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Traffic flow models and simulation tools are often used for traffic state estimation
and prediction. Recently several multi-class models based on the kinematic wave
traffic flow model have been introduced. These multi-class models take into
account the heterogeneity of both vehicles and drivers. We analyse two important
properties of these models: hyperbolicity and anisotropy. Both properties relate to
the propagation speed of disturbances, as can be observed in real traffic. We
discuss the importance of traffic flow models to be hyperbolic and anisotropic.
Moreover, we develop a framework to analyse whether traffic flow models have
these properties. Therefore, we derive a generic formulation of multi-class
kinematic wave traffic flow models, rewrite it in the Lagrangian formulation and
apply eigenvalue analysis to the resulting system of equations. Our analysis shows
that most multi-class kinematic wave traffic flow models are indeed hyperbolic
and anisotropic under certain modelling conditions.

Keywords: traffic flow; continuum models; multi-class; traffic anisotropy

1. Introduction

Traffic flow models and simulation tools are often used for traffic state prediction. These
predictions are used for (long-term) planning purposes, traffic state estimation and short-
term prediction. We study macroscopic traffic flow models which describe dynamic traffic
flow as if it were a continuum. They are mostly applied for simulation of freeway
traffic flow. Predictions based on these simulations are, for example, used for short-term
traffic information for road users. Road authorities may use the simulation results for traffic
control such as route guidance, and (integrated) networkmanagement in which one or more
measures are applied to keep the traffic flowing and to reduce the impact of congestion.

Many other modelling approaches have been suggested in the literature. Examples are
microscopic models where the individual behaviour of vehicles is modelled, cellular
automata models and gas-kinetic models. For an overview, see Hoogendoorn and Bovy
(2001). Our analysis is based on a macroscopic traffic flow model. These models are simple
and relatively easy to apply, yet the results do show many phenomena that can be observed
in real traffic. Kerner (2004b, 2009) argues that macroscopic traffic flow models based on

*Corresponding author. Email: f.l.m.vanwageningen-kessels@tudelft.nl

� 2013 Hong Kong Society for Transportation Studies Limited

Transportmetrica A: Transport Science, 2013
Vol. 9, No. 5, 451–472, http://dx.doi.org/10.1080/18128602.2011.596289

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 1

4:
23

 3
0 

N
ov

em
be

r 
20

13
 



the fundamental diagram approach cannot adequately describe most important traffic
phenomena. He suggests to use three-phase models instead. However, Treiber et al. (2010)
show that two-phase (macroscopic) models can represent the same phenomena as three-
phase models.

1.1. Multi-class models

The kinematic wave (traffic flow) model, also known as the LWR-model, has been used to
describe traffic flow since the 1950s (Lighthill and Whitham 1955, Richards 1956). It uses a
continuum approach and is therefore regarded as a macroscopic traffic flow model. This
implies that vehicles are not considered individually, but only the average number of
vehicles per space and time unit is considered. Many extensions of the kinematic wave
model have been introduced since. Recently much attention goes to multi-class models.
Instead of considering traffic flow as a homogenous flow with homogeneous vehicles and
drivers (mixed class), the heterogeneity of vehicles and drivers is taken into account (Wong
and Wong 2002a, Bagnerini and Rascle 2003, Benzoni-Gavage and Colombo 2003,
Chanut and Buisson 2003, Zhang et al. 2006a, Ngoduy and Liu 2007, Logghe and Immers
2008, van Lint et al. 2008). Multi-class models are able to describe real-world phenomena
such as capacity drop and hysteresis better than mixed-class models (see, e.g. Wong and
Wong 2002a, Benzoni-Gavage and Colombo 2003, Ngoduy and Liu 2007, Ngoduy 2010
and references therein). The same phenomena are expected to be described by the so-called
higher order models (Payne 1971, Aw and Rascle 2000). In higher order models vehicles
are assumed to need some time for acceleration or deceleration to an equilibrium velocity.
This is in contrast to first-order models in which vehicles always drive at this equilibrium
velocity and therefore can have infinite accelerations and decelerations. Also in higher-
order models vehicle and driver heterogeneity has been included (Hoogendoorn and Bovy
2000, Hoogendoorn et al. 2002, Bagnerini and Rascle 2003, Gupta and Katiyar 2007).

In this article, we focus on first-order multi-class traffic flow models. Some of them are
very simple extensions of the kinematic wave model and only incorporate different
velocities (Wong and Wong 2002a, Zhang et al. 2006a). Others have a term or equation
representing that larger vehicles (trucks) take more space than smaller vehicles (passenger
cars) (Benzoni-Gavage and Colombo 2003, Chanut and Buisson 2003, Ngoduy and Liu
2007, Logghe and Immers 2008). In most cases, the ratio between the contribution of other
vehicle types and passenger cars (the passenger car equivalent (pce) value) is taken
constant. Only the Fastlane model represents that in congestion a truck takes relatively
more space than in free flow (van Lint et al. 2008) and the pce-value is a function of the
traffic state. Furthermore, some models use a simple velocity-density relationship
(Greenshields or Drake fundamental diagram) (Wong and Wong 2002a, Benzoni-
Gavage and Colombo 2003), whereas others take a more realistic velocity-density
relationship (Daganzo or Smulders fundamental diagram) (Chanut and Buisson 2003,
Ngoduy and Liu 2007, Logghe and Immers 2008), see Figure 1, or apply a more generic
formulation of the relationship between effective density and velocity (Zhang et al. 2006a).

In general, the less realistic models have been analysed thoroughly and their
mathematical properties are well understood. However, there is only little known about
important properties of the more realistic models. We now first discuss the properties and
argue why they are important.

F. van Wageningen-Kessels et al.452
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1.2. Anisotropy

It is known from practice that drivers mainly react on vehicles in front of them, not on

vehicles behind them. In traffic flow theory this is referred to as anisotropy. The fact that

drivers do look in their rear view mirrors and occasionally react on a vehicle that follows

very closely (bumper tailing) or an emergency vehicle is neglected here. In a traffic flow

model this means that the velocity of characteristics is never higher than the highest vehicle

velocity. These characteristics are curves along which small disturbances propagate.

