
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 22, 195-2 10 (1 996)

FAST ITERATIVE SOLVERS FOR THE DISCRETIZED
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

C . VUIK
Faculty of Technical Mathematics and Informatics. Delft University of Technology. PO Box 5031. NL-2600 GA Dep,

The Netherlandv

SUMMARY

In this paper some iterative solution methods of the GMRES type for the discretized Navier-Stokes equations are
treated. The discretization combined with a pressure correction scheme leads to two different types of systems of
linear equations: the momentum system and the pressure system. These systems may be coupled to one or more
transport equations. For every system we specify a particular LU-type preconditioner and show how to vectorize
these preconditions. Finally, some numerical experiments to show the efficiency of the proposed methods are
presented.

KEY WORDS: incompressible Navier-Stokes equations; non-symmetric linear system; preconditioning; vector computeq iterative
solver; GhfRESR

1. INTRODUCTION

In this paper we treat the solution of the discretized incompressible Navier-Stokes equations. The
discretization of these equations in general curvilinear co-ordinates is described in References 1-5. As
space discretization a finite volume technique on a boundary-fitted structured grid is used. in Reference
6 iterative methods of the Krylov type to solve the discretized equations have been presented.
Reference 6 also contains a short survey of other iterative methods. In this paper we shall give
improvements of the iterative methods described in Reference 6 and apply them to a wider range of
problems. The improvements with respect to Reference 6 are that (i) new preconditioners are given
with a better rate of convergence, (ii) different vectorization techniques for the preconditioners are
given and compared and (iii) the Gh4RESR method with reuse of search directions is introduced and
appears to be twice as fast as the original GMRESR method for the solution of the pressure system
(which is in general the most time-consuming part). The methods given will be applied to problems
with large grid size (up to 160 x 320 cells) and problems which include transport equations. For other
problems where the given methods are used successfully we refer to References 2, 7 and 8.

The discretized equations given in Reference 2 have also been solved by multigrid methods. For
stationary problems we refer to References 9 and 10 and for non-stationary problems to References 1 1
and 12. For a stationary problem it is not easy to compare the various methods, since the multigrid
method given in Reference 9 solves the momentum equations simultaneously with the pressure
equation, whereas in our s o h a r e we use a time-stepping method combined with pressure correction.
For non-stationary problems the Krylov subspace methods described in this paper are more efficient
than the multigrid methods described in References 11 and 12. Recently we have combined the Krylov
subspace method with multigrid as a preconditioner. This combination gives promising re~ults. '~

CCC 0271-2091/96/030195-16
0 1996 by John Wiley & Sons, Ltd.

Received 19 November 1993
Revised 3 May 1995

196 C. VUIK

Since the discretized equations contain non-symmetric matrices> we are not able to use the
conjugate merit or conjugate residual method. This motivates us to use GMRES-like methods,
which are robust and have an optimal rate of convergence.'"I6 The incompressible Navier-Stokes
equations in general co-ordinates are given b$ the continuity equation

u,: = 0 (1)

and the momentum equations

where tKB represents the deviatoric stress tensor

?.B = p(g"u{ + gWP,),

with g"B the contravariant metric tensor, p the viscosity, p the pressure, ua the contravariant velocity
component, p the density of the fluid and f" the contravariant component of a body force. The
transport equation for a scalar C is given by

where k l , k2, k3 and KaB are given functions.
Before discretization the physical domain is mapped onto a computational domain consisting of a

number of rectangular blocks. In this paper we restrict ourselves to the one-block case. In order to
avoid possible pressure oscillations, a staggered grid arrangement is used. The pressure is computed in
the cell centres and the normal velocity components are calculated at the centres of the cell faces. In the
remainder of this paper ni is the number of finite volumes in the x,-direction. For further details and the
discretization of the boundary conditions we refer to Reference 2.

Finally, the spatial discretization is combined with finite differences for the time derivative. We use
the Euler backward scheme together with pressure correction. The time step is denoted by At. For a
given function v and n E N, v" is an approximation of v(nAt). After Newton linearization we obtain two
systems of equations,2S6 namely the momentum equation

and the pressure equation
p&n+l- - g"+', where 4.f" = pn+l -pn .

A discretization of (3) will be called a transport equation and denoted by
cn+I?+l = g+l.

The iterative methods are applied to two test problems: the flow through a curved channel and a
Boussinesq problem. The curved channel problem makes it possible to compare the results of
Reference 6 with the results in this paper. The Boussinesq problem is chosen in order to illustrate the
performance of the solution methods for Navier-Stokes equations coupled with a transport equation.
In this problem a stretched grid is used. We note that in many other problems the behaviour of the
iterative method is comparable with that in the aforementioned test problems.

Curved channel

The curved channel is displayed in Figure 1. As initial condition we take the velocities equal to zero.
The boundary conditions are a parabolic velocity profile at i d o w (boundary l), a no-slip condition at

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 197

4.J i
2 ¶

Figure 1. The physical domain of the curved channel problem

boundaries 2 and 4 and the normal stress and tangential velocity given at outflow (boundary 3). We
take p = 250 and p = 0.5.

