
A Parallel I m p l e m e n t a t i o n of the B lock
P r e c o n d i t i o n e d G C R M e t h o d

C. Vuik I and J. Frank 12

1 Delft University of Technology, Faculty of Information Technology and Systems,
Department of Technical Mathematics and Informatics, P.O. Box 5031 2600 GA

Delft, The Netherlands, c. vuikllmath, t u d e l f t .nl
2 Center for Mathematics and Computer Science (CWI), P.O. Box 94079, 1090 GB

Amsterdam, The Netherlands, f r ankQ, , a th . tude l f t . n l

Abs t r ac t . The parallel implementation of GCR is addressed, with par-
ticular focus on communication costs associated with orthogonalization
processes. This consideration brings up questions concerning the use of
Householder reflections with GCR. To precondition the GCR method
a block Gauss-Jacobi method is used. Approximate solvers are used to
obtain a solution of the diagonal blocks. Experiments on a cluster of HP
workstations and on a Cray T3E are given.

K e y w o r d s : approximate subdomain solution; parallel Krylov subspace meth-
ods; orthogonalization methods

1 I n t r o d u c t i o n

This paper addresses the parallel implementat ion of a Krylov accelerated block
Gauss-Jacobi method for the DeFT Navier-Stokes solver described in [15], and
is the continuation of work summarized in [5]. Results from a parallel implemen-
tat ion of a Krylov-accelerated Schur complement domain decomposit ion method
are presented in [3]. We report results for a Poisson problem on a square domain,
which is representative of the system which must be solved for the pressure cor-
rection method used in DEFT.

Aside from the preconditioning, the main parallel operations required in these
methods are distributed matrix-vector multiplications and inner products. For
many problems, the matr ix-vector multiplications require only nearest neigh-
bor communications, and are very efficient. Inner products, on the other hand,
require global communications; therefore, the focus has been on reducing the
number of inner products [8, 16], overlapping inner product communicat ions with
computat ion [6], or increasing the number of inner products that can be com-
puted with a single communication [2, 13].

The block Gauss-Jacobi preconditioner is described in Section 1.1. Parallel imple-
mentat ions of orthogonalization procedures for the GCR (Generalized Conjugate

1053

Residual) method are investigated in Section 2. Experiments done on a cluster
of workstations and a Cray T3E are given in Section 3.

1.1 T h e b l o c k G a u s s - J a c o b l p r e c o n d l t l o n e r

We consider an elliptic partial differential equation discretized using a finite
volume or finite difference method on a computat ional domain f2. Let the domain
be the union of M nonoverlapping subdomains S2m, m = 1 , . . . , M.Discretization
of the PDE results in a sparse linear system A x = b, with x, b E R N. When the
unknowns which share a common subdomain are grouped together into blocks
one gets the block system:

" . . ~ .

tAM1 A M M x b

(1)

In this system, one observes that the diagonal blocks Am,~ express coupling
among the unknowns defined on a common subdomain (Din), whereas the off-
diagonal blocks A,,~, m ~ n represent coupling across subdomain boundaries.
The only nonzero off-diagonal blocks are those corresponding to neighboring
subdomains.

In order to solve system (1) we use the block Gauss-Jacobi preconditioner:

K = All . AMM] .
When this preconditioner is used, systems of the form K v = r have to be solved.
Since there is no overlap the diagonal blocks A m m v m = rm, m = 1 , . . . , M can
be solved in parallel. In our method these systems are solved by an iterative
method. An important point is the required tolerance of these inner iterations
(see [9]). Since the number of inner iterations may vary from one subdomain
to another, and in each outer iteration, the effective preconditioner is nonlinear
and varies in each outer iteration.

Our choice of approximate solution methods is mot ivated by the results obtained
in [4]. In that paper, GMRES was used as to approximately solve subdomain
problems to within fixed tolerances of 10 -4 , 10 -3 , 10 -2 and 10 -1 . Addition-
ally, a blockwise application of the RILUD preconditioner was used. RILUD, a
diagonal-restricted variant of the preconditioner introduced in [1], is a weighted
average of an ILUD preconditioner [14] and an MILUD preconditioner [10]. The
weighting parameter w, was assigned a value of 0.95 in our experiments. For
small problems G C R without a preconditioner converges in a reasonable amount
of time. However, when the gridsize increases the CPU t ime for G C R without
preconditioning is much higher than for the preconditioned G C R method.

1054

2 O r t h o g o n a l i z a t i o n m e t h o d s for the G C R m e t h o d

2.1 T h e G C R method

One of the Krylov subspace methods which allows a variable preconditioner is
the GCR method [7], [17]. In this paper the Euclidean inner product (x , y) = x T y

and associated norm I]x]] = (x r x) 1/2 are used.