Daganzo (1995) initiated an ongoing debate on whether or not higher-order traffic flow

models represent anisotropy and whether it is necessary that they do so. The main

argument that anisotropy should be represented by a traffic flow model is that traffic itself

is anisotropic. A counter argument is given in Zhang (2003): on a multi-lane road in free

flow all vehicles do not have the same velocity and information can travel with the velocity

of the fastest vehicle and therefore faster than the average vehicle velocity. As argued in

that paper, the problem can be resolved, at least partly, by a multi-lane and multi-class

approach. Closely related to anisotropy is the nonnegativity of vehicle velocity: that is, if

vehicle velocities are predicted to be negative, for example at the upstream end of a queue,

the model is not anisotropic. Nonnegativity of vehicle velocity was proven in Garavello

and Piccoli (2009) for some macroscopic traffic flow models among which the multi-class

models by Benzoni-Gavage and Colombo (2003) and Wong and Wong (2002a).
A second reason why one would want to know whether a given traffic flow model is

anisotropic is related to computational efficiency. If a model is anisotropic and the

Lagrangian coordinate system (Section 3) is applied, more efficient computational

methods can be applied (Daganzo 2006, Leclercq et al. 2007, 2008, van Wageningen-

Kessels et al. 2009a, 2009b, 2009c). This will reduce computational time and/or improve

accuracy of the simulation results.
Hyperbolicity of a (traffic) flow model is a necessary but not sufficient condition for

anisotropy. A flow model is hyperbolic if perturbations propagate at finite velocity.

Therefore, not every point in the domain is influenced by the perturbation at once, e.g. if
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Figure 1. Fundamental diagrams. (a)–(d) velocity as a function of density, (e)–(h) flow as a function
of density.

453Transportmetrica A: Transport Science

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 1

4:
23

 3
0 

N
ov

em
be

r 
20

13
 



someone suddenly hits the brake the disturbance will only have an influence on the future
state of vehicles ‘close’ to this vehicle, and this region of influence will grow over time. This
is in contrast to elliptic and parabolic equations, where a perturbation influences the whole
domain at once. This would imply that a perturbation such as sudden braking of one
vehicle would immediately influence vehicles a few kilometres downstream, which would
clearly be an unwanted feature of a traffic flow model. Furthermore, the model is
anisotropic if the characteristic velocity is equal to or lower than the vehicle velocity. This
implies that perturbations do not travel faster than the vehicles themselves.

Hyperbolicity and anisotropy are evident for the so-called mixed-class first-order
traffic flow models on a single lane with a concave density-flow relationship, also called
the fundamental relation. These models are based on the kinematic wave model (Lighthill
and Whitham 1955, Richards 1956). The model consists of a hyperbolic equation
@�/@tþ (dq(�)/d)@�/@x¼ 0 with density � in vehicles per metre and flow q(�) in vehicles per
second. Perturbations propagate at characteristic velocity c(�)¼dq(�)/d. If the funda-
mental relation q(�) is concave, the characteristic velocity is finite and smaller than or
equal to the vehicle velocity c(�)� v(�)¼ q(�)/�.

Anisotropy is not evident for the multi-class models that were derived from the
kinematic wave model as described above. In a multi-class model the single conservation
equation of the LWR-model is replaced by a system of U equations, with U the number of
classes. For anisotropy the system must be hyperbolic and the eigenvalues (which are equal
to the characteristic velocities) cannot be larger than the vehicle velocities. It is neither
trivial that this system of equations is hyperbolic, nor that the model is anisotropic.

Previously, hyperbolicity and anisotropy have been analysed for some multi-class
models. Donat and Mulet (2010) propose a framework to analyse eigenvalues and strict
hyperbolicity of multi-class kinematic wave models with possibly state-dependent pce-
values. However, the authors focus on strict hyperbolicity, which requires the class specific
vehicle velocities to be distinct. Strict hyperbolicity might be an important property for
efficient computational methods, it is of less interest for anisotropy. Anisotropy (only)
requires weak hyperbolicity, which, in turn, does not require vehicle velocities to be
distinct. Furthermore, both Donat and Mulet (2010) and Zhang et al. (2006a) discuss
the interlacing property �15v15� � �5�U5vU or v15�15� � �5vU5�U with �u and vu the
eigenvalues and class specific velocities, respectively, arranged by size (�15�25� � �5�U,
v15v25� � �5vU). However, they do not discuss the fact that if a model shows the first type
of interlacing (i.e. with �U5vU) the model is anisotropic. Also, Benzoni-Gavage and
Colombo (2003) show that their basic model is hyperbolic and anisotropic, even though
they do not use the term ‘anisotropic’. Moreover, in the models discussed by Benzoni-
Gavage and Colombo (2003) and Zhang et al. (2006a) the pce-values are constant
in Benzoni-Gavage and Colombo (2003) or even 1 for all types of vehicles in Zhang et al.
(2006a). Finally, the analysis of hyperbolicity of the basic model by Zhang et al. (2006a)
was extended to inhomogeneous roads in Zhang et al. (2006b, 2008). Logghe and Immers
(2008) argue that their model is anisotropic. However, we will show that depending on the
choice of certain parameters the model is not anisotropic. Chanut and Buisson (2003) do
not discuss hyperbolicity or anisotropy of their model. Ngoduy and Liu (2007) only
discuss hyperbolicity for 2-class models and it is argued that the eigenvalues cannot be
determined analytically for more than 4 user classes. Ngoduy and Liu discuss anisotropy
without reference to hyperbolicity, and only for the case where all classes have distinct
velocities in free flow. The Fastlane model introduced by van Lint et al. (2008)

F. van Wageningen-Kessels et al.454
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incorporates more features present in real traffic than the other models and most other
models can be expressed as a special form of the Fastlane model. However, little is known
about the mathematical properties of the model such as hyperbolicity and anisotropy.

1.3. Research objective and outline

Hyperbolicity and anisotropy of the models introduced before is analysed. The analysis in
Benzoni-Gavage and Colombo (2003), Zhang et al. (2006a) and Donat and Mulet (2010) is
based on a fixed coordinate system. We take a different approach by applying a moving
coordinate system. Furthermore, we extend the results of Zhang et al. and Benzoni-Gavage
and Colombo to models with state-dependent pce-values and focus on weak hyperbolicity
and anisotropy. Therefore, we first introduce a framework based on the Lagrangian
(moving) coordinate system. The Lagrangian coordinate system for the kinematic wave
model was introduced in Daganzo (2006), Leclercq et al. (2007, 2008) and vanWageningen-
Kessels et al. (2009b). A multi-class version of the kinematic wave model was formulated in
Lagrangian coordinates in vanWageningen-Kessels et al. (2009a, c). In this formulation the
moving coordinates have the same velocity as the fastest vehicle class. Hyperbolicity and
anisotropy were proven for the two-class model (van Wageningen-Kessels et al. 2009c).
However, the method introduced there can only be applied to models with two classes
because it is based on an eigenvalue analysis which can only be applied to 2� 2-systems. The
framework introduced in this article can also be applied to analyse hyperbolicity and
anisotropy of larger systems and of other one dimensional flow models.

