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Abstract 

In this paper we compare two recently proposed methods, FGMRES (Saad, 1993) and GMRESR (van der Vorst and 
Vuik, 1994), for the iterative solution of sparse linear systems with an unsymmetric nonsingular matrix. Both methods 
compute minimal residual approximations using preconditioners, which may be different from step to step. The insights 
resulting from this comparison lead to better variants of both methods. 
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1. Introduction 

Recently two new iterative methods, FGMRES [S] and GMRESR [7] have been proposed to 
solve sparse linear systems with an unsymmetric and nonsingular matrix. Both methods are based 
on the same idea: the use of a preconditioner, which may be different in every iteration. However, 
the resulting algorithms lead to somewhat different results. 

In [S] the GMRES method is given for a fixed preconditioner. Thereafter, it is shown that 
a slightly adapted algorithm: FGMRES can be used in combination with a variable precondi- 
tioner. Finally, a wide class of possible preconditioners is given. 

In [7] GMRESR is presented as a slightly adapted version of the GCR method [2]. Again 
a variable preconditioner can be used. A special choice of the preconditioner, m steps of GMRES 
[6] or one LSQR step [4], is investigated in more detail. In [9] GMRESR is compared with other 
iterative methods. 

A short comparison of FGMRES and GMRESR has been given in [9]. The results of this 
comparison may be summarized as follows. FGMRES may break down, and can only be restarted 
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in the outer loop. GMRESR does not break down and can be restarted and truncated. In general, 
the search directions used in both methods are different, but the convergence behaviour is 
approximately the same. The required amount of memory and work for a given number of 
iterations without restarting or truncation are comparable. 

In this paper we give a more detailed comparison of FGMRES and GMRESR. We describe 
both methods in Section 2, and compare them in Section 3.1. In Section 3.2 we specify 
another method called FFOM and show that the FGMRES search directions are constructed 
from the FFOM residuals. This relation can be used to avoid breakdown and to stop 
in the inner loop. A drawback of the original GMRES (FGMRES) method is that 
the residual is not available. In Section 4 a relation is given to obtain the actual residual 
of GMRES (FGMRES) in every iteration. The extra costs are one vector update per iteration. This 
relation, to obtain the residual of FGMRES, is also used to present an FGMRES variant which is 
equal to GMRESR. In Section 5.1 the reverse is shown: a GMRESR variant, which is equal to 
FGMRES. Finally, in Section 5.2 a cheaper implementation of GMRESR is given. 

2. FGMRES and GMRESR 

In this section we describe the FGMRES [S] and the GMRESR methods [7]. These are iterative 
solution methods for the nonsingular linear system Ax = b. Furthermore, we give some definitions 
to facilitate comparison of both methods in the following sections. 

In [S, Algorithm 2.21 the Flexible GMRES algorithm (FGMRES) is defined as follows: 

FGMRES algorithm 
1. Start: Select x0, tol, and compute r. = b - Axe, 

P=IIro112,vl=ro/Pandsetk=0; 
2. Iterate: while 11 rk (I 2 > to1 do 

k = k + 1, zk = Mk(Uk), W = AZ,‘; 

fori=l,...,kdo 
hi,k = WTVi, W = W - hi,kVi; 

hk+l,k = IIWiiz, ok+1 = “‘/hk+l,k; 

3. Form the approximate solution: 
Define Z,:= [zi, . . . , ‘kI and Rk’= {hi,j}lGiGj+l,lGjGk, 
Compute xk = x0 + &yk where yk = arg min I( /kl - I-iky 112 

ander =[l,O ,..., OITo[Wk+i. 

In this algorithm the nonlinear operator Mk is an approximation of A- ‘. The operator i%fk can 
be seen as a variable preconditioner of the system Ax = b. Comparing GMRES and FGMRES it 
appears that, besides the variable preconditioner Mk, the only further change is that the search 
directions zk should be kept in memory. Many relations used in GMRES can also be proved for 
FGMRES, for instance: the computation of yk and the estimate of IIrk I(* during the iteration 
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process. In Section 3 we shall show that FGMRES and GMRES have different properties with 
respect to breakdown. 