Boussinesq problem

In the Boussinesq problem the Navier-Stokes equations are coupled with a temperature (transport)
equation. We use a standard benchmark problem published in Reference 17. The physical domain and
the 20 x 10 grid are displayed in Figure 2. Owing to buoyancy, we have a body force given by

f i =o, fi = i S (T - To),
where g is the acceleration due to gravity, is a volume expansion coefficient and To is a reference
temperature. For the velocities we take no-slip boundary conditions. The temperature satisfies a
transport equation. As temperature boundary conditions we take T = 1 at the left-hand wall and T= 0
at the right-hand wall. The lower and upper walls are isolated. We calculate the solution with p = 1,
p= 1, Pr=0-71 and Ra= lo6.

In Section 2 we discuss and compare different vectorization strategies for incomplete LU-type
preconditioners. In Section 3 an RILU preconditioner is given for the pressure equation. We observe
that GMRES-like methods combined with RILU have a better rate of convergence than with RILUD
but require more memory than RILUD. For the pressure equation the memory is available (because for
the momentum system much more storage is needed), so we always use the RILU preconditioner. In
order to reduce storage, the momentum equation has been solved with a new variant of the RILUD
preconditioner. The insights obtained from the solution of the pressure and momentum equations are
used to solve the transport equations. A new variant of GMRESR is given in Section 4. Reuse of

0 01 a4 ma 01 1 i 1

Figure 2. The 20 x 10 grid used in the Boussinesq problem

198 C. W I K

search directions leads to a faster rate of convergence for the pressure equation. Section 5 contains
numerical experiments for two test problems on different grid sizes.

2. OPTIMIZATION AND VECTORIZATION OF THE PRECONDITIONERS

The discretization of the Navier-Stokes equations leads to a pressure equation with a matrix P with
nine non-zero diagonak6 Here an incomplete LD-' U decomposition of P is used as preconditioner, so
that the iterative method is applied to

u-'DL-'pX 1 U-'DL-'b (7)
instead of to Px = b. In this paper the preconditioner given in Reference 6 is denoted by ILUD. The
ILUD preconditioner is implicitly defined by the following rule^:'^,'^

(a) diag(L) = diag(U) = D
(b) the off-diagonal parts of L and U are equal to the corresponding parts of P
(c) diag(LD-' U) = diag(P).

If the last rule is replaced by

rowsum(LD-' U) = rowsum(P), (8)
the MILUD preconditioner of Reference 20 is obtained. We also use an RXLUD(0r) preconditioner,
which is an average of the ILUD and MILUD preconditioners.*'

It is well known that using an ILUD-type preconditioner leads to the solution of systems of linear
equations with an upper or lower triangular matrix. Owing to recurrences, a straightforward algorithm
for this part runs at scalar speed on a vector machine. We first gwe an optimization of such a scalar
code according to the lines set out in Reference 22. Then we specify a vectorized version of the
preconditioner.

Row scaling

For the FULUD decomposition there exists a matrix R such that P = LD-' U - R. Multiplication by
D-' leads to p = D-'P = D-'LD-'U - D-'R = ifi - k With 6 = D-'b we apply the iterative
method to fi-'i-'k = fi- ' i- '6. Note that the multiplication by D in every iteration is no longer
necessary. Furthermore, the solution of the triangular systems is cheaper, because the main diagonals
of and 6 are equal to the identity matrix. A nice property of this row scaling by D-' is that if L, D
and U satisfy the MILUD rule (8), then

rowsum(D-'P) = rowsum(D-'LD-' U) ,

so that and 0 also satisfy the MILUD rule. This is in contrast with a symmetric scaling (a row and
column scaling?2 where this property may be lost for the scaled system. In the remainder of this
section the row-scaled quantities are denoted by P, L, U and b.

Eisenstat implementation

In every iteration step we have to compute vj+l = U-'L-'Pvj. Thus the amount ofwork per iteration is
approximately twice as much as for the unpreconditioned system. In Reference 23 it is shown that much of
the extra work can be avoided. To achieve this, it is necessary to apply the iterative method to

L-'PU-'y = L-'b, (9)

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 199

where the solution vector x is given by x = U-'y. The rate of convergence of GMRES-like methods
mainly depends on the eigenvalue distribution of the Since the spectrum of U-'L-'P is
equal to the spectrum of L-' PUP' , we expect and observe the same convergence behaviour if we use
(9) instead of (7). During the iterative solution of (9) we have to calculate vj+' = L-'PU-'vj. Using
the equations

vj+l = L - ' P U - ~ ~ ~ = L-'(L + P - L - u + U) U - ~ V ~

the work to calculate vj+l is reduced to two vector updates and the solution of an upper and lower
triangular system. Thus one iteration of the preconditioned system costs approximately the same
amount of flops as the unpreconditioned system. A disadvantage, however, is that the decrease in CPU
time is small on vector computers, since a matrix-vector product is avoided, which is well vectorizable,
whereas the hard-to-vectorize parts remain.

Vectorization

In this subsection we discuss some ways to vectorize the solution of triangular systems. The ideas for
these vectorizations come fiom References 22 and 25. The vector of unknowns will be denoted by
x(i, j) , where i refers to the index of the corresponding finite volume in the xldirection andj to that in
the x2direction. Straightforward solution of Lx = y leads to recurrences which prohibit vectorization.