The main objective of this article is to analyse anisotropy of a generic multi-class
kinematic traffic model. This means that, in contrast to previous similar analyses, that the
pce-value is not assumed to be constant. Therefore, we discuss several previously
developed multi-class models and introduce a generic form of these models (Section 2).
In Section 3 we introduce the Lagrangian formulation of the generic model. We analyse
hyperbolicity and anisotropy of the model in Section 4, which is the main contribution of
this article. In Section 5 we show that under mild conditions anisotropy is represented by
the model and we discuss the implications of these conditions. We conclude with a
summary and outlook in Section 6.

2. Multi-class kinematic wave modelling

In multi-class traffic flow models differences in properties of vehicles are taken into
account. Vehicles are divided into classes, based on their origins and destinations and/or
on vehicle properties such as length and maximum velocity. In the latter case the model
usually makes a distinction between passenger cars and trucks; sometimes these classes are
subdivided further into, for example, light and heavy trucks. In this study we focus on
classes based on vehicle properties. This is more generic than classes based on origin or
destination, which can be analysed using the same approach.

We study the following generic multi-class kinematic wave model with U user classes:

@�u
@t
þ
@qu
@x
¼ 0, 8u, class specific conservation equation, ð1Þ

455Transportmetrica A: Transport Science
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qu ¼ Quð�1, . . . , �UÞ, 8u, class specific fundamental relation, ð2Þ

where �u denotes average class specific density: average number of vehicles of class u per
metre, qu¼ �u vu is average flow of class u in vehicles per second and vu is average velocity
of class u in metre per second. The flow function Qu(�1, . . . , �U) describes the class specific
flow as a function of all class specific densities. In most multi-class models the flow qu is a
function of the effective (or total) density � in pce vehicles per metre. In turn, the effective
density � is a function (usually a weighted sum, with the pce-values as the weights) of the
class specific densities �u. This implies that the class specific fundamental relation (2) is
replaced by

qu ¼ Quð�Þ, ð3Þ

� ¼ �ð�1, . . . , �UÞ: ð4Þ

The class specific flow function qu (whether defined as (2) or as (3)) increases until a certain
threshold, the critical density �crit, and it decreases for values above the critical density.
The critical density can be class specific, resulting in semi-congested traffic states where for
example trucks behave as if they are in a congested regime while cars still are in a free flow
regime. See Figure 1 for some examples of fundamental relations.

Using the definition qu¼ vu�u, the fundamental relation (2) is sometimes reformulated
as the relation between density and velocity:

vu ¼ Vuð�1, . . . , �UÞ, 8u, class specific fundamental relation: ð5Þ

Below we describe some multi-class models based on the first-order kinematic wave
model. All models are based on the conservation of vehicles Equation (1). The funda-
mental relation (2) or (5) differs from model to model. In most, but not all, models an
effective density (4) combined with a fundamental relation as in (3) is used.

2.1. Basic multi-class models

Wong and Wong (2002b), Benzoni-Gavage and Colombo (2003), Chanut and Buisson
(2003) and Zhang et al. (2006a) have introduced and analysed basic multi-class models.
Zhang et al. and Wong and Wong use an effective density that is an unweighted
summation of the class-specific densities:

� ¼
X
u

�u: ð6Þ

Benzoni-Gavage and Colombo use a weighted summation based on the vehicle lengths Lu:

� ¼
X
u

Lu�u, ð7Þ

with Lu the average vehicle length of class u. Chanut and Buisson only consider two user
classes and the weighted summation is based on the ratio between the vehicle lengths Lu:

� ¼ �1 þ
L2

L1
�2: ð8Þ

F. van Wageningen-Kessels et al.456
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Note that the formulation used in the original paper by Chanut and Buisson is somewhat
different. Rewriting the equations into the form used here (Equations (8) and (11)) is
tedious but straightforward.

Most basic multi-class models use simple fundamental relations, either Greenshields
fundamental relation (Benzoni-Gavage and Colombo 2003):

vuð�Þ ¼ vu,max 1�
�

�max

� �
, ð9Þ

with vu,max the class specific maximum velocity, �crit the critical density and �max the
maximum density, or Drake’s fundamental relation (Wong and Wong 2002a, Benzoni-
Gavage and Colombo 2003):

vuð�Þ ¼ vu,maxe
�1

2 �=�critð Þ
2

: ð10Þ

These fundamental relations are rarely used by traffic engineers because they are regarded
as unrealistic. Analysis of traffic flow data shows that Greenshields’ assumption that the
relation between density � and velocity vu is linear is unrealistic. Drake’s fundamental
relation is regarded as unrealistic because there is no maximum density for which the
velocities are zero. Moreover, both in (9) and (10) velocities are class dependent not only in
free flow, but also in congestion. However, in congestion there is no room for overtaking
and vehicles of all classes drive at the same speed (Kerner 2004a). Still, this class-
independent speed might vary over time due to, for example, weather conditions. The
authors of the above-mentioned papers do not address the latter issue, but do claim that
their results can be generalised to other (more realistic) fundamental relations.

Chanut and Buisson use the Smulders fundamental diagram (Smulders 1990):

vuð�Þ ¼

vu,max �
vu,max � vcrit

�crit
� if �5 �critð�1, . . . , �UÞ,

�critvcrit
�max � �crit

�max

�
� 1

� �
if � � �critð�1, . . . , �UÞ,

8>><
>>: ð11Þ

with vu,max the class specific maximum velocity, vcrit the critical velocity (velocity at critical
density), �crit the critical density and �max the maximum density.

Zhang et al. (2006a) do not specify the fundamental diagram, but use a generic
velocity–density relationship.