Algorithm: G C R
Given: initial guess z0
ro = b - A x o
fo r k -- 1 , . . . , convergence

Solve K ~ = r k - 1 (approximately)
(= A ~
[qk, vk] = orthonorm (~, ~, qi, vi , i < k)

T r 7 = q k k-1
Update: xk = xa-1 + 7va
Update: r~ = r k - 1 - - 7qk

e n d

The function o r t h o n o r m () takes input vectors ~ and 9, orthonormalizes ~ with
respect to the qi, i < k, updating 9 as necessary to preserve the relation ~ = Ag,
and returns the modified vectors qk and vk.

The primary challenges to parallelization of GCR are parallelization of the pre-
conditioning and parallel computation of the inner products. Inner products
require global communication and therefore do not scale. Much of the literature
on parallel Krylov subspace methods and parallel orthogonalization methods is
focused on orthogonalizing a number of vectors simultaneously. However, this is
not possible using a preconditioner which varies in each iteration. For this reason,
we need a method for orthogonalizing one new vector against an orthonormal
basis of vectors.

2.2 Orthogonalization methods

The modified Gram-Schmidt method suffers from the fact that the inner prod-
ucts must be computed using successive communications, and the number of
these inner products increases proportional to the iteration number. This is not
the case if one uses the classical Gram-Schmidt method. In this algorithm all
necessary inner products can be computed with a single global communication.
Unfortunately, the classical Gram-Schmidt method is unstable with respect to
rounding errors, so this method is rarely used. On the other hand, Hoffmann [11]
gives experimental evidence indicating that a two-fold application of the classical
Gram-Schmidt method is stable. A third method which has been suggested is the
parallel implementation of Householder transformations, introduced by Walker
[18]. We shall reformulate that method for GCR in the following section. Addi-
tionally, we will present a simple parallel performance analysis for comparison
of these three orthogonalization procedures.

1055

2.3 Householder orthogonalization

In the following discussion we use the not ion ak to represent the k th co lumn of
a mat r ix A and a(i) to represent the ith componen t of a vector a. Let a mat r ix
A E IR ~x'~, m < n with linearly independent columns be factored as Q Z , where
Q is orthogona-i-and Z is upper tr iangular . Then the k th co lumn of A is given
by ak = Qzk and the columns of Q form an o r thonormal basis for the span of
the columns of A.

We construct Q as the product of a series of Householder reflections, Q =
wi wT

P I " " P m , used to t ransform A into Z. The matr ices Pi = I - 2 ~ , with

w} j) = 0 for j < i have the property: P i (P i - l ' " P1)ai = zi.

Suppose one has already produced k or thogonal basis vectors. To compute
Wk+l one must first apply the previous reflections to ak+l as described in [18]:
fi = P k ' ' ' P l a k + l = (I -- 2 W k L - ~ I W T) a k + I , where Wk is the mat r ix whose
columns are Wl, �9 �9 �9 wk, and where

Lk I] 2wT@l 1

[2w/w1.. . r 2w k wk -1 1

Note especially tha t in the (k + 1)th i teration one must compu te the last row
of Lk, which is the vector (2 w T W k _ l , ~), a s well as the vector W [a k + l . This
requires 2k - 1 inner products, but they m a y all be computed using only a single
global communica t ion .

Let fi be the vector obtained by sett ing the first k elements of 5 to zero. The
vector Wk+l is chosen as: wk+l = 5 + sign (5(k+l))llhllek+l. In practice, the
vectors Wk are normalized to length one. The length of wk+l can be expressed as
IlWk+lll = x/2c~ 2 - 2~fi(k+l) where a = sign (fi(k+l))llfil]. The (k + 1)th co lumn
of Q is the new or thonormal basis vector:

1 E qk+l = -- ak+l --

With in the G C R algori thm, the same linear combina t ion mus t be applied to the
vi to obta in Vk+l.

2.4 Performance analysis

In this section the costs of the or thogonal izat ion methods are considered (for the
details we refer to [9]).

Re-orthogonalized Classical Gram-Schmidt (CGS2)

1056

The kth iteration of this method costs 3k vector updates and 2k inner products.
To compute the inner products 2 global messages of length k are sent.

Modified Gram-Sehmidt (MGS)
The kth iteration of MGS costs 2k vector updates and k inner products. For the
inner products k global messages of length 1 are required.