In Figure 3 a diagonal ordering of the calculation is shown. In this figure the values of x at the points
denoted by a + sign have already been calculated. The points denoted by a * sign display the stencil
of L. Using this figure for the nine-point preconditioner, it is easily seen that all the points on the chain
line diagonal (i + 2j = c) can be calculated independently. Thus this ordering leads to vectorizable code
(compare with Reference 25). This implementation has the following drawbacks: the initial and final
diagonals have a small vector length and indirect addressing is used. Indirect addressing costs extra
CPU time and may lead to memory bank conflicts. Indirect addressing can be avoided by an explicit
reordering of the unknowns. After this reordering, the unknowns are stored in memory in the same way
as they are accessed in the diagonal-wise calculation of x fiom Lx = y. Especially for large values of n
explicit reordering gives a faster code on the Convex C3840 that we used in our experiments.

Another way to vectorize the code is to change the order such that all the points on the lines
parallel to the xl-axis are calculated together (line ordering). First suppose that the
values x(i, k), i = 1,. . . , nl , k = 1,. . . , j have already been determined. To calculate
x(i,j + 1). i = 1 . . . , nl, the values x(i - 1, j) , x(i, j) , x(i + 1, j) and x(i - 1, j + 1) are used. Since
the first three values are already known for all i, this part of the calculation (75% of the work) can be

Figure 3. Ordering used for the vectorization of the solution of the system L r = y for a nine-point preconditioner (left) and a
seven-point preconditioner (right)

200 C. VUIK

done at vector speed. One recurrence remains due to the use of x(i - 1, j + l), so 25% of the work is
done at scalar speed. Advantages of this vectorization technique are that all vector lengths are equal to
nl, easy implementation and no indirect addressing. On the Convex C3840 the diagonal ordering leads
to somewhat smaller computing times than the line ordering.

In Section 3 we also define a seven-point preconditioner for the pressure equation. It follows from
Figure 3 that this preconditioner can be vectorized along the diagonals i + j = c.22*25 Since the vector
length of the loops is twice the vector length of the diagonal ordering for the nine-point preconditioner,
a seven-point preconditioner leads to better vectorized code.

To analyse the vectorization of the RILUD preconditioner for the momentum matrix M, we use the
block structure

In Reference 6 it has been shown that the non-zero structure of the diagonal blocks M1 and MZZ is the
same as for the matrix P. Let us now consider the computation of x from Lx=y. The vectorization
techniques described for the nine-point preconditioner for the pressure matrix can be used to obtain x 1
from

LlIXl = Y1. (1 1)

Thereafter x2 is calculated from

L22x2 = Y2 - h X l .

Since x I is already known, the right-hand side of (12) can be calculated at vector speed. Finally, the
computation of x2 from (1 2) can be done in the same way as the solution of (1 1).

3. PRECONDITIONERS FOR THE DIFFERENT LINEAR SYSTEMS

In this section, preconditioners are given for the pressure, momentum and transport equations. For the
pressure equation a nine-point and a seven-point ILU preconditioner are described. Some remarks are
given on preconditioning a singular pressure matrix. A new variant of the MnUD preconditioner is
given for the momentum equation. In this preconditioner the dfference between the velocities u1 and
u2 is taken into account. Finally, the insights obtained from the solution of the pressure and momentum
equations will be used to solve the transport equation in an efficient way.

The pressure equation

preconditioner is denoted by ILU. For ILU the matrices L and U satisfy the following rules:
First we consider the classical incomplete L U decomposition of P (all fill-in is neglected). This

(a) diag(l) = Z
(b) the non-zero structure of the matrix L + CJ is identical with the non-zero structure of P
(c) if Pii # 0, then (LU), = Pw

The last rule can for i = j be replaced by

roWSum(LU) = rowsum(P), (13)
which leads to the MILU preconditioner. Also, for this preconditioner we always use an averaged
method, RILU(a).

It is known that for a five-point stencil the RILUD and the RILU preconditioner are the same.
However, for a nine-point stencil it is easily seen that RILU leads to a preconditioner different from

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 201

RILUD. Note that for this preconditioner the matrices L, U and P should be kept in memory. Thus the
amount of extra memory for this preconditioner is nine vectors (the same amount of memory as needed
for P). The Eisenstat implementation cannot be used for this preconditioner, since the offdiagonal part
of P is not identical with the offdiagonal part of L + U. Th~s implies that an iteration using RILU is
more expensive than an iteration using RILUD. Since the non-zero structures of L and U are the same
for RILU and RILUD, the RILU preconditioner can be vectorized in the same way as the RILUD
preconditioner.

The optimal choice of a is an open question. Results in Reference 21 indicate that for symmetric
matrices a close to unity is a good choice. Furthermore, for increasing grid size the optimal value of a
approaches unity. These insights are confirmed by our experiments (see Section 5) .

For a problem where all boundary conditions for the velocities are of the Dirichlet type, the pressure
matrix P is singular. The null space of P is given by

For such a problem RILU(a=l) gives a breakdown of the iterative method (the same for
RILUD(a = 1)). This can be explained as follows. Equation (13) can be written as

Equation (15) together with (14) implies that

LU(;) =o,

so the matrix LU is singular. Owing to the definition of L, it follows that U is singular, which leads to a
breakdown of the preconditioned GMRES method. A closer look at U shows that the last main
diagonal element is equal to zero. Changing this element to a small number causes the iterative method
to converge, but in our experiments a < 1 leads to a much better rate of convergence.

Since a seven-point preconditioner leads to better vectorized code (compare Section 2), we also use
a seven-point incomplete decomposition of P, where the stencils of P, L and U are given in Figure 4.
The matrices L and U are such that

if L, # 0 or U, # 0, then (LU), = (P),.