2.2. Multi-class model with 3 states

Logghe and Immers (2008) introduced a two-class model with 3 states. This model is
characterised by the existence, next to the free flow and the congested state, of a third state:
semi-congestion. The critical density is class specific. In free flow both vehicle classes are in
the free flow branch of the fundamental diagram (i.e. below the class specific critical
density). In semi-congestion vehicles of class 1 are in the congested branch of the
fundamental diagram (i.e. above class specific critical density) and vehicles of class 2 are in
the free flow branch of the fundamental diagram (i.e. below class specific critical density).
In congestion both vehicle classes are in the congested branch of the fundamental diagram
(i.e. above class specific critical density). The basic idea behind this model is that a certain

457Transportmetrica A: Transport Science
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fraction of the road is assigned to each class. Then the fundamental diagram is scaled
according to this fraction and the velocity is determined using this scaled fundamental

diagram. The effective density � is an unweighted summation of the class specific
densities (6). Logghe and Immers use the Daganzo fundamental relation:

vu ¼

vu,max if �u 5 �u,critð�1, �2Þ,

�u,critvu,max

�u,max � �u,crit

�u,max

�
� 1

� �
if �u � �u,critð�1, �2Þ,

8<
: ð12Þ

with vu,max the class specific maximum velocity, vu,crit the class specific critical velocity and
with the class specific critical and maximum densities:

�u,critð�1, �2Þ ¼ �u�u,critð�1, 0Þ, �u,maxð�1, �2Þ ¼ �u�u,maxð�i, 0Þ, ð13Þ

and the scaling fraction:

�u ¼
�u
�
: ð14Þ

We note that the velocity vu is class specific both in free flow and in congestion. As was

argued before, this is not realistic in congestion.

2.3. Multi-class models with generic pce’s

Multi-class models with generic pce-functions are introduced and analysed by Ngoduy and
Liu (2007) and van Lint et al. (2008). In these models the pce-value depends on the current
traffic state. The Fastlane model by van Lint et al. uses a pce-value �u which is an implicit
function of the effective density �:

� ¼
X

�uð�Þ�u, ð15Þ

�uð�Þ ¼
Lu þ Tuvuð�Þ

L1 þ T1v1ð�Þ
, ð16Þ

where Lu denotes the class specific vehicle gross length (i.e. the vehicle length plus the
minimum distance between two vehicles, normally about 1m), Tuvu(�) denotes the class
specific minimum space headway: the minimum distance the front of a vehicle keeps to the

tail of its predecessor minus the minimum distance between two vehicles which was already
incorporated in Lu. This pce-function is based on a safe-distance car-following rule: at
higher speeds (i.e. lower densities) the safe distance of a vehicle to its leader is larger. As a

result, the pce-value of class u is the ratio of the space a vehicle of that class u takes and the
space a vehicle of the reference class takes. As we noted before, the pce-function is an
implicit function of the effective density. Combining Equations (15) and (16) with the
velocity function (11) results in a bi-valued effective density function. However, if we

furthermore demand that vehicle velocities vu are nonnegative and the effective density � is
a continuous function of the class specific density of class 1 �1, the effective density � can
be written as a single-valued function of the class specific densities �u.

F. van Wageningen-Kessels et al.458
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Ngoduy and Liu use an unweighted summation for the effective density (6). They use

the pce-value and the current state to determine the critical and the maximum density:

�crit ¼ �ref, crit
X
u

�u
�u

, �max ¼ �ref,max

X
u

�u
�u

, ð17Þ

with �u the share (14) and �u the pce-value. Ngoduy and Liu refer to the Highway Capacity

Manual (HCM 2000) to look up pce-values, which can depend on the vehicle type, vehicle

length, slope of the road and fraction of heavy vehicles. Since the fraction of heavy vehicles

depends on the current traffic state, the pce-value depends on the traffic state:

�u¼ �u(�1, . . . , �U).
Both the model by Ngoduy and Liu and the Fastlane model use the Smulders

fundamental relation (11).

3. Lagrangian formulation of the multi-class model

The generic multi-class model in Eulerian coordinates (1) and (2) (or (3) and (4)) can be

reformulated in Lagrangian coordinates by using definitions

qu ¼ �uvu, su ¼
1

�u
and s ¼

1

�
, ð18Þ

and the Lagrangian time derivative

D

Dt
¼
@

@t
þ v1

@

@x
, ð19Þ

with su¼ 1/�u the average vehicle spacing of class u in metre per vehicle and s¼ 1/� the

effective vehicle spacing in metre per pce-vehicle. n denotes the vehicle ‘number’. Since the

flow is regarded as a continuum, n is not integer but can take any real value. Vehicles of

user class 1 are numbered in opposite driving direction. Other user classes are not

numbered. Combining (18) and (19) and using that @n/@x¼��1 yields:

@

@x
¼
@

@n

@n

@x
¼ ��1

@

@n
¼ �

1

s1

@

@n
, ð20Þ

@

@t
¼

D

Dt
� v1

@

@x
¼

D

Dt
þ
v1
s1

@

@n
: ð21Þ

Substituting (18), (20) and (21) into the multi-class model equations (1)–(2) and rewriting

the resulting equations gives the Lagrangian multi-class kinematic wave model:

Ds1
Dt
þ
@v1
@n
¼ 0, conservation class 1, ð22Þ

Dsu
Dt
þ
v1 � vu

s1

@su
@n
þ
su
s1

@vu
@n
¼ 0, 8u 6¼ 1, conservation other classes, ð23Þ

vu ¼ Vuðs1, s2, . . . , sUÞ, 8u, class specific fundamental relation, ð24Þ
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If the class specific fundamental relation is based on the effective density (3) and (4)

then in Lagrangian formulation the class-specific fundamental relation is based on the

effective spacing:

vu ¼ VuðsÞ, with s ¼ sðs1, s2, . . . , sUÞ, ð25Þ

Equations (22) and (23) are rewritten as a system of equations:

@~s

@t
þ Jð~sÞ

@~s

@n
¼ ~0, ð26Þ

with ~s ¼

s1

..

.

sU

0
B@

1
CA, Jð~sÞ ¼

a1,1 � � � a1,U

..

. . .
. ..

.

aU,1 � � � aU,U

0
BB@

1
CCA, ð27Þ

and

ai,i ¼
si
s1

@vi
@si
þ
v1 � vi
s1

on the diagonal,

ai, j ¼
si
s1

@vi
@sj

for i 6¼ j, off diagonal.

8>><
>>: ð28Þ

In (28) we use

@vu
@n
¼
@vu
@s1

@s1
@n
þ
@vu
@s2

@s2
@n
þ � � � þ

@vu
@sU

@sU
@n

, ð29Þ

to find the elements ai, j of the Jacobian matrix Jð~sÞ.
The LWR-model in Lagrangian coordinates can also be derived in a less formal (but

more intuitive) way by using graphical techniques (van Wageningen-Kessels et al. 2009b).