In [7] the GMRES Recursive algorithm (GMRESR) is proposed as a slightly adapted version of 
the GCR method [2]. When Mk is a constant linear operator, GMRESR is identical to GCR (see 
Section 3.1). 

GMRESR algorithm 
1. Start: select x0, tol; 

compute r. = b - Axe, and set k = 0; 
2. Iterate: while 11 rk 11 z > to1 do 

k = k + 1, up’ = Mk(rk_r), cp’ = Au:‘; 
for i= l,...,k- 1 do 

xk = xk- 1 + #k&k- 1; 

rk = rk-l -ckc~rk_l; 

Again the operator Mk iS an approximation of A - ‘. In [7] this method is analysed for a special 
choice of Mk : 

The search direction UC) is obtained as an approximation to the solution of Ay = rk- 1 using 
m steps of GMRES. This inner iteration is always started with y. = 0 as initial guess. In order 
to avoid breakdown, we use an LSQR switch: if uf) = 0 then take u:) = ATrk_ 1 (com- 
pare C91). 
For both methods the required memory and work per outer iteration increase proportional 

to the number of outer iterations. One way to limit this increase is to bound the number 
of outer iterations. Suppose this bound is denoted by nstart. If 11 rnstar, (I2 does not 
satisfy the termination criterion the method (FGMRES or GMRESR) is applied again using 

as starting solution. These variants are called restarted FGMRES and restarted 
Z~RESR. 

For GMRESR one can also bound the number of search directions stored in memory. If the 
number of search directions is equal to this bound (called ntrunc), an old search direction is 
removed in order to store a new search direction. This variant is called: truncated GMRESR. In 
general, truncated GMRESR converges faster than restarted GMRESR (FGMRES). There are 
various ways to select the old search direction which is discarded. In this paper we refer to the 
truncfirst and trunclast variants. If the number of outer iterations is larger than ntrunc the 
following strategies are used: 
-in the truncfirst variant the most recent search direction is removed, 
-in the trunclast variant the oldest search direction is removed. 
For other strategies we refer to [9, Section 31. 

In the remainder of this paper we compare FGMRES with GMRESR where both use 
the same choice of Mk. In order to avoid confusion, we distinguish vectors by a superscript if 
necessary. For instance r:G denotes the FGMRES residual, and rfR denotes the GMRESR 
residual, 



192 C. VuikJJournal of Computational and Applied Mathematics 61 (1995) 189-204 

3. Comparing the search directions used by FGMRES and GMRESR 

3.1. Diflerences between FGMRES and GMRESR 

In this section the comparison of FGMRES and GMRESR is started by choosing the operators 
Mk equal to a linear operator M for every k. Thereafter we show that if M1 and M2 are different 
then, in general, after the first iteration the residuals of FGMRES and GMRESR are different. 
Further we specify an example, where FGMRES breaks down. We end this section with an 
application of FGMRES and GMRESR to a test problem. 

In this paragraph we choose Mk = M, where M is a linear operator. It is easily seen [S] that for 
this choice FGMRES is equal to GMRES applied to 

AM(M-‘x) = b (3.1) 

and GMRESR is equal to GCR (for GCR see [2]) applied to (3.1). For a comparison of GMRES 
and GCR we refer to [6]. Note that for this choice the computed solutions are the same. However, 
even for this choice there are differences between FGMRES and GMRESR, because GCR can have 
a breakdown in contrast with GMRES. Furthermore, GCR needs more work and memory than 
GMRES. We shall see that for variable Mk the comparison is more favourable for GMRESR. 

In general the operators Mk vary from step to step and are nonlinear. From the algorithms it 
follows that for every choice of Ml, u1 E span(zi} so ryG = rTR. However, in the second step 
z2 = M2(u2), where o2 is the component of Azr perpendicular to r. and u:’ = M2(ryR), where 
rFR is the component of r. perpendicular to Au1 E span{Azi}. Since Ml and M2 are different 
and/or nonlinear, in general, the span of {zi, z2} is different from the span of {uy’, u:‘}. This is 
illustrated by the following examples, where always )I rFG 11 2 = 1) ryR 11 2 but 11 rtG II 2 # 11 ryR II 2. 