7 8 9 8 9

P L U

Figure 4. The stencils of P, L and U

202 C. W I K

The amount of extra memory required is equal to seven vectors. In our experiments the rate of
convergence of this preconditioner is better than with RILUD but worse than with RILU. Although this
preconhtioner is better vectorizable, we conclude from our experiments that it is better to use the nine-
point RILU preconditioner.

The momentum equation

The momentum equation is given by M"+'u"+' =f"+'. The dimension of the matrix M"+' is twice
the dimension of the pressure matrix P. The matrix M"+l has 13 non-zero elements per row. For the
structure of M"+' we refer to Reference 6. Note that the matrix P only depends on the geometry and
boundary conditions, whereas M"+' depends also on the time and the choice of the time step At, on p
and on p. In the following we delete the superscript n + 1 for brevity. Owing to the extra memory
needed for the RILU preconditioner (13 extra vectors of length 2nln2), we restrict ourselves to the
RILUD preconditioner for the momentum equation.

We observe that the optimal choice of a used in RILUD(a) depends strongly on the test problem.
Since our solver is mainly used as a black box solver, we prefer a preconditioner such that one choice
of a is optimal for a wide range of problems. For that reason we consider the MILUD preconditioner
more carefully. In the following we denote the MILUD preconditioner by MILUD-1. The matrices L,
D and U of MILUD-1 satisfy the equation

rowsum(LD-' U) = rowsum(M),

so using the block structure given in (1 0), the following equations are obtained:

rowsum(Ll D;: U, + L, 07; Ulz) = rowsum(M, + M12),
rowsum(L,,Di,' U11 + LZlDT,' U,, + L,,D2;' U2,) = rowsum(M,, + M22).

It is well known that the MILUD-1 preconditioner is very effective if the solution is a slowly varying
function. In the extreme case of no variation the multiplication by M and LD-' U leads to the same
result and so the preconditioned GMRES method converges in one iteration. In the momentum
equations (4) the vector u consists of two parts: ulr the velocity component in the xl-direction, and u2,
the velocity component in the x2-direction. Since in our code we use contravariant fluxes, which
implies that velocity components are scaled by the length of cell sides, it is possible that there is a large
difference between u1 and u2. As a consequence, a close to unity can lead to a bad rate of convergence,
because, although the components u1 and uz may be slowly varying functions, the difference between
them may be large. This insight motivates us to propose a slightly adapted preconditioner. MILUD-2,
where the MILU approach is used in a decoupled way.

For MILUD-2 the matrices L, D and U satisfy the same rules as for MILUD-1, except rule (16)
which is replaced by

(16)

rowsum(L,,D,' U,,) = rowsum(Mll),
~owsu~(L,,D,~ u,, + L,,D,-: uZ2) = rowsum(M,,).

We expect that this preconditioner will work well if u1 and u2 are slowly varying functions, whereas the
difference between u1 and u2 may be large. In all our experiments this preconditioner has a nice
convergence behaviour for a close to unity. Hence the MILUD-2 preconditioner is more robust than
m U D - 1 .

The transport equation

Transport equations of the type (3) can be used to describe the transport of temperature, certain
quantities occurring in engineering models of turbulence," the concentration of salt in an estuary, etc.

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 203

We distinguish between two classes of transport equations. The first class describes the transport of a
passive scalar. In this case the Navier-Stokes equations can be solved independently of the transport
equation. Thereafter the velocities u1 and u2 can be used in (3) to obtain a solution of the transport
equation. The second class describes the transport of an active scalar. This class consists of
applications where the Navier-Stokes equations are coupled with the transport equation (9, e.g. a
Boussinesq problem or turbulence modelling. Since the transport equation has the same properties for
both classes, the choice of iterative solution method is independent of the type of scalar.

We note that equation (3) resembles the equations given in (2). This explains why the convergence
behaviour of an iterative method applied to a transport equation is comparable with its behaviour when
it is applied to the momentum equation. The matrix C"+' depends on the geometry, the boundary
conditions, the velocities, the time step and the choice of the functions K1, Kafl and K2. An important
difference is that the momentum equations describe a vector quantity whereas a transport equation
describes a scalar quantity. As a consequence, the dimensions and structure of a transport matrix are
the same as those of the pressure matrix. This motivates us to solve a transport equation with a
GMRES-like method combined with an RILU preconditioner.

4. REUSE OF SEARCH DIRECTIONS FOR THE GMRESR METHOD

In this section we describe a new technique to save iterations and CPU time using the GMRESR
method.I5 The key idea is the following: if a system of linear equations is solved with different right-
hand sides, then the information obtained from the solution process for the first right-hand side vector
is used for the following right-hand sides.

We describe the adapted GMRESR algorithm for the pressure equation

P@+' = g+'. (18)

In this equation the matrix P is constant whereas the right-hand sides are different in every time step.
The GMRESR algorithm is given by (b = g+' and x k approximates @+1)6.15*16

r, = b - P*,, k = -1;
while 1 1 2 > to1 do

k := k + 1 , compute u!) and cf) = Purl;
for i = 0,1, . . . ,k - 1 do

endfor
T (9 (i + l) = ,(i) (i + l) - u(~? - a i = c i c k p c k k - a i c i , l(k - k ai"i;

(k) (k) c& = c k /llc& 112, = u ~ k) / ~ ~ c f) ~ ~ ~ ~
T T

x&+l = x k + u k c k r k ? rk+ l = r k - c k c k r k ;
endwhile.