In van Wageningen-Kessels et al. (2010) this graphical derivation is extended to the multi-

class model in Lagrangian coordinates (22)–(25).
In the next section we show that traffic anisotropy is represented by the multi-class

model (22)–(25) if the model has certain properties. We use the Lagrangian formulation of

the model. Obviously, if anisotropy is represented by the model in Lagrangian

formulation, it is also represented in other formulations such as the Eulerian formulation.

4. Anisotropy

In this section we first show that the generic macroscopic multi-class traffic flow model (1),

(3), (4) or equivalently (22)–(24), under certain conditions, is hyperbolic, implying that

perturbations only propagate at finite velocity. Second, we show that the model is

furthermore anisotropic under certain more strict conditions. Therefore, we show that

perturbations do not travel faster than vehicles of the fastest class. We recall that

characteristics are curves (or waves) at which information (disturbances or perturbations)

propagate. We note that in the solution of the multi-class kinematic wave model other

waves such as shocks and rarefaction waves occur. However, the velocity of these waves

are equal to the velocities of a characteristic, or between the velocities of two
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characteristics and consequently their velocity is always lower than or equal to that of the
fastest characteristic.

4.1. Preliminaries

Before we introduce and prove the conditions under which the multi-class model is
hyperbolic and anisotropic, we need some definitions and preliminaries. First of all, we
need some results from differential equations theory and linear algebra (see, e.g. LeVeque
2002, Section 2.9):

Definition 1 ((Weak) hyperbolicity): The system of equations @~s=@tþ Jð~sÞ@~s=@n ¼ 0 is
weakly hyperbolic for those values of ~s for which the eigenvalues of Jð~sÞ are real.

Preliminary 1: The characteristic velocities with respect to the coordinate velocity of
a weakly hyperbolic system of equations @~s=@tþ Jð~sÞ@~s=@n ¼ 0 are equal to the
eigenvalues of Jð~sÞ.

In the rest of this article we also use ‘hyperbolic’ where we mean ‘weakly hyperbolic’.
Furthermore, we need some results from basic linear algebra (see, e.g. Strang 1988):

Preliminary 2: The matrices A and DAD�1 have the same eigenvalues.

Preliminary 3: The eigenvalues of a real and symmetric matrix are real.

Preliminary 4: Suppose S is a real and symmetric matrix. S has nonnegative eigenvalues if
and only if S has nonnegative pivots after applying Gaussian elimination.

The conditions described below must hold for all relevant traffic states. Therefore, we
only have to consider relevant densities. Negative densities are physically impossible, as
well as effective densities higher than the maximum effective density. Therefore, from now
on, we only consider states with class specific densities �1, . . . , �U� 0 and effective density
�¼ �(�1, . . . , �U)2 [0, �max], or equivalently traffic states with effective vehicle spacing
s¼ s(s1, . . . , sU)2 [smin,1).

4.2. Anisotropy of the generic multi-class model

We now define anisotropy and present the conditions for anisotropy. The conditions will
be proven to be sufficient conditions in the remainder of this section.

Definition 2 (Anisotropy): A multi-class macroscopic traffic flow model is anisotropic if
for any relevant traffic state characteristics travel at velocities smaller than or equal to
vehicle velocities of the fastest class in this traffic state.

Condition 1 (Hyperbolicity): For all relevant spacings the fundamental relation in
Lagrangian formulation (24) is nondecreasing:

@vuð~sÞ

@sw
� 0, ð30Þ

for all user classes u and w.
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Condition 2 (Anisotropy): There is a ‘fastest’ class u� such that for all relevant spacings

vu� ð~sÞ � vuð~sÞ: ð31Þ

We note that these conditions 1 and 2 are a generalisation of the conditions for the

two-class model as they were introduced in van Wageningen-Kessels et al. (2009c).

Theorem 1: The nonlinear system of partial differential equations (26) is hyperbolic for all

relevant values of ~s if Condition 1 is satisfied.

Proof: We use Definition 1 and show that the model is hyperbolic by showing that

the eigenvalues of Jð~sÞ are real. We show that the eigenvalues are real by applying

Preliminary 2 and 3.
Therefore, we first define matrix Mð~sÞ as follows:

Mð~sÞ ¼ Dð~sÞJð~sÞ
�
Dð~sÞ

��1
, ð32Þ

with diagonal matrix:

D ¼

d1 0 0

0 . .
.

0

0 0 dU

0
B@

1
CA, with di ¼

ffiffiffiffiffiffiffiffi
@s
@si

si
@vi
@s

s
: ð33Þ

Later we will also need

di
dj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sj
@vj
@s
@s
@si

si
@vi
@s
@s
@sj

vuut ¼

ffiffiffi
sj
si

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
@vj=@si
@vi=@sj

s
, ð34Þ

in the last equality we use that (@vj/@s)(@s/@si)¼ @vj/@si.
The elements of matrix Mð~sÞ are

mi, j ¼
di
dj
ai, j: ð35Þ

The main diagonal of Mð~sÞ is equal to the main diagonal of matrix Jð~sÞ. Therefore, the
elements at the main diagonal of Mð~sÞ are real. For i 6¼ j the elements of matrix Mð~sÞ are

mi, j ¼
di
dj
ai, j ¼

ffiffiffi
sj
si

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
@vj=@si
@vi=@sj

s
si
s1

@vi
@sj
¼

ffiffiffiffiffiffi
sisj
p

s1

ffiffiffiffiffiffiffiffiffiffiffiffi
@vj
@si

@vi
@sj

s
: ð36Þ

If Condition 1 holds then the terms under the square root signs are positive and

consequently matrix Mð~sÞ is real. We verify that Mð~sÞ is symmetric:

mj,i ¼
dj
di
aj,i ¼

ffiffiffiffiffiffi
sjsi
p

s1

ffiffiffiffiffiffiffiffiffiffiffiffi
@vj
@si

@vi
@sj

s
¼ mi, j: ð37Þ

Under Condition 1 we can conclude that matrix Mð~sÞ is real and symmetric which implies

by Preliminary 3 that its eigenvalues are real. From Preliminary 2 we conclude that the

eigenvalues of Mð~sÞ and Jð~sÞ are equal and consequently the eigenvalues of Jð~sÞ are also

real. Therefore, the system (26) is hyperbolic if Condition 1 holds. œ
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We note that Condition 1 is sufficient but not necessary for hyperbolicity. For

example, even if Mð~sÞ has imaginary entries the eigenvalues of the matrix Mð~sÞ can be real,

and thus the model can be hyperbolic.