In Example 1 we show that FGMRES and GMRESR have different properties with respect to 
breakdown. In this example FGMRES breaks down in the second iteration, whereas 11 ryR II2 = 0. 

Example 1. Take 

0 

0 . 

0 1 
Further we choose Ml = I, and M2 = A’. Note that M2 is equal to A-’ and AT. 

Applying FGMRES leads to: 

( 
1 

u1= 0 
0 

FG 
, t-1 = 
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in the second step 

_(Yi), z2=(;), &=(8 8) 
and u3 is undefined. Since x;G = x0 + clzl + bz2 it follows that xtG # x, so this is a serious 
breakdown. 

Applying GMRESR we obtain: 

+), +!_ +(ij, *qj, 
in the second step 

So GMRESR has computed the exact solution after two iterations. 
Finally, we apply FGMRES and GMRESR to a linear system obtained from a discretization of 

the following pde: 

where Q is the unit square. The exact solution u is given by u(x, y) = sin(rcx) sin(rcy). In the 
discretization we use the standard five point finite difference approximation. The stepsizes in the x- 
and y-direction are equal to h. As innerloop we take 10 iterations of full GMRES in both methods. 
We start with x0 = 0. The results for fl = 1 and h = l/50 are given in Fig. 1. As expected only 11 r. 11 2 
and 11 rl 11 z are the same for both methods. Note that the convergence behaviour is approximately 
the same. 

Conclusions 
We have seen that if the operators Mk are all equal to the same linear operator M, then 

FGMRES is equal to GMRES and GMRESR is equal to GCR. In this case the computed solutions 
are the same but GCR may have a breakdown and is more expensive than GMRES with respect to 
work and memory. 

In the general case, Mk variable and nonlinear, the results are different for k > 2. From the given 
example it appears that FGMRES breaks down, whereas GMRESR converges. In [7] it is proved 
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Fig. 1. The norm of the residuals for /? = 1 and h = l/50. 

that GMRESR (with LSQR switch) does not breakdown. Finally, the required memories for 
FGMRES and GMRESR are the same. So for variable Mk the comparison is more favourable for 
GMRESR. 

3.2. The search directions of FGMRES are constructed from FFOM residuals 

In this section we define the FFOM method. The relation with FGMRES is comparable with the 
relation between FOM [6] and GMRES (see [6,1,8,3]). It appears that the vector Vk + I is equal to 
a constant times the kth FFOM residual. This relation gives us a better insight in the FGMRES 
method and the differences with the GMRESR method. These insights are used to avoid break- 
down of FGMRES and to determine a termination criterion for the inner loop iteration such that 
the required accuracy is obtained. 

Below we describe the FFOM method. Vectors related to the FFOM method are denoted by 
a superscript FF. We define the FFOM approximation by xkFF = xo + ZkykFF and l/k = [VI,. . . , Vk]. 

The vector yFF E [Wk is chosen such that rkFF = r0 - AZkykFF is perpendicular to span{vi , . . . , Vk}. 

Using the relation ro = PVI it follows from 

V?(ro - AZkYkFF) = 0, 
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that VkTA&ykFF = per, where el = [l, 0, . . . , OIT E Rk. The matrix Hk E lRk” k is obtained from 
Hk by deleting its last row. The relation 

- 
AZk = vk++1Hk, 

given in [S, Eq. (l)] implies that: 

(3.2) 

0 

v&i& = v,’ vk + 1 Rk = 

[ 1 Ik ; Rk=Hk. 

0 

So the vectors yFF satisfy HkyrF = /?el. If Hk is nonsingular then xFF exists and is given by 
FF 

xk = X0 + ZkH;l/hl. 

