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Abs t r ac t .  The parallel implementation of GCR is addressed, with par- 
ticular focus on communication costs associated with orthogonalization 
processes. This consideration brings up questions concerning the use of 
Householder reflections with GCR. To precondition the GCR method 
a block Gauss-Jacobi method is used. Approximate solvers are used to 
obtain a solution of the diagonal blocks. Experiments on a cluster of HP 
workstations and on a Cray T3E are given. 

K e y w o r d s :  approximate  subdomain solution; parallel Krylov subspace meth-  
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1 I n t r o d u c t i o n  

This paper  addresses the parallel implementat ion of a Krylov accelerated block 
Gauss-Jacobi method for the DeFT Navier-Stokes solver described in [15], and 
is the continuation of work summarized in [5]. Results from a parallel implemen- 
tat ion of a Krylov-accelerated Schur complement domain decomposit ion method 
are presented in [3]. We report results for a Poisson problem on a square domain, 
which is representative of the system which must  be solved for the pressure cor- 
rection method used in DEFT. 

Aside from the preconditioning, the main parallel operations required in these 
methods are distributed matrix-vector  multiplications and inner products. For 
many  problems, the matr ix-vector  multiplications require only nearest neigh- 
bor communications,  and are very efficient. Inner products, on the other hand, 
require global communications; therefore, the focus has been on reducing the 
number  of inner products [8, 16], overlapping inner product communicat ions with 
computat ion [6], or increasing the number of inner products that  can be com- 
puted with a single communication [2, 13]. 

The block Gauss-Jacobi preconditioner is described in Section 1.1. Parallel imple- 
mentat ions of orthogonalization procedures for the GCR (Generalized Conjugate 
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Residual) method are investigated in Section 2. Experiments done on a cluster 
of workstations and a Cray T3E are given in Section 3. 

1.1 T h e  b l o c k  G a u s s - J a c o b l  p r e c o n d l t l o n e r  

We consider an elliptic partial  differential equation discretized using a finite 
volume or finite difference method on a computat ional  domain f2. Let the domain 
be the union of M nonoverlapping subdomains S2m, m = 1 , . . . ,  M.Discretization 
of the PDE results in a sparse linear system A x  = b, with x, b E R N. When the 
unknowns which share a common subdomain are grouped together into blocks 
one gets the block system: 

" . .  ~ . 

tAM1 A M M  x b 

(1) 

In this system, one observes that  the diagonal blocks Am,~ express coupling 
among the unknowns defined on a common subdomain (Din), whereas the off- 
diagonal blocks A,,~, m ~ n represent coupling across subdomain boundaries. 
The only nonzero off-diagonal blocks are those corresponding to neighboring 
subdomains.  

In order to solve system (1) we use the block Gauss-Jacobi preconditioner: 

K = All  . AMM] . 
When this preconditioner is used, systems of the form K v  = r have to be solved. 
Since there is no overlap the diagonal blocks A m m v m  = rm,  m = 1 , . . . ,  M can 
be solved in parallel. In our method these systems are solved by an iterative 
method.  An important  point is the required tolerance of these inner iterations 
(see [9]). Since the number of inner iterations may vary from one subdomain 
to another, and in each outer iteration, the effective preconditioner is nonlinear 
and varies in each outer iteration. 

Our choice of approximate  solution methods is mot ivated by the results obtained 
in [4]. In that  paper, GMRES was used as to approximately  solve subdomain 
problems to within fixed tolerances of 10 -4 , 10 -3 , 10 -2 and 10 -1 . Addition- 
ally, a blockwise application of the RILUD preconditioner was used. RILUD, a 
diagonal-restricted variant of the preconditioner introduced in [1], is a weighted 
average of an ILUD preconditioner [14] and an MILUD preconditioner [10]. The 
weighting parameter  w, was assigned a value of 0.95 in our experiments. For 
small problems G C R  without a preconditioner converges in a reasonable amount  
of time. However, when the gridsize increases the CPU t ime for G C R  without 
preconditioning is much higher than for the preconditioned G C R  method.  
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2 O r t h o g o n a l i z a t i o n  m e t h o d s  for the  G C R  m e t h o d  

2.1 T h e  G C R  method 

One of the Krylov subspace methods which allows a variable preconditioner is 
the GCR method [7], [17]. In this paper the Euclidean inner product (x ,  y)  = x T y  

and associated norm I]x]] = ( x r x )  1/2 are used. 

Algorithm: G C R  
Given: initial guess z0 
ro = b - A x o  
fo r  k -- 1 , . . . ,  convergence 

Solve K ~  = r k - 1  (approximately) 
( = A ~  
[qk, vk] = orthonorm (~, ~, qi, vi ,  i < k) 

T r 7 = q k  k-1 
Update: xk = xa-1 + 7va 
Update: r~ = r k - 1  - -  7qk 

e n d  

The function o r t h o n o r m ( )  takes input vectors ~ and 9, orthonormalizes ~ with 
respect to the qi, i < k,  updating 9 as necessary to preserve the relation ~ = Ag, 
and returns the modified vectors qk and vk. 