Lemma 1: A multi-class macroscopic traffic flow model in Lagrangian formulation with

coordinate velocity equal to the vehicle velocity of the fastest class is anisotropic if it can be

described by a hyperbolic system of equations @~s=@tþ Jð~sÞ@~s=@n ¼ 0 with eigenvalues of the

Jacobian matrix Jð~sÞ all nonnegative.

Proof: This lemma follows readily from Definitions 1 and 2 and Preliminary 1. œ

Theorem 2: The model represented by the nonlinear system of partial differential equations

(26) is anisotropic if Conditions 1 and 2 are satisfied.

Proof: Since Condition 1 holds, it follows from Theorem 1 that the system is hyperbolic.

Without loss of generality in the following we will assume that the fastest class u� is class 1

and that in the Lagrangian formulation the coordinates have the same velocity as the

vehicles of class 1. According to Lemma 1, the model is anisotropic if the eigenvalues of

the Jacobian matrix Jð~sÞ are all nonnegative. We will show that the eigenvalues are indeed

nonnegative by making use of matrix Mð~sÞ as it was defined in (32) and applying

Preliminary 4.
We apply Gaussian elimination to matrix Mð~sÞ to find the pivots, i.e. we subtract

mi,1/m1,1 times row 1 from row i which gives zeros on column 1. Substituting (28), (33) and

(35) gives matrix ~Mð~sÞ with:

on row 1:

~m1, j ¼ m1, j ¼
d1
dj
aj,1 ¼

ffiffiffiffi
sj
s1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@vj=@s1
@v1=@sj

s
s1
s1

@v1
@sj
¼

ffiffiffiffi
sj
s1

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
@vj
@s1

@v1
@sj

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sj
s1

@v1
@s1

@vj
@sj

s
,

on column 1, except for row 1 (i 6¼ 1):

~mi,1 ¼ 0,

on the diagonal, except for row 1 (i 6¼ 1):

~mi,i ¼ mi,i �
mi,1

m1,1
m1,i ¼ mi,i �

m2
1,i

m1,1
¼ ai,i �

d1
di
a1,i

� �2
1

a1,1

¼
si
s1

@vi
@si
þ
v1 � vi
s1
�

si
s1

@vi=@s1
@v1=@si

@v1
@si

� �2
1

@v1=@s1

¼
si
s1

@vi
@si
�

si
s1

@vi
@si
þ
v1 � vi
s1
¼

v1 � vi
s1

,

off the diagonal, except for row 1 (i 6¼ 1 , i 6¼ j):

~mi, j ¼ mi, j �
mi,1

m1,1
m1, j ¼

di
dj
ai, j �

di
d1
ai,1

a1,1

d1
dj
a1, j ¼

di
dj

ai, j �
ai,1
a1,1

a1, j

� �

¼
di
dj

si
s1

@vi
@sj
�

si
s1

@vi
@s1

s1
s1

@v1
@s1

s1
s1

@v1
@sj

 !
¼

di
dj

si
s1

@vi
@sj
�
@vi
@sj

� �
¼ 0:
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Or in matrix form:

~M ¼

@v1
@s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s1

@v1
@s1

@v2
@s2

r
� � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sU
s1

@v1
@s1

@vU
@sU

r
v1 � v2

s1
;

. .
.

;
v1 � vU

s1

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð38Þ

Only one step of Gaussian elimination is enough: all entries of ~M below the main
diagonal are zero. The pivots are the elements on the diagonal: ~m1,1 ¼ @v1=@s1 and
~mi,i ¼ ðv1 � viÞ=s1, 8i4 1. The pivots, and thus the eigenvalues and the characteristic
velocities, are nonnegative if both Conditions 1 and 2 hold. We conclude that the multi-
class model (22)–(25) represents anisotropy if both conditions are satisfied. œ

5. Implications of the conditions

We have shown above that under certain conditions (Condition 2) anisotropy is
represented by the generic multi-class kinematic wave model (22)–(25), and that under
somewhat weaker conditions (Condition 1) the model is hyperbolic. We discuss the
practical implications of these conditions and verify whether they hold for the more
specific models that were discussed in Sections 2.1–2.3.

In the following discussion we assume that the fundamental diagram describing the
relation between density � and flow qu, or equivalently the relation between density � or
spacing s and velocity vu is differentiable for all relevant traffic states. In practice many
fundamental diagrams are not continuously differentiable, and sometimes even not
continuous at the critical density. However, most fundamental diagrams such as the
Daganzo fundamental diagram and the Smulders fundamental diagram (Smulders 1990)
are piecewise differentiable. Moreover, the Daganzo fundamental diagram can be
approximated by a continuously differentiable function (del Castillo 2010). In fact, any
other continuous fundamental diagram can be approximated by a generalisation of the
Taylor series due to Hille and Phillips (1957) which converges to the original fundamental
diagram. The resulting series is continuously differentiable.

We now first rewrite the conditions in the traditional Eulerian formulation using the
definitions (18).

5.1. Hyperbolicity condition

Condition 1 guarantees that the multi-class model is hyperbolic. It can be rewritten as

@vu
@�w
� 0, 8u,w, 8� 2 ½0, �max�: ð39Þ

This condition implies that if the class specific density �u increases, the velocity of any class
vw does not increase: it either decreases or remains the same. This is a very intuitive
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condition: if there are more vehicles on the road, they drive slower. However, depending
on the formulation of the model, this is not always satisfied, as we will see below.

5.1.1. Hyperbolicity of basic multi-class models

For the analysis of the basic multi-class models we rewrite the velocity derivative as

@vu
@�w
¼
@vu
@�

@�

@�w
: ð40Þ

By substituting the fundamental relation (9), (10), (11) or (12) in (40) it can easily be
verified that the velocity derivative to the effective density is negative or zero: @vu/@�� 0.
Furthermore, the derivative of the effective density to the class specific density is positive:
@�/@�w40, independent of whether an unweighted summation as in (6) or a weighted
summation as in (7) or (8) is used. We conclude that the velocity derivative condition is
satisfied for the basic multi-class models that were discussed in Section 2.1.

5.1.2. Hyperbolicity of the 3-state model

For the analysis of the multi-class model with 3 states we can apply a simple eigenvalue
analysis as proposed in van Wageningen-Kessels et al. (2009c) because there are only 2
classes. We do not need all of the framework developed before. In fact, we cannot use parts
of it because the matrix Mð~sÞ is not real if s1 6¼ s2.