Householder (HH)
In the kth iteration of the Householder method, 3k vector updates and 2k inner
products are done. In every iteration 3 communications are necessary: two global
messages one with length k and the other with length 1, and a broadcast of k
elements.

Comparing the costs we expect that the wall-clock time for CGS2 and HH are
comparable. When communication is slow (large latency) with respect to com-
putation one expects that these methods are faster than MGS. Otherwise MGS
may be the fastest method because MGS needs less floating point operations.

3 N u m e r i c a l e x p e r i m e n t s

Firstly we present some time measurements to compare the various orthogo-
nalization methods. Secondly we investigate the scalability of the parallel block
preconditioned GCR method. Each processor is responsible for an n x n subdo-
main with n 2 unknowns.

3.1 Measurements of the orthogonalization methods

Tests were performed on a cluster of HP workstations and on a a Cray T3E using
MPI communication subroutines. The wall clock times in the orthogonalization
part are measured when 60 GCR iterations are performed.

In Figure 1 the parameters

�9 ~HH :

and

�9 ~"C G S 2 :

orthog, time MGS

orthog, time HH

orthog, time MGS

orthog, time CGS2

are plotted as functions of n. In each subdomain an n x n grid is used. The
number of subdomains is equal to the number of processors. On the workstation
cluster (HH) and (CGS2) are only advantageous when the number of unknowns
is less than 3600 on 4 processors and less than 6400 on 9 processors. On the
Cray T3E, the number of unknowns per processor should be fewer than 1000
for 9 or even 25 processors. For larger problems the smaller amount of work
involved in modified Gram-Schmidt orthogonalization outweighs the increased
communication cost.

1057

4.5,
\

Xx

3.5 =9

3 "~,x x\
~"2.5 \ "

1.5 "~%~--

]

i

0'50 40

HP cluster

HH
CGS2

i i

60 80
subdomain gridsize, n

100

Cray T3E

, - - CGS2
1.2 ". .~,
1.1 p=25

._ "%. . '%,
-.\ "\

0.~

0.7

0'~'0 40 6'0 8'0
subdomain gridsize, n

100

Fig. 1. Measured speedup with Householder (HH) orthogonalization
orthogonalized Classical Gram-Schmidt (CGS2)

and Re-

3.2 E v a l u a t i o n o f a p p r o x i m a t e s u b d o m a i n so lve r s

As a test example, we consider a Poisson problem, discretized with the finite
volume method on a square domain. The pressure correction matr ix , which we
solve in each t ime step of an incompressible Navier-Stokes simulation to enforce
the divergence-free constraint [12], is similar to a Poisson problem, but with
a symmet ry arising from the use of curvilinear coordinates. Solution of this sys-
tem requires about 75% of the computing effort. So that we can obtain a useful
indication of the performance of our method on the pressure correction matr ix,
we do not exploit the symmet ry of the Poisson matr ix in these experiments. The
domain is composed of a v ~ x x/~ array of subdomains, each with an n x n grid.

1058

With h = Ax = Ay = 1 .0 / (v~n) the discretization is

4 U i j - - U i + l j - - U i - l j - - U i j - 1 - - u i j - t - 1 = h2 fij .

The right hand side function is fij = f(ih, jh), where f (x , y) = -32(x(1 - x) +
y (1 - y)). Homogeneous Dirichlet boundary conditions u = 0 are defined on 0D,
implemented by adding a row of ghost cells around the domain, and enforcing
the condition, for example, u0j = - u U on boundaries. This ghost cell scheme
allows natural implementation of the block Gauss-Jacobi preconditioner as well.

We compare speedups obtained with a number of approximate subdomain solvers

102
HP cluster

101

10 ~

103 ,

GMR6

GMR2

. . . . GMR1

J

4
processors, p

Cray T3E

o)

E

102

101

10 ~

. GMR6

GMR2

_ _ .

. GMR1

RILUD

i i

4 9 1; 25
processors, p

Fig. 2. Computation time for fixed subdomain size of 120 x 120

to get an impression of which solvers might be effectively used with the Navier-
Stokes equations. For these tests a fixed number of GCR iterations (30) are

1059

done, and modified Gram-Schmidt was used as the orthogonalization method.
The performance measure is wall clock time, after initialization, taken as the
min imum achieved over three runs.

The subdomain approximations will be denoted as follows:

- GMR6 = restarted GMRES with a tolerance of 10 -6,
- GMR2 = restarted GMRES with a tolerance of 10 -2,
- GMR1 = restarted GMRES with a tolerance of 10 -1,
- RILUD = one application of an RILUD preconditioner.

