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ABSTRACT
We propose and analyze a generic multi-class kinematic wave traffic flow model: Fastlane. The
model takes into account heterogeneity among driver-vehicle units with respect to speed and space
occupancy: long vehicles with large headways (e.g. trucks) take more space than short vehicles
with short headways (e.g. passenger cars). Moreover, and this is what makes the model unique, this
effect is larger when the traffic volume is higher. This state dependent space occupancy is reflected
in dynamic passenger car equivalent values. The resulting model is shown to satisfy important
requirements such as providing a unique solution and being anisotropic. Simulations are applied
to compare Fastlane to other multi-class models. Furthermore, we show that the characteristic
velocity depends on the truck share, which is one of the main consequences of our modeling
approach.
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INTRODUCTION
Traffic flow theory aims to describe human driving behaviour on road networks, including con-
sistent explanations of observed phenomena such as stop and go traffic, capacity drop and traffic
hysteresis. Traffic flow models are traditionally classified into microscopic models, which describe
the behavior of individual vehicles, mesoscopic models, which describe traffic on the basis of prob-
ability distributions of ‘packets’ of vehicles, and macroscopic models, which describe traffic as a
continuum flow. For recent overviews of traffic flow models we refer to (1, 2, 3). Our focus is
on macroscopic traffic flow models, which are widely used to describe and predict traffic flows in
larger networks, both in the context of traffic and transportation planning, as well as in management
of traffic operations.

Macroscopic models describe aggregate driving behavior and typically include an average
(equilibrium) relation between traffic density ρ (number of vehicles per unit length) and flow q
(number of vehicles per unit time). This fundamental relation can also be expressed as the steady
state relation between the average distance headway s = 1/ρ that vehicles maintain and their
average speed v = q/ρ. In kinematic wave (KW) models, traffic is assumed to always be in a state
described by the fundamental relation. However, observed density-flow plots usually show wide
scatter. One reason for this scatter is that not all the data represent steady-state conditions. Higher-
order models explain and reproduce (at least partly) this scatter by assuming accordingly that the
traffic state tends towards the fundamental relation but is usually not on it, due to for example
anticipation and relaxation effects. Kerner (4) argues that macroscopic traffic flow models based
on the idea of an equilibrium relation are not suitable to adequately describe the scatter observed
in empirical density-flow plots or any other important traffic phenomena. He suggests to use three
phase models instead, in which a two-dimensional region of permissible density-flow states is
assumed. Treiber et. al. (5) counter this argument and show that two-phase macroscopic models
including an equilibrium relation can represent the same phenomena as three-phase models.

A more complete explanation for the scatter in density-flow plots is that it is also related
to heterogeneity among drivers and vehicles. Ossen and Hoogendoorn (6) discuss heterogeneity
in relation to microscopic models and distinguish between intra- and inter-driver heterogeneity.
The first relates to changes in behavior of a single driver over time. Additionally, inter-driver het-
erogeneity relates to structural differences in behavior and/or capabilities between vehicles and
drivers. For example, trucks are usually longer and slower than cars, and have different drive char-
acteristics (e.g. maximum acceleration and deceleration capabilities). As a result, congestion sets
in at lower densities (number of vehicles per meter) if truck shares are higher. These inter-driver
differences are used in multi-class (MC) traffic flow models to reproduce scattered density-flow
plots. Instead of considering traffic flow as a homogenous flow with homogeneous vehicles and
drivers (mixed-class) the heterogeneity of vehicles and drivers is taken into account by divid-
ing them into classes with distinct properties. In (7, 8, 9) MC mesoscopic and MC higher-order
macroscopic models are discussed. We focus on multi-class kinematic wave (MC-KW) models,
which despite their relative simplicity are also capable of reproducing scattered density-flow plots
and some of the spatio-temporal phenomena related to it (1, 10, 11, 12, 13).

Our main contribution is a detailed study of the Fastlane model (First-order fAST muLti-
class mAcroscopic traffic flow model for simulation of NEtwork-wide traffic conditions) (14). This
model is part of a range of MC-KW models (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21). We re-
derive the model from a consistent set of principles and analyze its properties. We show that it
satisfies certain important requirements and show the consequences of the modeling choices. The
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consequences include the reproduction of scattered density-flow plots and the dependence of the
characteristic velocity in congestion on the traffic composition.

The paper is organized as follows. In the next section we discuss the principles on which
the Fastlane model is based and the qualitative requirements that are supposed to be satisfied by
it. Then the Fastlane model is specified and it is shown that the model satisfies the requirements.
Finally, we show Fastlane’s distinctive properties by simulations, including an analysis of the mod-
eling consequences. The concluding section summarizes the results and indicates future research
directions.