The primary challenges to parallelization of GCR are parallelization of the pre- 
conditioning and parallel computation of the inner products. Inner products 
require global communication and therefore do not scale. Much of the literature 
on parallel Krylov subspace methods and parallel orthogonalization methods is 
focused on orthogonalizing a number of vectors simultaneously. However, this is 
not possible using a preconditioner which varies in each iteration. For this reason, 
we need a method for orthogonalizing one new vector against an orthonormal 
basis of vectors. 

2.2 Orthogonalization methods 

The modified Gram-Schmidt method suffers from the fact that  the inner prod- 
ucts must be computed using successive communications, and the number of 
these inner products increases proportional to the iteration number. This is not 
the case if one uses the classical Gram-Schmidt method. In this algorithm all 
necessary inner products can be computed with a single global communication. 
Unfortunately, the classical Gram-Schmidt method is unstable with respect to 
rounding errors, so this method is rarely used. On the other hand, Hoffmann [11] 
gives experimental evidence indicating that a two-fold application of the classical 
Gram-Schmidt method is stable. A third method which has been suggested is the 
parallel implementation of Householder transformations, introduced by Walker 
[18]. We shall reformulate that method for GCR in the following section. Addi- 
tionally, we will present a simple parallel performance analysis for comparison 
of these three orthogonalization procedures. 



1055 

2.3 Householder orthogonalization 

In the following discussion we use the not ion ak to  represent the k th  co lumn of 
a mat r ix  A and a(i) to represent the ith componen t  of  a vector a. Let a mat r ix  
A E IR ~x'~, m < n with linearly independent  columns be factored as Q Z ,  where 
Q is orthogona-i-and Z is upper  tr iangular .  Then  the k th  co lumn of  A is given 
by ak = Qzk and the columns of Q form an o r thonormal  basis for the span of 
the columns of  A. 

We construct  Q as the product  of a series of  Householder  reflections, Q = 
wi wT 

P I " " P m ,  used to t ransform A into Z. The  matr ices  Pi = I -  2 ~ ,  with 

w} j) = 0 for j < i have the property:  P i ( P i - l ' "  P1)ai = zi. 

Suppose one has already produced k or thogonal  basis vectors. To compute  
Wk+l one must  first apply the previous reflections to ak+l  as described in [18]: 
fi = P k ' ' ' P l a k + l  = ( I  -- 2 W k L - ~ I W T ) a k + I ,  where Wk is the mat r ix  whose 
columns are Wl, �9 �9 �9 wk, and where 

Lk I ] 2wT@l 1 

[2w/w1.. .  r 2w k wk -1  1 

Note especially tha t  in the (k + 1)th i teration one must  compu te  the last row 
of  Lk,  which is the vector ( 2 w T W k _ l ,  ~), a s  well as the vector W [ a k + l .  This 
requires 2k - 1 inner products,  but  they m a y  all be computed  using only a single 
global communica t ion .  

Let fi be the vector obtained by sett ing the first k elements of  5 to zero. The 
vector Wk+l is chosen as: wk+l = 5 + sign (5(k+l))llhllek+l. In practice, the 
vectors Wk are normalized to length one. The  length of wk+l can be expressed as 
IlWk+lll = x/2c~ 2 - 2~fi(k+l) where a = sign (fi(k+l))llfil]. The  (k + 1)th co lumn 
of Q is the new or thonormal  basis vector: 

1 E qk+l = -- ak+l -- 

With in  the G C R  algori thm, the same linear combina t ion  mus t  be applied to the 
vi to  obta in  Vk+l. 

2.4 Performance analysis 

In this section the costs of the or thogonal izat ion methods  are considered (for the 
details we refer to [9]). 

Re-orthogonalized Classical Gram-Schmidt (CGS2) 
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The kth iteration of this method costs 3k vector updates and 2k inner products. 
To compute the inner products 2 global messages of length k are sent. 

Modified Gram-Sehmidt (MGS) 
The kth iteration of MGS costs 2k vector updates and k inner products. For the 
inner products k global messages of length 1 are required. 

Householder (HH) 
In the kth iteration of the Householder method, 3k vector updates and 2k inner 
products are done. In every iteration 3 communications are necessary: two global 
messages one with length k and the other with length 1, and a broadcast of k 
elements. 

Comparing the costs we expect that the wall-clock time for CGS2 and HH are 
comparable. When communication is slow (large latency) with respect to com- 
putation one expects that these methods are faster than MGS. Otherwise MGS 
may be the fastest method because MGS needs less floating point operations. 

3 N u m e r i c a l  e x p e r i m e n t s  

Firstly we present some time measurements to compare the various orthogo- 
nalization methods. Secondly we investigate the scalability of the parallel block 
preconditioned GCR method. Each processor is responsible for an n x n subdo- 
main with n 2 unknowns. 