In this paper we use the original GMRESR algorithm as resented in Reference 15, where uf' is
computed by one iteration of GMRES(rn) applied to = r k . Other variants are proposed in
References 13 and 26.

Note that the vectors u k and ck used in the GMRESR algorithm should be stored in memory. Owing
to memory limitations, it is necessary to bound the number of search directions U k (and c k) to be kept in
memory. Different technique^".'^ can be used to select which search directions are stored. In this
paper we use the minalfa truncation strategy,16 which is defined in the following way. Suppose that the
maximal number of search directions kept in memory is equal to n,. As long as the number of outer
iterations is less than n,, all search directions are stored in memory. Thereafter the new search direction
overwrites the old search direction with the smallest absolute value of ai in the for-loop.

204 c. VUIK

We now describe the GMRESR method with reuse of search directions for the pressure equation. In
the first time step we solve PAp' =g' with the GMRESR method. The number of outer iterations is
equal to n l , while GMRESR is truncated after n, outer iterations. In the first time - step the search
directions ub k = 0, 1, . . . , n,, are used, where n, = min(n1, n3. These vectors and the vectors C k = P U k

are stored in memory. For the solution of PAp2 =g' we use the following adapted version of
GMRESR. Before we start the iteration process, the residual is made perpendicular to
span(c0, . . . , C",} as follows:

for k = 0, 1,. . . , n, do
x, = x, + UkCk r,,

endfor.
(19) T

' 0 = r, - c k c ; r o ,

Thereafter we start the iteration, where the orthogonalization process in the GMRESR algorithm now
runs from i = 0 to min(n, + k - 1, nJ. The number of outer iterations in the second time step is equal
to n2. The vectors u k and cb k = 0, 1, . . . , n, = min(n, + n2, nJ, are stored in memory. These
directions are reused in the third time step, etc. Note that n, is an upper bound of the number of
direction vectors which are reused.

Different strategies are possible for the selection of search directions which are kept in memory. In
the experiments reported here, we start by storing all search directions. If n, + k - 1 becomes equal to
nt, the minalfa truncation strategy is used to discard an old search direction. This implies that the
search directions stored in memory may be different in every time step. Another strategy could be to
obtain the n, search directions in the first time step and reuse these in every following time step. Thus
the search directions remain the same for every time step n 2 2.

To illustrate this adaptation of the GMRESR algorithm, we give results for the first test problem on a
64 x 256 grid with p = 250 and p = 0.5, implying a Reynolds number of 500. We use GMRESR with
GMRES(4) as inner loop and the RILU(a = 0.975) preconditioner. In Table I the results are given for
the pressure equation at the second time step. The CPU time is measured in seconds on one processor
of a Convex C3840. Note that there is a considerable speed-up when the search directions are reused.
The convergence behaviour is shown in Figure 5.

For the o r i g d GMRESR algorithm the superlinear convergence sets in after seven outer iterations.
The GMRESR algorithm with reuse of search directions leads to fast convergence from the beginning.
Thus the gain in iterations and CPU time is not a consequence of the decrease in the norm of the initial
residual due to (19), but a consequence of the fact that the components in slowly converging
eigenvectors are absent owing to the expanded orthogonalization. Compare the description of the
superlinear convergence behaviour of GMRES as given in Reference 24. The results in Table I show
that the numbex of iterations decreases when the value of n, increases. This agrees with our explanation
that if more search directions are reused (nt larger), then more components in slowly converging
eigenvectors are absent, so a faster rate of convergence results. A drawback is that increasing n, leads
to larger memory requirements.

Table I. Number of iterations and CPU time for different GMRESR
variants combined with RILU (a = 0.975)

Original GMRESR(4) GMRESR(4) with reuse

nt Outer iterations CPU Outer iterations CPU

20 14 2.56 7 1.5
15 14 2.56 8 1 *7
10 14 2.56 10 2.0

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 205

Figure 5 . Convergence behaviour of GMRESR (-) and GMRESR with reuse
RILU preconditionex (grid 64 x 256)

of search directions (0) combined with an

We conclude that the reuse of search directions is a good idea if the original GMRESR algorithm
applied to the linear system of equations has a superlinear convergence behaviour. If, fiuthennore, the
required accuracy is low, the CPU time decreases considerably when we reuse the search directions
(low accuracy is in general sufficient for non-linear or time-dependent problems). Note that this gain in
CPU time is important, because the solution of the pressure equation is in general the most time-
consuming part.

Reuse of search directions can also be used for the momentum equations M"+'u"+' =fn+l.
Although M"+' # M", we expect that after some time steps the search directions for M"+I and M" are
related. For the reused vectors uk and Ck the relation M"+'uk = ck no longer holds, because
M"+' # M". Thus only the vectors Uk are stored in memory. The adapted GMRESR algorithm is now
started with the loop

for R = 0, . . . , ns
uf) = uk, c W = Mn+IUf);
fori=O, ..., k - 1

endfor
T (9 (;+I) - (i) - a,c, upl) = ,(i) - a; = c; ck 7 ck -ck I 1 7 k a;u;;

(4 (k) ck = c f ' / ~ ~ c f) ~ ~ 2 ~ uk = uk /lick 112;
endfor.