PRINCIPLES, REQUIREMENTS AND PROPERTIES
In this section we discuss the principles underlying the Fastlane traffic flow model and the quali-
tative requirements that should be satisfied by MC-KW models such as Fastlane. We also shortly
discuss the expected properties of the model that can be observed in simulations.

Principles
MC-KW models are continuum models. All continuum models are based on the following two
principles:

1. Vehicles are conserved.
2. Traffic can be modeled as a continuum flow.

Principle 1 is trivial, in the sense that conservation of vehicles represents the only physical cer-
tainty in traffic flow modeling. Based on Principle 2 only aggregated variables of the traffic flow
are considered, such as average density ρ (number of vehicles per unit length), average flow q
(number of vehicles per unit time) and average vehicle velocity v (m/s or km/h). Principle 2 distin-
guishes continuum models from microscopic models in which the behavior of individual vehicles
is modeled and individual vehicles are traced.

The LWR model (22, 23) was the first continuum traffic flow model. It is a KW model and
as all KW models it is additionally based on the following principles:

3. Traffic flow can be modeled as a single-pipe flow.
4. Traffic is always in equilibrium state.
5. Traffic is always in either of two regimes: free flow or congestion.

Principle 3 states that although in reality there may be multiple lanes and vehicles may overtake
each other, this is not modeled explicitly. The consequence of Principle 4 is that drivers adapt
their speed instantaneously to new traffic conditions (e.g. a change in density). This principle was
first relaxed in the Payne model (24) and many other higher-order models since then. Principle
5 distinguishes two regimes. In free flow, if the density increases the flow also increases. In
congestion, if the density increases the flow decreases. The principle is relaxed in the three-regime
MC model (19).

An other principle of mixed-class KW models is that all vehicles behave identically. This
principle is relaxed in MC models, and replaced by the following:

6. Vehicles can be categorized into an arbitrary number of classes, and all vehicles in one
class behave identically.
The direct consequence of Principle 6 is that MC models can incorporate different fundamental
relations for different vehicle classes. Other differences, such as vehicle length, driving style or
destination may also be taken into account.
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Model Requirements
We introduce qualitative requirements that should be satisfied by Fastlane or any other MC-KW
model. Only after formulating the model based on the principles, it can be checked whether the
model indeed satisfies the requirements. The requirements consist of three groups, related to the
model formulation, the fundamental relation and the model dynamics.

The first two requirements are related to the formulation of the model and the uniqueness
of the solution:

1. Given ‘permissible’ class-specific densities, (class-specific) velocities and flows are de-
fined uniquely.

2. The model has a unique solution that maximizes flow.
In Requirement 1 permissible class specific densities are nonnegative and the total density is not
above a certain threshold (i.e. jam density, see Principle 6). Requirement 2 refers to the entropy
condition (25, 26). The entropy condition states that there is only one solution to an initial value
problem and that this solution maximizes flow.

We propose the following requirements on the shape of the fundamental relation. They are
partly similar to the requirements put forward in (27):

3. Below a certain threshold density (critical density) the velocities of each class are al-
lowed to differ.

4. Below critical density the velocities of relatively fast classes are allowed to decrease
with increasing density.

5. At and above critical density the velocity of each class is equal.
6. If the density reaches a certain threshold (jam density), vehicle velocity is zero.
7. If the density of only one class increases, while all other class specific densities remain

constant, vehicle velocities do not increase.
Requirements 3–5 are based on observations. For example, (28) describes observation of decreas-
ing car velocity in free flow. The author also shows that at low densities, velocities of cars and
trucks are unequal and that they are equal at high densities. Requirement 5 is also in line with
observed low velocity variance at high densities (29, 30). Requirements 6 and 7 may seem trivial.
However, not all fundamental relations satisfy Requirement 6. We show that Fastlane only satisfies
Requirement 7 if the parameters are chosen appropriately.

Finally, two requirements are related to the dynamics of the model. They put bounds on
the velocity of characteristics carrying information or disturbances. A characteristic is a curve in
the time-space domain at which a certain variable, such as a class specific density, is constant.

8. Characteristics have finite velocity.
9. Characteristics do not have a larger velocity than vehicles.

Requirement 8 can be interpreted as follows. After a disturbance, such as sudden braking, sur-
rounding vehicles will react. However, it takes some time to react and therefore, not all vehicles
react immediately. Requirement 9 implies that the model is anisotropic. An interpretation of this
is that vehicles only react to their leader and not to their follower.