3.1 Measurements  of the orthogonalization methods  

Tests were performed on a cluster of HP workstations and on a a Cray T3E using 
MPI communication subroutines. The wall clock times in the orthogonalization 
part are measured when 60 GCR iterations are performed. 

In Figure 1 the parameters 

�9 ~HH : 

and 

�9 ~"C G S 2 : 

orthog, time MGS 

orthog, time HH 

orthog, time MGS 

orthog, time CGS2 

are plotted as functions of n. In each subdomain an n x n grid is used. The 
number of subdomains is equal to the number of processors. On the workstation 
cluster (HH) and (CGS2) are only advantageous when the number of unknowns 
is less than 3600 on 4 processors and less than 6400 on 9 processors. On the 
Cray T3E, the number of unknowns per processor should be fewer than 1000 
for 9 or even 25 processors. For larger problems the smaller amount  of work 
involved in modified Gram-Schmidt orthogonalization outweighs the increased 
communication cost. 
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Fig. 1. Measured speedup with Householder (HH) orthogonalization 
orthogonalized Classical Gram-Schmidt (CGS2) 

and Re- 

3.2 E v a l u a t i o n  o f  a p p r o x i m a t e  s u b d o m a i n  so lve r s  

As a test example, we consider a Poisson problem, discretized with the finite 
volume method on a square domain. The pressure correction matr ix ,  which we 
solve in each t ime step of an incompressible Navier-Stokes simulation to enforce 
the divergence-free constraint [12], is similar to a Poisson problem, but with 
a symmet ry  arising from the use of curvilinear coordinates. Solution of this sys- 
tem requires about  75% of the computing effort. So that  we can obtain a useful 
indication of the performance of our method on the pressure correction matr ix,  
we do not exploit the symmet ry  of the Poisson matr ix  in these experiments. The 
domain is composed of a v ~  x x/~ array of subdomains,  each with an n x n grid. 
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With h = Ax = Ay  = 1 .0 / (v~n ) the discretization is 

4 U i j  - -  U i + l j  - -  U i - l j  - -  U i j - 1  - -  u i j - t - 1  = h2 fij .  

The right hand side function is fij = f( ih,  jh), where f (x ,  y) = -32(x(1  - x) + 
y ( 1 -  y)). Homogeneous Dirichlet boundary conditions u = 0 are defined on 0D, 
implemented by adding a row of ghost cells around the domain, and enforcing 
the condition, for example, u0j = - u  U on boundaries. This ghost cell scheme 
allows natural implementation of the block Gauss-Jacobi preconditioner as well. 

We compare speedups obtained with a number of approximate subdomain solvers 
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Fig. 2. Computation time for fixed subdomain size of 120 x 120 

to get an impression of which solvers might be effectively used with the Navier- 
Stokes equations. For these tests a fixed number of GCR iterations (30) are 
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done, and modified Gram-Schmidt  was used as the orthogonalization method.  
The performance measure is wall clock time, after initialization, taken as the 
min imum achieved over three runs. 

The subdomain approximations will be denoted as follows: 

- GMR6 = restarted GMRES with a tolerance of 10 -6, 
- GMR2 = restarted GMRES with a tolerance of 10 -2, 
- GMR1 = restarted GMRES with a tolerance of 10 -1, 
- RILUD = one application of an RILUD preconditioner.  

Figure 2 shows a comparison of the parallel scalability of the domain decompo- 
sition method with approximate  subdomain solution. The figure shows compu- 
tat ion times on 1, 4 and 9 processors (1, 4, 9, 16 and 25 processors for the Cray 
T3E) with a fixed subdomain size of 120 x 120. Note that  the method scales 
almost  perfectly on the Cray for this range of processors. On the workstation 
cluster, the scaling is somewhat poorer. The scaling for the G M R  variants is 
reasonable, whereas the scaling of RILUD is bad. 

4 C o n c l u s i o n s  

Wall clock measurements  for the modified Gram-Schmidt ,  re-orthogonalized 
classical Gram-Schmidt ,  and Householder orthogonalization methods indicates 
that  classical Gram-Schmidt  and Householder require approximate ly  the same 
amount  of work and communication,  making the re-orthogonalized classical 
Gram-Schmidt  more attractive, since it is easier to implement  and more sta- 
ble. The Householder and re-orthogonalized classical Gram-Schmidt  methods 
are most  effective for relatively small problems: using nine processors, up to 
about  900 unknowns per processor for a Cray T3E, or 8000 unknowns per pro- 
cessor for a cluster of workstations. 

For this type of problem, the best subdomain approximat ion method in paral- 
lel is a simple incomplete factorization restricted to the diagonal: the RILUD 
factorization. With this preconditioner used as a subdomain approximation,  the 
approximate  solves become so cheap (and yet sufficiently accurate) that  they off- 
set the increased number  of GCR iterations resulting from inaccurate subdomain 
solution. 
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