blocks are
used. The reason for this is a deterioration of the load
balancing for GMR1 and GMR2 when the number
of blocks increases. When four blocks are used the
number of inner iterations is more or less the same for
all blocks. However, when GMR2 is used on 25 blocks
the ratio between the maximum and minimum number
of iterations per block is 1.35. RILU has a perfect load
balance because on each block the amount of work is
the same.

3.3. Scalability comparison

3.3.1. Fixed problem size
In this section we compare the parallel computation

times for a fixed problem size on a 120×120 grid. The
grid is decomposed into 2 × 2, 3 × 3, 4 × 4 and 5 × 5
subdomains. The discretized Navier–Stokes equations
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Table 5
Scalability study on 120 × 120 grid (momentum equation)

Blocks Single block solution time: 21.4 (1)

GMR6 GMR2 GMR1 RILU(1)

2 × 2 204 (30) 74.4 (31) 56.5 (34) 62.9 (91)
3 × 3 73.8 (42) 34.4 (42) 28.2 (44) 31.4 (98)
4 × 4 42.9 (46) 22.7 (46) 19.4 (54) 20.1 (96)
5 × 5 30.4 (51) 17.9 (51) 17.7 (54) 17.3 (97)

are solved for a number of timesteps. Tables 5 and
6 give cumulative timing results for the momentum
and pressure equations. The number of outer iterations
required in the final timestep is given in parentheses.

The single block solution times are listed in each
table for reference. The number of necessary outer it-
erations increases drastically in the multiblock case as
compared to the single block case of only one itera-
tion. This initial loss of convergence rate can only be
offset in the case of the momentum equation by using
very rough approximations on the blocks and many
processors. For the pressure equation, some speedup
can already be obtained with only four blocks.

3.3.2. Fixed subdomain size
It is often argued that a better measure of the effec-

tiveness of a parallel algorithm is obtained by fixing
the per-processor problem size while increasing the
number of processors [13]. In this section we there-
fore fix the subdomain grid at 24 × 24, and the do-
main decomposition is increased from a single block
to a 5 × 5 block decomposition. In Tables 7 and 8
we list the wall-clock times for the momentum and
pressure equations, respectively. For perfect scaling,
the wall-clock time would be constant, independent
of the number of blocks. Given in parentheses are the
number of outer iterations required in the final time

Table 6
Scalability study on 120 × 120 grid (pressure equation)

Blocks Single block solution time: 30.8 (1)

GMR6 GMR2 GMR1 RILU(0.95)

2 × 2 68.7 (31) 39.1 (39) 44.8 (55) 21.3 (67)
3 × 3 36.2 (46) 24.0 (58) 24.9 (70) 17.2 (95)
4 × 4 23.8 (55) 17.5 (67) 16.7 (76) 13.7 (108)
5 × 5 19.5 (63) 19.9 (78) 17.5 (87) 15.5 (119)

Table 7
Scalability study with fixed block size (momentum equation)

Blocks GMR6 GMR2 GMR1 RILU(1)

2 × 2 10.6 (20) 5.8 (20) 5.0 (21) 4.8 (39)
3 × 3 16.3 (32) 9.3 (33) 8.3 (34) 8.8 (60)
4 × 4 23.1 (41) 12.8 (41) 11.5 (43) 11.8 (77)
5 × 5 30.4 (51) 17.9 (51) 17.7 (54) 17.3 (97)

step. For a fixed block size we observe for the momen-
tum equation that the computation time scales roughly
as the square root of the number of blocks. For the
pressure equation the scaling is somewhat poorer, es-
pecially for the 5 × 5 block decomposition. For both
equations there is a large increase in the number of
outer iterations.

3.4. Orthogonalization methods

In this section we compare parallel performances
of the modified Gram–Schmidt (MGS), Householder
(HH), and reorthogonalized classical Gram–Schmidt
(RCGS) processes on a NOW and on a Cray T3E.
First we compare these methods for an artificial test
problem. Thereafter we make a comparison for the
Boussinesq problem.