Figure 2 shows a comparison of the parallel scalability of the domain decompo-
sition method with approximate subdomain solution. The figure shows compu-
tat ion times on 1, 4 and 9 processors (1, 4, 9, 16 and 25 processors for the Cray
T3E) with a fixed subdomain size of 120 x 120. Note that the method scales
almost perfectly on the Cray for this range of processors. On the workstation
cluster, the scaling is somewhat poorer. The scaling for the G M R variants is
reasonable, whereas the scaling of RILUD is bad.

4 C o n c l u s i o n s

Wall clock measurements for the modified Gram-Schmidt , re-orthogonalized
classical Gram-Schmidt , and Householder orthogonalization methods indicates
that classical Gram-Schmidt and Householder require approximate ly the same
amount of work and communication, making the re-orthogonalized classical
Gram-Schmidt more attractive, since it is easier to implement and more sta-
ble. The Householder and re-orthogonalized classical Gram-Schmidt methods
are most effective for relatively small problems: using nine processors, up to
about 900 unknowns per processor for a Cray T3E, or 8000 unknowns per pro-
cessor for a cluster of workstations.

For this type of problem, the best subdomain approximat ion method in paral-
lel is a simple incomplete factorization restricted to the diagonal: the RILUD
factorization. With this preconditioner used as a subdomain approximation, the
approximate solves become so cheap (and yet sufficiently accurate) that they off-
set the increased number of GCR iterations resulting from inaccurate subdomain
solution.

R e f e r e n c e s

1. O. Axelsson and G. Linskog. On the eigenvalue distribution of a class of precon-
ditioning methods. Numerische Mathematik, 48:479-498, 1986.

2. Z. Bai, D. Hu, and L. Reiehel. A Newton-basis GMRES implementation. IMA
Journal of Numerical Analysis, 14:563-581, 1994.

3. E. Brakkee, A. Segal, and C. G. M. Kassels. A parallel domain decomposition
algorithm for the incompressible Navier-Stokes equations. Simulation Practice and
Theory, 3:185 205, 1995.

1060

4. E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incom-
pressible Navier-Stokes equations: Solving subdomain problems accurately and in-
accurately. International Journal for Numerical Methods in Fluids, 26:1217-1237,
1998.

5. Erik Brakkee. Domain Decomposition for the Incompressible Navier-Stokes Equa-
tions. PhD thesis, Delft University of Technology, P.O. Box 5031, 2600 GA Delft,
The Netherlands, April 1996.

6. E. de Sturler and H. A. van der Vorst. Reducing the effect of global communica-
tion in GMRES(m) and CG on parallel distributed memory computers. Applied
Numerical Mathematics, 18:441-459, 1995.

7. Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz, Variational it-
erative methods for nonsymmetrie systems of linear equations. SIAM Journal on
Numerical Analysis, 20(2):345-357, April 1983.

8. J. Ethel. A parallel GMRES version for general sparse matrices. Electronic Trans-
actions on Numerical Analysis (h t tp: l le tna .mes . kent. edu), 3:160-176, 1995.

9. J. Frank and C. Vuik. Parallel implementation of a multiblock method with ap-
proximate subdomain solution. App. Num. Math., 1998. to appear.

10. Ivar Gustafsson. A class of first order factorization methods. BIT, 18:142-156,
1978.

11. Walter Hoffman. Iterative algorithms for Gram-Schmidt orthogonalization. Com-
puting, 41:335-348, 1989.

12. J. van Kan. A second-order accurate pressure-correction scheme for viscous incom-
pressible flow. SIAM Journal on Scientific and Statistical Computing, 7(3):870-891,
1986.

13. G. Li. A block variant of the GMRES method on massively parallel processors.
Parallel Computing 23, 23:1005-1019, 1997.

14. J. A. Meijerink and H. A. van der Vorst. An iterative solution method for finear
systems of which the coefficient matrix is a symmetric M-matrix. Mathematics of
Computation, 31:148-162, 1977.

15. A. Segal, P. Wesseling, J. van Kan, C.W. Oosterlee, and K. Kassels. Invariant
discretization of the incompressible Navier-Stokes equations in boundary-fi t ted co-
ordinates. International Journal for Numerical Methods in Fluids, 15:411-426,
1992.

16. R. B. Sidje. Alternatives for parallel Krylov subspace basis computation. Numerical
Linear Algebra with Applications, 4(4):305-331, 1997.

17. Henk A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES meth-
ods. Numerical Linear Algebra with Applications, 1(4):369-386, 1994.

18. Homer F. Walker. Implementation of the GMRES method using Householder
transformations. SIAM Journal on Scientific and Statistical Computing, 9(1):152-
163, 1988.