Thereafter the GMRESR method continues with (1 9) and the expanded orthogonalization as for the
pressure equation. For the momentum equation we see only a small gain in iterations and in general no
gain in CPU time. There are two reasons for this: firstly the search directions are different for M"+' and
M" and secondly the original GMRESR method converges linearly. The second reason implies that it is
improbable to obtain a faster convergence by reusing search directions. This is illustrated by the first
test problem with the 16 x 64 grid, p=250, p =0-5 and Ar=O.15. The convergence behaviour of
GMRESR with GMRES(4) as inner loop is given in Figure 6 for the momentum equation in the third
time step. From this figure it appears that the convergence behaviour of GMRESR is linear. Note that
there is only a small gain in iterations whereas the CPU time is larger. In other experiments (larger grid
sizes and/or using preconditioners) we obtain comparable results. Thus for the momentum equation
the GMRESR algorithm with reuse of search directions does not lead to a faster solution method. For
the transport equation in the second test problem we obtain the same results as for the momentum
equation.

206 c. WIK

Figure 6. Convergence behaviour of GMRESR (-) and GMRESR with reuse of search directions (0)

5 . NUMERICAL RESULTS

In this section we present the results of some numerical experiments. We start with the curved channel
problem. The efficiencies of the solution methods for the momentum and pressure equations are given
using vectorized ILU-type preconditioners. Thereafter we measure the CPU times required to solve the
Navier-Stokes equations for various grid sizes. For the Boussinesq problem comparable experiments
have been done. In all cases the CPU time has been measured in seconds on one processor of a Convex
C3840.

Curved channel problem

Consider the curved channel problem described in Section 1. First we investigate the vectorization
of the preconditioner. On the Convex, the megaflop rate for a vector update (which runs in vector
speed) is 35 Mflop/s. In Table I1 the megaflop rate is given for the diagonal-wise ordering presented in
Section 2 for the pressure equation. Without vectorization the multiplication by L-' or U-I has a
megaflop rate equal to 9. From Table I1 it appears that the megaflop rate for the vectorized version
becomes higher for increasing grid size. For large grid sizes it is equal to the megaflop rate of a vector
update.

In Section 3 we have given some guidelines for the choice of a for the RILU preconditioner used in
the solution of the pressure equation. We have performed experiments for various values of a. In
general we prefer postconditioning instead of preconditioning. The reason for this is that using
postconditioning, which means the solution of PU-'L-'y = b and x = U-IL-ly, the termination
criterion is based on Ilrk 112, whereas with preconditioning it is based on 11 U-' L-lrk [I 2 . Table I11 gives
the number of iterations for GMRES (without restarting) and various choices of a. The iteration
process is stopped if ~ ~ r k ~ ~ 2 / ~ ~ r o ~ ~ 2 < lop6. Note that for this problem a= 1 leads to the m i ~ d
number of iterations. Furthermore, for small grid sizes a E [0.975, 11 leads to the same number of
iterations, whereas for large grid sizes the optimal values of a are close to unity and the sensitivity of
the number of iterations required to a increases. The results in Table I11 are obtained by using 111
GMRES. In order to reduce memory requirements and CPU time, we always use the GMRESR
method in practical computations. When GMRESR is used, it appears that RILU(0-99) is the best
choice.

Table 11. Megaflop rate of the vectorized WU@) preconditioner with
diagonal ordering for the pressure equation

Grid size 16 x 64 32 x 128 64 x 256 128 x 512

Mflop/s 15 22 32 35

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS

Table 111. Number of iterations of GMRES using the
RILU(a) postconditioner for the pressure equation

207

Grid sue a = 0.975 a=0.99 a = l

16 x 64 23 24 22
32 x 128 34 34 32
64 x 256 57 49 46

128 x 512 104 84 64

In Figure 7 the numbers of iterations for full GMRES combined with the MILUD or MILU
postconditioner are given for the pressure equation. One iteration costs approximately the same amount
of CPU time for both postconditioners. Thus this figure gives a good idea of the performance of the
postconditioners. Note that especially for large grid sizes the MILU postconditioner becomes much
better than MILUD. The results presented in Figure 7 motivate us to use an RILU preconditioner
instead of an RILUD preconditioner.

Table IV gives CPU time for the solution of the pressure equation using the RILU(0.99)
postconditioner combined with truncated GMRESR(rn) and reuse of the search directions. The results
are measured in the second time step. The best results given in Reference 6 for the pressure equation
are obtained with the GMRES method and the RILUD(0.95) preconditioner. For the 16 x 64 grid this
costs 3 1 iterations, 0.6 s of CPU time and 3 1 memory vectors. Comparing the results given in Table IV
with the results given in Reference 6, we see a large gain in CPU time. Part of this gain comes from the
fact that the Convex C3840 is 2.5 times faster than the Convex C240 used in Reference 6, but in
addition the new method is approximately three times faster.