In our first experiment the wall-clock times in the
orthogonalization part are measured when 60 GCR
iterations are performed. In Fig. 1 the parameters

FHH = orthog. time MGS

orthog. time HH
and

FRCGS = orthog. time MGS

orthog. time RCGS

are plotted as functions of n. In each subdomain an
n × n grid is used. The number of subdomains is
equal to the number of processors. On the worksta-
tion, cluster (HH) and (RCGS) are only advantageous
when the number of unknowns is less than 3600 on
four processors and less than 6400 on nine processors.

Table 8
Scalability study with fixed block size (pressure equation)

Blocks GMR6 GMR2 GMR1 RILU(0.95)

2 × 2 4.0 (20) 2.7 (24) 2.8 (29) 2.7 (38)
3 × 3 8.7 (35) 6.6 (42) 6.5 (46) 6.4 (64)
4 × 4 13.2 (49) 10.3 (58) 10.5 (64) 9.4 (92)
5 × 5 19.5 (63) 19.9 (78) 17.5 (87) 15.5 (119)
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Fig. 1. Measured speedup with Householder (HH) orthogonaliza-
tion and reorthogonalized classical Gram–Schmidt (RCGS) with
respect to modified Gram–Schmidt (MGS).

On the Cray T3E, the number of unknowns per pro-
cessor should be fewer than 1000 for nine or even 25
processors. For larger problems the smaller amount
of work involved in modified Gram–Schmidt orthog-
onalization outweighs the increased communication
cost. Furthermore, we observe that RCGS is somewhat
more efficient than HH. Therefore we have not im-
plemented the Householder orthogonalization in our
Navier–Stokes solver.

Finally we report the total wall-clock time spent
solving the linear systems originating from the
two-dimensional Boussinesq flow problem. We con-
sider the case for which orthogonalization is most
likely to be a factor, i.e. relatively small blocks ap-
proximated by the RILU preconditioner. Since the
approximate block solver is cheaper in this case, the
communication costs weigh more heavily.

Table 9
Comparison of computation times on a Cray T3E using MGS and
RCGS orthogonalization processes (24 × 24 subgrid resolution,
RILU subdomain approximation)

Blocks MGS RCGS

Momentum Pressure Momentum Pressure

2 × 2 4.7 2.6 4.7 2.6
3 × 3 8.5 6.0 8.5 5.5
4 × 4 11.6 8.9 11.7 8.4

Table 10
Comparison of computation times on a NOW using MGS and
RCGS orthogonalization processes (24 × 24 subgrid resolution,
RILU subdomain approximation)

Blocks MGS RCGS

Momentum Pressure Momentum Pressure

2 × 2 38.6 36.5 23.3 17.0
3 × 3 563 799 164 236

Table 9 compares times obtained on a Cray T3E.
We see that the orthogonalization time is actually neg-
ligible on the Cray, so that neither of the strategies
(MGS/RCGS) provides a significant advantage.

Table 10 presents analogous results on the NOW.
For the four-block decomposition, the workstations
were directly connected by ethernet, whereas for the
nine-block decomposition, the workstations were lo-
cated at different points on the local network, such that
some messages had to pass through routers. Due to the
relatively low communication bandwidth of the ether-
net, the inner product communications become an ex-
pensive part of the computation, and a good speedup
can be achieved by using reorthogonalized classical
Gram–Schmidt.

4. Conclusions

In this paper we have presented parallel perfor-
mance results for a block Gauss–Jacobi precondi-
tioned GCR method for the Navier–Stokes equations.
We summarize these results in the following remarks:

• The block Gauss–Jacobi preconditioner is perfectly
parallel and gives better performance than a simple
diagonal scaling which is also perfectly parallel.
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• The convergence rate degrades substantially as the
number of blocks is increased from one, but less
appreciably thereafter. Current research into using
overlap or multilevel techniques promises to im-
prove this behavior.

• It is sometimes advantageous to use the reorthogo-
nalized classical Gram–Schmidt process on work-
station clusters, particularly when the number of
workstations is large and the network is slow.

• Parallelization of a multi-block problem leads to
good speedups; however using this kind of domain
decomposition simply for exploiting a parallel ma-
chine leads to only a modest decrease of wall-clock
time.
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