In order to prove that u k+ 1 E span{rfF} we give some definitions. The matrix Rk can be 
factorized by Givens rotations into fik = QIRk where Qk E [Wk + ’ xk + ‘, Ql Qk = Ik+ I and 
Rk E Elk + ’ xk is an upper triangular matrix. The matrix Qk is formed by the product Fk ..a F1; here 
the matrix Fj E lRk + ’ xk + ’ is the following Givens rotation: 

Fj = 

The product 

1 

1 

Cj -Sj 

sj cj 

1 

8 

8 

1 

where an asterisk stands for a nonzero element, implies that ck and sk should be chosen as follows: 

ck = pklJ= and Sk = -hk+1,k;Jxi 
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Lemma 2. If ck # 0 then the FFOM residual satisfies the relation: 

FF - 
rk - 61 “‘~kbO~~2/ck)Uk+l~ 

Proof. The relation rr” = r. - A&yr combined with (3.2) gives 

‘k FF = r. - vk+lRkyFF = t-0 - vk+l ( h,+:;$y;F)* 

Since HkyLF = 11 r. 11 2 el we obtain 

rk 
FF- h T FF 

- - k+l,kekyk uk+le 

Multiplication of Hk yLF = 1) r. 1) z el with Qk - 1 giVeS 

I YkFF = Qk-l II~0ll2el. 

Since Rk_ I is upper triangular the last equation is equivalent to: 

PkekTYkFF = sl “‘Sk-1 ~~~0~~2~ 

The assumption ck # 0 implies that pk # 0 so 

FF 
rk = -sl “‘sk_l + bdi2~k+l =(s1”‘skIIrOI12/ck)Uk+l, 

which proves the lemma. 0 

Remarks 
-An overview of related results for Krylov subspace methods, with a constant preconditioner, is 

given in [3]. 
-From this KhtiOn, it appears that if the operators Mk are scaling invariant (M,(au) = &f,(u)) 

then the search directions zk = Mk(Uk) are elements of span{Mk(r kF_” 1 )}. Now the difference 
between FGMRES and GMRESR is clear: in FGMRES one calculates in the outer loop the 
minimal residual using search directions constructed from the FFOM residuals, whereas in 
GMRESR one calculates in the outer loop the minimal residual using search directions construc- 
ted from the GMRESR residuals. Note that the FGMRES and GMRESR residuals are the same 
if one uses the same search directions. 

-Combination of Lemma 2 and the relation )I rFG )I2 = Isl)...Jskl IIro(12 leads to the relation 
(compare [ 11): 

II rkFG 112 = lcki IlrcF 112. 
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This suggests that if there is a fast convergence (ck N 1) then rLG N rLF, so we expect that the 
convergence behaviours of FGMRES and GMRESR are approximately the same. This is studied 
in more detail in Section 4. 

The relation given in Lemma 2 can be used to specify a termination criterion for the inner loop, 
such that the outer loop residual has a prescribed accuracy. 

Lemma 3. Suppose that Hk is nonsingular and 11 rlG II2 > 0. Zf the search direction zk+ 1 = 
Mk + 1 (uk + 1) satisfies the inequality 

IiAZk+l - ok+1 112 < er#ki/iirkFG 112, 

and xLyl exists then II rkF+G1 1) 2 < eps. 

Proof. Since Hk is nonsingular xlF exists. Using the auxiliary vector &+l = XT + 
Sl .-- Sk 11 r. j12/ckzk+ 1 it follows from Lemma 2 that: 

IIfk++1/2= IbA-fk+lii2= II~kFF-(Sl”‘Sk~~~OI12/~k)AZk+1112 

=~IrkFF~~2~I~k+1-~Zk+1~12< 
epslckl IbfFI12 

II rkFG II 2 

= eps. 

Using the optimality property for the outer loop residual of FGMRES the result (I rkF+G1 II2 d 
)I fk + 1 )I 2 < eps is proved. 0 

Note that (ck 1 and I( rfG II2 are available, so this leads to a cheap termination criterion for the 
inner loop iteration. This termination criterion prevents too much iterations in the final inner loop. 