In Reference 6 the momentum equation has been solved with GMRES(5) combined with a diagonal
preconditioner. For the 16 x 64 grid this costs 57 iterations and 0.6 s of CPU time. In this paragraph
the results are produced by GMRES(20) combined with a diagonal or ILUD preconditioner. For the
momentum equation the preconditioned system L-'M"+' U-'y = ,!.-'by x = U-'y has been solved.
We observe that termination criteria based on Ilrkllz and llL-'rkl12 lead to the same results. The
iteration process is stopped if ~ ~ , ! . - ' ~ ~ ~ ~ ~ / ~ ~ , ! . - ' r ~ ~ ~ ~ < The experiments are done in the second
time step. Table V demonstrates that ILUD saves many iterations and much CPU time. For this
problem MILUD-1 leads to worse results, whereas the number of iterations and CPU time for
MILUD-2 are comparable with ILUD. Comparing the results for the 16 x 64 grid with Reference 6,
we see again a large gain in CPU time. Since the termination criterion in Reference 6 is slightly
stronger than that used in this paper, there is a small difference in the number of iterations. The last
column in Table V contains the CPU time to build the momentum and pressure equations. Note that

Figure 7. Number of iterations of full GMRES combined with MILUD (-) and MILU The grid size is e q d to
(16 x 2') x (64 x 2 1

208 C. W I K

Table IV Amount of memory, CPU time and number of iterations for the pressure
equation

Grid size nt rn Iterations CPU Memory vectors

16 x 64 10 3 7 0.09 32
32 x 128 15 3 7 0.32 46
64 x 256 15 4 7 1.21 47

128 x 512 20 6 7 7.38 55

Table V Number of iterations and CPU time using different preconditioners for the momentum equations

Building
Diagonal ILUD

Time step Iterations CPU Iterations CPU of systems Grid size

16 x 64 0.15000 41 0.24 7 0.075 0.07
32 x 128 0.07500 38 0.75 6 0.20 0.18
64 x 256 0.03750 36 2.74 6 0.73 0-60

128 x 512 0.01 875 39 13.05 7 3.21 2.16

comparison of Tables IV and V shows that the solution of the pressure equation is the most time-
consuming part, as has been the general experience on Cartesian grids in the past.

Boussinesq problem

For the Boussinesq problem we shall start with experiments for the pressure equation. We have used
the RILU(0.975) postconditioner combined with GMRESR(m), where the search directions are reused.
The results we present in Table VI are measured in the third time step, which was found to be typical.
The termination criterion used is the same as for the curved channel problem.

Table VII gives results for the momentum equations. In these experiments GMRES(20) combined
with ILUD, RILUD-l(O.95) and RILUD-2(0.95) as preconditioners has been used. In all cases a time
step dt=4 x has been chosen independently of the gnd size. We note that the convergence
behaviour of RILUD-2 is much better than that of RILUD-1 and that for increasing grid size
RILUD-2 becomes much better than ILUD and RILUD-l(O.95). Since RILUD-2 has at least the
same performance as ILUD for other problems, e.g. the curved channel problem, it is recommended to
use the RILUD-2(0.95) preconditioner in all cases.

Finally, Table VIII gives the results for the transport equation. In every time step first the momentum
and pressure equations are solved and then the transport equation. The computed temperature is used
on the right-hand side of the momentum equation in the next time step. The GMRES(20) method
combined with the MILU postconditioner has been used. The iteration process is stopped if

Table VI. Amount of memory, CPU time and number of iterations for the
pressure equation

Memory
Grid size nt m Iterations CPU vectors

20 x 40 10 4 5 0.047 32
40 x 80 15 5 6 0.33 46
80 x 160 15 6 10 2.0 47

160 x 320 20 7 1 1 9.7 55

FAST ITERATIVE SOLVERS FOR N-S EQUATIONS 209

Table VII. Number of iterations and CPU time for the momentum equation

LUD RILUD-1 RILUD-2

Grid size Iterations CPU Iterations CPU Iterations CPU

20 x 40 5 0.03 1 5 0.033 5 0-029
40 x 80 8 0.15 10 0.17 8 0-15
80 x 160 13 0.86 27 2.1 1 1 0.75
160 x 320 23 6.8 68 2.3 13 3.2

Table VIII. Number of iterations and CPU time for the
transport equation

Building
Grid sue Iterations CPU ofsystems

20 x 40 6 0.0 16 0.05
40 x 80 10 0.1 1 0.15
80 x 160 14 0.48 0.49
160 x 320 16 2.3 1.8

~ ~ r ~ ~ ~ 2 / l l r ~ l l ~ < lop6. Note that comparison of Tables VI, VII and VIII again shows that the solution of
the pressure erquation is the most time-consuming part.

6. CONCLUSIONS

In this paper we have described properties of GMRES-tyPe iterative methods combined with ILU-type
preconditioners to solve a discretization of the incompressible Navier-Stokes equations in general co-
ordinates with the pressure correction method. Comparing the results of this paper with those of
Reference 6, we note a considerable decrease in CPU time to solve the pressure and momentum
equations owing to the novel idea of reuse of search directions for the pressure equation, improvements
in pre- and postconditioning and vectorization.

The pressure equation has been solved with GMRESR combined with an RILU postconditioner. In
the case of a non-singular pressure matrix a=0.99 appears to be a good choice for the average
parameter, whereas in the singular case a = 0.975 should be preferred. Finally, reuse of the GMRESR
search directions leads to a large reduction of CPU time in the solution of the pressure equation.

The momentum equation has been solved with GMRES(20) combined with RILUD-2. A good
choice for a is 0.95. The properties of the momentum equation depend not only on the geometry and
boundary conditions but also on other parameters such as time, time step, p , p, etc. Thus the number of
iterations and CPU time may be different for dfferent values of these parameters.

The transport equation has been solved with GMRES(20) combined with MILU postconditioning.
Solving for the pressure takes most of the time, as in the Cartesian case.