However, we do need the derivatives of the fundamental relation (12). In free flow all
derivatives are zero. In congestion they are

@v1
@s1
¼ C1ðs1 þ s2Þ

s2 � s1

s21
,

@v1
@s2
¼ 2C1

s1 þ s2
s1

,

@v2
@s2
¼ �C2ðs1 þ s2Þ

s2 � s1

s22
,

@v2
@s1
¼ 2C2

s1 þ s2
s2

,

ð41Þ

with the parameters of the fundamental relation:

C1 ¼
�1,critð�1, 0Þ�1,maxð�1, 0Þv1,max

�1,maxð�1, 0Þ � �1,critð�1, 0Þ
, C2 ¼

�2,critð0, �2Þ�2,maxð0, �2Þv2,max

�2,maxð0, �2Þ � �2,critð0, �2Þ
: ð42Þ

The eigenvalues of the model are

�1,2 ¼
1

2
aþ d	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ d Þ2 � 4ðad� bcÞ

q� �
, ð43Þ

with a ¼
@v1
@s1

, b ¼
@v1
@s2

, c ¼
s2
s1

@v2
@s1

, d ¼
s2
s1

@v2
@s2
þ
v1 � v2

s1
: ð44Þ

The eigenvalues are real if the term under the square root sign in (43) is nonnegative. From
(41) we can conclude that both @v1/@s2 and @v2/@s1 are nonnegative. Therefore, the term
under the square root sign in (43) is nonnegative:

ðaþ d Þ2 � 4ðad� bcÞ ¼ ða� d Þ2 þ 4bc ¼ ða� d Þ2 þ 4
s2
s1

@v1
@s2

@v2
@s1
� 0: ð45Þ

Since the eigenvalues are real, we can conclude from Preliminary 1 that the model is
hyperbolic.
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5.1.3. Hyperbolicity of the model by Ngoduy and Liu

Both multi-class models with generic pce’s are analysed separately. In free flow in the

model by Ngoduy and Liu the velocity derivative is

@vu
@�w
¼ �ðvmax � vcritÞ

@

@�w

�

�crit

� �
¼ �ðvmax � vcritÞ

�crit
@�
@�w
� � @�crit@�w

ð�critÞ
2

: ð46Þ

The hyperbolicity condition (39) or equivalently Condition 1 holds if the nominator is

nonnegative. Therefore, we first calculate

@�

@�w
¼ 1, and ð47Þ

@�crit
@�w
¼
�ref, crit
�

@

@�w

X
i

�i
�i

 !
¼
�ref, crit
�

X
i

1

ð�iÞ
2

@�i
@�i

 !
þ

1

�w

 !
: ð48Þ

For the conditions to hold, the nominator of (46) should be nonnegative:

�crit
@�

@�w
� �

@�crit
@�w
¼ �crit � �ref, crit

X
i

1

ð�iÞ
2

@�i
@�i

 !
þ

1

�w

 !
� 0: ð49Þ

Because no pce-function was suggested by Ngoduy and Liu, we assume that the pce-values

�u are constant. In that case we find:

�crit
@�

@�w
� �

@�crit
@�w
¼ �crit �

�ref, crit
�w

: ð50Þ

It now depends on the choice of the reference class and the pce-values whether (50) is

indeed nonpositive. If it is nonpositive, then the hyperbolicity condition (39) or

equivalently Condition 1 holds and consequently the model is hyperbolic in free flow.

The conditions are for example satisfied if the class with the smallest vehicle length and

headway and consequently the largest critical density is chosen as the reference class and

the pce-value is chosen such that all other classes have pce-values larger than or equal to

this class.
In congestion in the model by Ngoduy and Liu the velocity derivative is

@vu
@�w
¼

�ref, critvcrit
�ref,max � �ref, crit

� @�max

@�w
� �max

@�
@�w

�2
: ð51Þ

The hyperbolicity condition (39) or equivalently Condition 1 holds if the nominator is

nonnegative. Similarly, to the free flow case we find that the following holds if:

�ref,max

�w
� �max � 0 ð52Þ

Similarly to the free flow case it now depends on the choice of the reference class and the

pce-values whether (52) holds and consequently whether the model is hyperbolic in

congestion. Again the conditions are for example satisfied by taking the class with the

smallest vehicle length and headway as the reference class.
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5.1.4. Hyperbolicity of the Fastlane model

For the Fastlane multi-class model we again rewrite the velocity derivative as in (40).

Substituting the fundamental relation (11), it can easily be verified that the velocity

derivative to the effective density is negative or zero: @vu/@�� 0. Now we have to check

whether the effective density increases if the class-specific density increases:

@�

@�u
� 0: ð53Þ

This would be reasonable to assume, however it appears that this condition is not satisfied

for certain pce-functions.
Recall that the effective density is a (weighted) summation over all user classes (15). If

the pce-value depends on effective density, the sign of the derivative depends on the actual

pce-function �u(�) and its parameters. In that case we will have to check whether (53) holds

for all user classes u and all relevant densities.

Theorem 3: Suppose that the effective density � is a weighted summation of all user class

specific densities �u as in (15) and weights are larger than or equal to 1: �u(�)� 1, 8u,

8�2 [0, �max]. If and only if for all relevant values of effective density �¼ �1 and �¼ �2 with
�15�2 the pce-functions �u(�) of all user classes u satisfy:

�uð�
2Þ

�2
5
�uð�

1Þ

�1
, ð54Þ

then condition (53) holds for all relevant spacings.

Proof: We first note that (54) is equivalent to

d�uð�Þ

d�
5
�uð�Þ

�
: ð55Þ

This can be shown by dividing both sides of (55) by �, integrating over � from �¼ �1 to
�¼ �2, solving this integral and rewriting the result. In the following we will show that the

hyperbolicity condition (53) is equivalent to condition (55).
We reformulate (53):

@�

@�u
¼
XU
i¼1

�i
@�i
@�u
þ
XU
i¼1

�i
@�i
@�u
¼ �u þ

@�

@�u

XU
i¼1

�i
d�i
d�

4 0, ,

@�

@�u
¼

�u

1�
PU

i¼1 �i
d�i
d�

4 0, ,

XU
i¼1

�i
d�i
d�

5 1:

ð56Þ

This shows that (56) is equivalent to (53) for all relevant spacings.
We will now show that if (55) is satisfied for all relevant densities, than (56) is also

satisfied for all relevant densities. We note that the sum in (56) can also be written as a
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weighted average:

XU
u¼1

�u
d�u
d�
¼
XU
u¼1

�u�u
�

�

�u

d�u
d�

: ð57Þ

(All weights �u�u/� are nonnegative and they sum up to one:
PU

u¼1 �u�u=� ¼ 1.) Inequality
(55) guarantees that all elements (�/�u)d�u/d� in the weighted average (57) are smaller
than 1. Therefore, also the weighted average is smaller than 1, i.e. (56) holds.