We know that FGMRES only breaks down if hk+ l,k = 0. In the case that hk+ l,k = 0 and Hk is 
nonsingular we have a lucky breakdown: xrF = xrG = x [S, Proposition 2.21 (compare [6, p. 
8641). So serious breakdown is only possible if Hk is singular and hk+ I,k = 0. This is illustrated by 
Example 1, where H2 is singular, h 3, 2 = 0 and serious breakdown occurs. In GMRESR breakdown 
is avoided by choosing one LSQR step. If the current choice of zk in FGMRES leads to breakdown 
a first idea could be to choose zk = ATvk. However, this is not a good idea. A counter example is 
again Example 1 where M2 = A2 = AT and breakdown occurs. 

In the following lemma we shall give a sufficient condition such that FGMRES has no 
breakdown. Before stating the lemma we note that the equation: 

implies that if xkF_Gi # x and ck # 0 then Hk is nonsingular [6, p. 8641. 
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Lemma 4. Suppose that cl # 0, . . . , ck # 0 and xFG # x. If the search direction zk + 1 is such that 

iiAZk+l - uk+l 112 < icki 

then Hk+ 1 is nonsingular. 

Proof. For z.k+l =X:” + (Sr “‘skjIY0112/ck)zk+1 we obtain IIfk++l II < II rFG II2 (compare the proof 
of Lemma 3). This together with the optimality property of FGMRES gives 

Azk+i$span{Azl, . . . . 4zk), 

We shall now prove that the assumption “H k+ 1 is singular” leads to a contradiction. If Hk+ 1 is 
singular, there is a vector u E [Wk+’ such that u # 0 and Hk+ 1 u = 0. From the definition of Hk+ 1 it 
follows that 

V:+iAZk+iu = 0. (3.3) 

Since Hk is nonsingular and Azk + 1 @pan { Azi , . . . , A&} the vector zi := AZk + 1 u E span { vi, . . . , 
vk + 1, Azk + 1 } is not equal to zero. Eq. (3.3) implies z$u” = 0 for i = 1, . . . , k + 1, so there is a nonzero 
vector u” E span{ui , . . . , uk+l, Azk+l} perpendicular to span 
This implies that xF:i exists and II rk”+G1 II 2 d IIfk+l 112 < IIrL 6 

ul, . . . . uk++}, and thus hk+2,k+l # 0. 
112. Thisleads to jsk+il < 1, and thus 

ck+l #O. So H k+ 1 is nonsingular, which is a contradiction. 0 

This inequality implies that the norm of the final residual of the inner loop is 1~1 times the norm 
of the initial residual. Choosing GMRES in the inner loop, this inequality is easily satisfied for 
a large class of problems. 

4. FGMRES with the search directions of GMRESR 

In this section we show that it is possible to compute the GMRESR search directions in a cheap 
way during the FGMRES process. A consequence of this is that we can use a combination of 
FGMRES and GMRESR search directions in the FGMRES method. 

Definition 5. The vectors wk are defined by the following recurrence 

Wl = Ul, wk+l = SkWk + ckUk+l, k 2 1, 

where {ok} is given in the FGMRES algorithm. 

It fdOWS from Definition 5 that wk E span { Vi, . . . , Uk}. Since Uk+ 1 _L Span { Ul , . . . , Uk} the norm of 
wk + 1 is given by 

/wk+1112 =(s,“IIWkIlf +Ck21iUk+1iii)1’2 = 1. 

Note that the vectors wk can be calculated in the FGMRES algorithm by one extra vector update. 
In the following lemma we give a relation between the vector wk+ 1 and the FGMRES residual 

rLG (compare [3]). 
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Lemma 6. I’ the FGMRES approximation xzG exists then the equation rLG = s1 --. s& 11 r. JIzw&+ I 
holds. 

Proof. From [S] it follows that 
FG 

rk = r. - AZky;G FG 
= r0 - ~k+lfikyk . 