REFERENCES

1 . A. E. Mynett, P. Wesseling, A. Segal and C. G. M. Kassels, ‘The ISNaS incompressible Navier-Stokes solver invariant

2. A. Segal, F! Wesseling, J. Van Kan, C. W. Oosterlee and K. Kassels, ‘Invariant discretidon of the incompressible Navier-

3. C. W. Oosterlee, ‘Robust multigrid methods for the steady and unsteady incompmsible Navier-Stokes equations in general

discretization’, Appl. Sci. Res., 48, 175-191 (1991).

Stokes equations in boundary fitted coordinates’, Int. j . numer. methodrjuids, 15,411426 (1992).

coordinates’, PkD. Thesis, Delft University of Technology, 1993.

210 C. W I K

4. C. W. Oosterlee, P. Wesseling, A. Segal and E. Brakkee, ‘Benchmark solutions for the incompressible Navier-Stokes
equations in general co-ordinates on s t aggd grids‘, Int. j . nurner rnethodsJuids, 17, 301-321 (1993).

5. I? Wesseling, A Segal, 1. J. 1. M. Van Kan, C. W. Oosterlee and C. G. M. Kassels, ‘Finite volume discretization of the
incompressible Navier-Stokes equations in general coordinates on staggered grids’, Comput. Fluid @TI. J , 1,27-33 (1992).

6. C. Vuik, ‘Solution of the discrehzed incompressible Navier-Stokes equations with the GMRES method‘, Znf. j. numer
methodsjluidr, 16, 507-523 (1993).

7. G. Segal, K. Vuik and K. Kassels, ‘On the implementation of symmetric and antisymmetric periodic boundary conditions for
incompressible flow’, Znt. j . numer rnethodsjluids, 18, 1153-1 165 (1994).

8. M. Zijlema, A. Segal and P. Wesseling, ‘Invariant discretization of the k+ model in general co-ordinates for @don of
turbulent flow in complicated geometries’, Comput. Fluids, 24, 209-225 (1995).

9. C. W. Oosterlee and P. Wesseling, ‘A multigrid method for an invariant formulation of the incompressible Navier-Stokes
equations in general co-ordinates’, Commun. Appl. Nwner Methods, 8, 721- 734 (1992).

10. C. W. Oosterlee and P. Wesseling, ‘A robust multigrid method for a discretization of the incompressible Navier-Stokes
equations in general coordinates’, Impact Compuf. Sci. Eng., 5, 128-151 (1993).

11. C. W. Oosterlee and I? Wesseling, ‘Multigrid schemes for timedependent incompressible Navier-Stokes equations’, Impact
Cornput. Sci. Eng., 5 , 153-175 (1993).

12. S. Zeng and €! Wesseling, ‘Multigrid solution of the incompressible Navier-Stokes equations in general coordinates’, SLAM
1 Numer Anal.. 31. 1764-1784 11994).

13.

14.

15.

16.
17.

18.

19.

20.
21.

22.
23.

24.

25.

26,

S. Zeng, C. V;ik ikd P. Wesselkg, ‘Solution of the incompressible Navier-Stokes equations in general coordinates by
Krylov subspace and multigrid methods’, A h . Compuf. Math., 4, 27-49 (1995).
Y. Saad and M. H. Schulk, ‘GMRES: a gendized minimal residual algorithm for solving non-symmetric l i n e a r systems’,
SZAMJ Sci. Sfat. Cornput., 7, 856-869 (1986).
H. A. Van der Vorst and C. Vuik, ‘GMRESR: a family of nested GMRES methods’, Nume,: Lin. Alg. Appl, 1, 369-386
(1 994).
C. Vuik, ‘Further experiences with GMRESR, Supercompufer, 55, 13-27 (1993).
G. de Vahl Davis and 1. P. Jones, ‘Natural convection in a square cavity: a comparison exercise’, I n f j . numer mefhodsjluids,

J. A. Meijerink and H. A. Van der Vorst, ‘An iterative solution method for linear systems of which the coefficient matrix is a
symmetric M-matrix’, Math. Compuf., 31, 148-162 (1977).
H. A. Van der Vorst, ‘Iterative solution method for certain sparse linear systems with a non-symmetric matrix arising from
PDE-problems’, 1 Cornput. Phys., 44, 1-19 (1981).
I. A. Gustafwn, ‘A class of first order factorization methods’, BIT, 18, 142-156 (1978).
0. Axelsson and G. Lindskog, ‘On the eigenvalue distribution of a class of preconditioning methods’, Numer Math., 48,
479498 (1986).
H. A. Van der Vorst, ‘High performance preconditioning’, SZAMl Sci. Stat. Cornput., 10, 1174-1185 (1989).
S. C. Eisenstat, ‘Efficient implementation of a class of preconditioned conjugate gradient methods’, SZAM 1 Sci. Sfat.
Cornput., 2 , 1-4 (1981).
H. A. Van der Vorst and C. Vuik, ‘The superlinear convergence behaviour of GMRES’, 1 Comput. Appl. Math., 48.327-341
(1993).
C . C. Ashcraft and R. G. Grimes, ‘On vectorizing incomplete factorization and SSOR preconditioners’, S U M 1 Sci. Star.
Cornput, 9, 122-151 (1988).
E. De Sturler and D. R. Fokkema, ‘Nested Krylov methods and preserving the orthogonality’, in T. A. Manteuffel and S. F.
McCormick (eds), h c . Sixth Copper Mountain Conf on Multigrid Methods, NASA Langley Research Center, Hampton,

3, 227-248 (1983).

VA, pp. 1 1 1-126, 1993.