We will now show that if (56) is satisfied for all relevant densities, then (55) is also
satisfied for all relevant densities. We will do this by showing that if there is a relevant state
that does not satisfy (55), then (56) is also not satisfied for this state. Let us call the
effective density of this state ~� and suppose that only vehicles of class ~u are present in this
state. This implies that the class specific density of this class is � ~u ¼ ~�=� ~uð ~�Þ and all other
class specific densities are zero. Furthermore, suppose that for this user class ~u (55) does
not hold at the effective density ~�, i.e.

d� ~uð ~�Þ

d�
�
� ~uð ~�Þ

~�
: ð58Þ

We substitute (58) in the left-hand side of (56) and find:

XU
u¼1

�u
d�u
d�
¼ � ~u

d� ~u

d�
¼

~�

� ~uð ~�Þ

d� ~u

d�
� 1: ð59Þ

This implies that (56) does not hold.
We conclude that if and only if (54) holds then the condition (53) holds and the

effective density increases if one class-specific density increases. This is a necessary but not
sufficient condition for anisotropy. œ

Note that condition (55), or equivalently condition (54), can easily be checked
graphically: that is, by drawing the pce-values �u as a function of density � (Figure 2).
If one can now draw a straight line through the origin that intersects the pce-function twice
or more between zero and maximum density, the condition is not satisfied. For example,
any positive constant, any positive linear or any positive and concave pce-function �(�)
satisfies (55). Any positive and piecewise constant pce-function �(�) with at least one

Density

pc
e

(a)

Density

pc
e

(b)

Density

pc
e

(c)

Figure 2. Pce-functions (black solid lines) are checked graphically for hyperbolicity. If any straight
line (thin red broken lines) that goes through the origin intersects the pce-function twice or more, the
pce-function is invalid (thick red broken lines). (a) Fastlane pce with valid parameters; (b) fastlane
pce with invalid parameters; (c) piecewise constant pce with invalid parameters.
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discontinuity with the pce-value low before and high after the discontinuity does not
satisfy (55). We note that the latter kind of pce-functions are regularly used. For example
in models where passenger cars have pce-value 1 and trucks have a low constant pce-value
in free flow conditions and the pce-function shows a discontinuity to a high constant pce-
value in congested conditions.

The difficulty with this condition (54) arises because in the Fastlane model the pce-
value � is an implicit function of density �. So, if the density of a certain class increases, the
effective density must increase, this would result in an increase of the pce-value of that
class, and the effective density would increase even more, etc. To avoid this getting out of
hand, the pce-function should not be too steep, in order to ‘damp out’ this effect. That is
exactly what the condition formulated as (54) tells us.

5.2. Anisotropy condition

Conditions 1 and 2 guarantee that the multi-class model is anisotropic. Condition 2 can be
rewritten as

9u� such that vu� ð~�Þ � vuð~�Þ, 8u, 8� 2 ½0, �max�: ð60Þ

The condition guarantees that no user class is faster than user class u�.
In the Lagrangian formulation one should choose user class u� the reference class.

Therefore, the coordinate system moves with the same velocity as class u� and no other
class will move faster than the coordinate system. So, if the model is anisotropic,
information will not travel faster than the coordinates. This gives some important
advantages for the numerical methods to be applied in a simulation.

In most practical cases passenger cars are faster than (or just as fast as) all other
vehicles for all traffic states. In that case, passenger cars should be taken as the reference
class u�.

5.2.1. Anisotropy of the multi-class model with 3 states

Even though the multi-class model with 3 states is hyperbolic, it does not satisfy Condition
1 for all relevant states (e.g. if s15s2 then @v2/@s250). Therefore, we will analyse directly
whether the eigenvalues are nonnegative. We already concluded in Section 5.1.2 that the
eigenvalues are real. The smallest eigenvalue is nonnegative if

aþ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ d Þ2 � 4ðad� bcÞ

q
4 0, ad� bc4 0: ð61Þ

Substituting (44) and (41) we find in congestion:

ad� bc ¼ �
s2
s1

ðs1 þ s2Þ
2

s1s2
C1C2

ðs2 � s1Þ
2

s1s2
þ 4

� �
þ C1ðs1 þ s2Þ

s2 � s1

s21

v1 � v2
s1

, ð62Þ

with C1 and C2 as in (41). It depends on the parameters of the fundamental diagram
whether (62) is negative or not. However, for certain choices of these parameters (62) is
negative and hence there is one negative eigenvalue and consequently the model is not
anisotropic. As an example we take the parameters of the fundamental relations for both
classes equal: �1,max(�1, 0)¼ �2,max(0, �2), �1,crit(�1, 0)¼ �2,crit(0, �2) and v1,max¼ v2,max.
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Therefore, the velocities v1 and v2 are equal and in congestion the sign of (62) is equal to
the sign of �((s2� s1)

2/(s1s2)þ 4). Therefore, (62) is negative and the model is not
anisotropic.

6. Conclusion

Hyperbolicity and anisotropy are important features of a traffic flow model. If a traffic
flow model is hyperbolic, information travels at finite velocity. If a traffic flow model is
anisotropic, information travels at a velocity smaller than or equal to the vehicle velocity.
It is noted that hyperbolicity is a necessary but not sufficient condition for a traffic flow
model to be anisotropic.

There are two reasons why one would want to know whether a certain traffic flow
model is hyperbolic and anisotropic: real traffic is hyperbolic and anisotropic and
furthermore, if the model has these properties more efficient computational methods can
be applied.

We developed a framework to analyse hyperbolicity and anisotropy for multi-class
kinematic wave traffic flow models. This framework was applied to all models known from
the literature.

It is concluded that all ‘basic’ models are hyperbolic and anisotropic. The 3-state model
introduced by Logghe and Immers is hyperbolic but it depends on the choice of the
parameters of the fundamental relation whether it is anisotropic. Other multi-class models
have to satisfy some criteria to be both hyperbolic and anisotropic. These criteria are
related to the pce-function and the way the different classes are treated. The criteria are
further analysed future studies.
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