This can also be written as: 
FG 

rk = ro - ~k+&:QkflkY:G. 

The vector yFG is computed such that (compare [6, p. 8621): 

Qk%YkFG =QkIb0112ei --ekT+~QkIIr0ll2e+k+~. 

Combination of these expressions gives 
FG 

rk = ekT+1QkIIroIIZell/k+1QkTek+1. 

It is easy to see that I/k+iQle&+i = W&+1 and e~+lQkIIrOIIZel = s1 “‘s&I)r0j12. This proves the 
lemma. IJ 

In the original FGMRES scheme II rFG II 2 is known but rLG is not available. Using the vector 
W& + 1, which construction costs one extra vector update per iteration, and the result of Lemma 6 we 
note that rFG can be calculated. So it is possible to inspect the residual during the computation, or 
to use other norms in the termination criterion. A common criticism for GMRES is that the actual 
residual is not available. Since Lemma 6 is also valid for GMRES this disadvantage disappears if 
one uses the relation rfMRES = s1 .-. s& 11 ro 11 2 w& + 1 (as given in Lemma 6). 

Note that as a consequence of Lemma 6 we can use the GMRESR search directions in FGMRES 
by choosing z& = Mk(wk). This again follows from the fact that the FGMRES and GMRESR 
residuals are the same if one uses the same search directions. So FGMRES can use a combination 
of FGMRES and GMRESR search directions. Using z& = Mk (sl .-. s& 1) r. 11 z W&) we can use the 
same termination criterion in the inner loop as GMRESR [7, Lemma 31. 

In the following lemma we show that breakdown of FGMRES can be avoided by using an 
LSQR switch (for LSQR see [4]). 

Definition 7. The LSQR switch is defined as follows: if the FGMRES search direction z&+ 1 leads to 
a singular matrix H &+ 1, then use the following search direction z& + 1 = ATw&+ 1. 

Lemma 8. FGMRES with LSQR switch does not break down. 

Proof. Suppose the current choice z& + 1 leads to a singular matrix H& + 1. Then the search direction 
is replaced by z&+ 1 = ATw&+ 1 . Since rFG has the minimal residual property rFG is perpendicular to 
span{Azl,...,AZk}. From (rtG)TAZk+l =sl...SkIIro1(2WkT1AATWk+~ #O it fOllOWS that 
Azk+&Pan{Azr,..., AZ&}. This combined with 

//~&+I lb= bFG - (rkFG)TAzk+dllAZk+l iI?dZk+lllz < lbfGlh 
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implies that H k + 1 is nonsingular (compare the proof of Lemma 4) and so no serious breakdown 
occurs. 0 

The relation r:G = s1 .-. sk 11 r. 11 wk + 1 can be used to give a further explanation of the differences 
between FGMRES and GMRESR. In the second iteration we have 

xZFG E span{Wro)9 M&Z)) 

and 

x2GR~~pan{~l(r0),~2(sl~0111~0112 + c2~2)), 

where we use rFR = rrG = s1 II r. I12w2 = s1 II r II ( o 2 slul + clo2). Now it is clear that only if the 
operators Mk are all equal to the same linear operator M then the FGMRES and GMRESR results 
may be the same. 

Conclusions 
If ck # 0 the relations 

FF 
rk =sl ’ ’ ’ sk/ck II r0 112 ok + 1 (Lemma 21, 

FG 
rk =sl “‘skIIrOIIZwk+l (Lemma 61, 

and 

wk+ 1 = skwk + ckvk + 1 (Definition 5) 

can be combined to 

So if I s,I cc 1 then the FFOM and FGMRES residuals are close together, independent of the 
values of s 1, . . . , Sk _ 1. Furthermore if I Sk I << 1 for all k 2 1, then Mk(Uk) and Mk (rkF_Gl) = i%fk (wk) are 
close together. So if the convergence of FGMRES is fast we expect that the convergence behaviours 
of FGMRES and GMRESR (without restarting) are comparable. However, in the case of slow 
convergence there may be a large difference between both methods (this difference depends on 
Sl, a**, Sk)- 

5. New results for GMRESR 

In Section 5.1 we consider a variant of GMRESR, where the search directions can be chosen 
equal to the FGMRES search directions. Thereafter we specify in Section 5.2 a slightly cheaper 
implementation of the GMRESR method. 

5.1. GMRESR with the search direction of FGMRES 

In this subsection the expression x “is equal to” y means x # 0 and x E span{ y}. Furthermore, 
we assume that no breakdown occurs. Considering the FGMRES algorithm we note that t?k+ 1 “is 
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equal to” the component of Azk perpendicular to span{rO, Azl, . . . , Azk_ 1 >. If we choose z$’ 
“equal to” zk it follows that ck 
. . . , hk _ 1 }. Since rkG_Rr 

“is equal to” the component of Ark perpendicular to span {Azl, 
“is equal to” the component of r0 perpendicular to span (ktzl, . . . , Azk _ 1 } it 

is easily seen that the vector Pk defined by 

&-kG_Rl GR 
Pk:= ck - ,,$Fl ,,; rk-l 

“is equal to” ok. So if we choose p1 = rFR and 

(5.1) 

#k (‘) = Mk(Pk) (5.2) 

the algorithms FGMRES and GMRESR lead to the same results in exact arithmetic. Note that the 
calculation of Pk costs only one extra vector update per outer iteration. 

Using relations (5.1) and (5.2) it appears that GMRESR can also use a combination of FGMRES 
and GMRESR search directions. GMRESR combined with (5.1), (5.2) and truncation is a new 
method because there is no truncated FGMRES variant. 

5.2. A faster implementation of GMRESR 

Comparing FGMRES and GMRESR it appears that the number of vector updates in the outer 
loop of GMRESR is two times as large as for FGMRES. In this section we give a GMRESR 
version, where the number of vector updates in the outer loop is halved, and thus comparable with 
FGMRES. 

We give an implementation of GMRESR, such that in the outer loop only the vectors u:” and 
ck are calculated. In the final iteration the approximate solution is calculated using the vectors u:l’. 
This implementation can be used in combination with restarting and the truncfirst truncation 
strategy (see Section 2). The number of vectors used in the truncation is denoted by: ntrunc. 

Definition 9. The following quantities are defined for the GMRESR algorithm: 

ak,i = cTc$), -tk = l/ickii2, dk = &k-l* 

We define Pk,j such that 

uk (k) = j$l fik,juj’) for k < IltlWIlC 

and 

ntrunc - 1 
(k) 

uk = iik + (‘) 1 bk,j”j for k 2 ntrunc, 
j=l 

where U”ntrunc_ 1 = 0 and 
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Combination of the relations given in Definition 9 leads to the following expressions for pk,j: 

Pk,k = 1, 

k-l 

fik,j= - 1 ak,iyifli,j fOrj=l,..., k-l, k<ntrUnC, 
i=j 

whereas 
ntrunc - 1 

fik,j = - c ak,jyiPi,j-ak,k-lYk-lPk-l,j forj=l,..., ntrunc-1, k 2 ntrunc. 
i=j 

This enables us to calculate flk, je Finally, we give a relation to calculate the approximation x1 from 
the vectors u:“. From the GMRESR algorithm it appears that 

I 
xl = &-, + c &)+$;k). 

k=l 

Substituting the relation given in Definition 9 into this equation leads to: 
ntrunc - 1 

x2 = x0 + 1 
k=l 

8kYk iil Pk,i”!” 

+ i 8kYk u” + c 
k = ntrunc ( 

ntrunc - 1 

pk,iuj” a 
i=l > 

This can be implemented using the following extra memory: one n-vector to store i&, three vectors 
with length ntrunc for I&i, Yk and 8k and a two-dimensional array with dimensions ntrunc to store 
pk, jn Besides the work to calculate ck in the outer loop we use for 1 2 ntrunc two vector updates to 
calculate t;k and update x0 per outer iteration. Finally, the approximation is formed by ntrunc 
vector updates. Note that the amount of memory and work of this GMRESR variant is compara- 
ble with FGMRES. 

This approach seems not feasible for other truncation strategies. To illustrate this we look at the 
trunclast strategy (see Section 2). In this strategy u1 and cl are discarded after ntrunc iterations. 
However, since u1 is used in the construction of u2, . . . , u,t,,,c these vectors should be adapted. This 
costs ntrunc extra vector updates, which is as expensive as the original GMRESR algorithm. 

In order to compare the original FGMRES method and both GMRESR variants (where the 
original GMRESR search directions are used) we apply the methods to the test problem given in 
Section 3.1. In the following experiments we take h = l/50 and /.? = 1. We start with x0 = 0 and 
stop if 11 rk II2/ 11 r0 11 Z d lo- 12. The new version, without calculation of the vectors &, is denoted by 
GMRESR_new. We always apply m iterations with full GMRES as inner loop. The results are 
given in Table 1. 

The CPU time is measured in seconds using 1 processor of a Convex C3820. It appears that the 
CPU time of GMRESR_new is comparable with FGMRES. For small m the CPU time is much 
less than for GMRESR. For m in the vicinity of the optimal value (m = 8) the difference in CPU 
time is small. 

Finally, we compare the truncfirst version of GMRESR and GMRESR-new, and the restarted 
version of FGMRES. In Section 2 restarted FGMRES and the truncfirst strategy for GMRESR are 
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Table 1 
CPU times for different methods and different values of m 

m FGMRES GMRESR GMRESR-new 

2 1.5 2.1 1.5 
3 0.89 1.13 0.85 
4 0.69 0.84 0.64 
5 0.59 0.69 0.57 
6 0.53 0.63 0.53 
7 0.49 0.59 0.52 
8 0.53 0.56 0.52 
9 0.56 0.59 0.54 

10 0.54 0.60 0.57 

06 
t 

Fig. 2. The CPU time and number of outer iterations for GMRESR (..), GMRESR_new (-), and FGMRES (-.). 

described. In all methods the inner loop consists of 3 iterations with full GMRES. In Fig. 2 the 
results are shown where the values of ntrunc for GMRESR and GMRESR-new and the values of 
nstart for FGMRES are given along the horizontal axis. Note that GMRESR-new is again faster 
than GMRESR, and restarted FGMRES. 

In the given experiments the number of iterations and the approximations of GMRESR and 
GMRESR-new are the same. 

In the experiments given above unpreconditioned GMRES is used as inner loop. These results 
are only presented to illustrate the theory. In practical applications it is better to use precon- 
ditioned GMRES in the inner loop. In [S, 101, GMRESR is applied to the Navier-Stokes 
problems, where the inner loop consists of GMRES combined with an incomplete factorization as 
preconditioner. 
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6. Conclusions 

We describe and compare the FGMRES and GMRESR methods. To facilitate the comparison 
we describe a new method, FFOM, related to FGMRES. This method is used to show that the 
FGMRES search directions are constructed from the FFOM residuals. This insight can be used to 
avoid breakdown and to give a termination criterion for the inner loop. Furthermore it enables us 
to give a detailed comparison of FGMRES and GMRESR. It appears that if the convergence of 
FGMRES is fast then the convergence behaviour of both methods is comparable. 

A variant of FGMRES is given which uses the search directions of GMRESR and vice versa. 
Both methods can also use a combination of search directions, for instance the first iterations 
GMRESR search directions and then FGMRES search directions. Furthermore, if one method is 
implemented then a small change is sufficient to obtain results for the other method. 

The relation given in Lemma 6 can be used to calculate (cheaply) the actual residual of 
FGMRES (or GMRES) in every iteration. 

In the original GMRESR method one uses two times as much vector updates in the outer loop as 
in FGMRES. We give a new implementation of GMRESR, which uses the same amount of work in 
the outer loop as FGMRES. This implementation can be combined with restarting and the 
truncfirst truncation strategy. 
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