Especially the anisotropy requirement has received much attention in the last years. Da-
ganzo (31) initiated an ongoing debate on whether or not certain traffic flow models are anisotropic
and whether it is necessary that they are. The main argument to impose this requirement on traffic
flow models is that traffic is believed to be anisotropic. Furthermore, if the model is anisotropic,
more efficient computational methods can be applied (32, 33, 34).
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FIGURE 1 Explanation of influence of truck share on congestion wave velocities by two
extreme cases: only trucks (top) and only cars (bottom), all driving from left to right. Down-
stream of a high density region a vehicle accelerates. The vehicles only react on their leader
and accelerate some reaction time τ after the leader accelerates. The velocity with which
this ‘acceleration information’ travels upstream is the congestion wave velocity. If there are
only trucks, it takes little time (3τ ) to reach the upstream end of the graphic. However, when
there are only passenger cars it takes more time (7τ ), which implies a lower congestion wave
velocity.

Properties
We have already discussed that MC models reproduce scattered density-flow plots. A second
property of MC models is related to a characteristic velocity in congestion: the congestion wave
velocity. This is the velocity with which the downstream front of a congested area propagates. (35)
suggests, based on empirical evidence, that the congestion wave velocity depends on the traffic
composition. Figure 1 illustrates the theory behind this hypothesis. It shows why the congestion
wave velocity depends on the vehicle length and reaction time. We expect that the congestion
wave velocity is larger if the share of long vehicles (e.g. trucks) is higher. Thereby neglecting the
possible influence of anticipation on multiple vehicles and the influence of headway. We test the
hypothesis using simulation studies with several MC-KW models.

MODEL SPECIFICATION
In this section we introduce the generalized MC-KW traffic flow model Fastlane and we show that
it satisfies all requirements. Fastlane is based on the principles from the previous section. The
model consists of three components which will be discussed in the following order: the conserva-
tion of vehicles equation, the fundamental diagram and the link between those two equations using
the concepts of effective density and passenger car equivalent (pce) value. A fourth component,
namely a node model, can be added to the model to apply it to networks. We only discuss the
model for long homogeneous roads, (14, 36) show how Fastlane can be extended to networks.

Conservation of Vehicles
Principle 1 states that vehicles are conserved. Together with the continuum assumption (Principle
2), this leads to the multi-class conservation of vehicles equation:

∂ρu
∂t

(x, t) +
∂qu
∂x

(x, t) = 0, ∀u ∈ U (1)

with ρu the class specific density of class u [veh/m] and U the set of all classes. x and t are the the
space and time coordinates, respectively. For readability we omit (x, t) from here on. The class
specific flow [veh/s] is defined as:

qu = ρuvu (2)
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(a) Density-velocity fundamental diagram.
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(b) Density-flow fundamental diagram.

FIGURE 2 Example of a two-class fundamental diagram. The solid line denotes the ve-
locity or flow of cars, the broken line denotes the velocity or flow of trucks, as a function of
the effective density.

with vu the class specific vehicle velocity [m/s], which is uniquely defined by the fundamental
relation (Principle 4). Since it is assumed that traffic can be modeled as a single pipe flow (Principle
3), lanes do not need to be distinguished and flows between lanes are not included explicitly.

Fundamental Relation
Principle 6 leads to different fundamental relations for each class. The Smulders fundamental re-
lation (37) is extended to include multiple vehicle classes, see Figure 2. We have chosen this fun-
damental relation because it is relatively generic: depending on the parameter choice, it reduces to
the Greenshields (parabolic) fundamental relation (38) or the Daganzo (triangular) fundamental re-
lation (39). The Smulders fundamental relation consists of two branches: free flow and congestion
(Principle 5). For each class u the velocity is defined by:

vu = vu(ρ) =


vu,max −

vu,max − vcrit
ρcrit

ρ if 0 ≤ ρ < ρcrit (free flow) (3a)

w

(
ρjam
ρ
− 1

)
if ρcrit ≤ ρ ≤ ρjam (congestion) (3b)

with ρ the ‘effective’ density, which can be thought of as a total density including all classes and
will be defined in more detail later. ρjam is the jam density, ρcrit the critical density, vcrit the
critical velocity and vu,max the maximum velocity of class u. w = vcritρcrit

ρjam−ρcrit is the congestion wave
parameter. We note that ρjam, ρcrit, vcrit, vu,max and w are parameters and do not depend on the
traffic state. For example, ρjam denotes the maximum number of vehicles in case there were only
vehicles of class 1.

According to (3), at jam density the velocity is zero and thus the fundamental relation
satisfies Requirement 6. The other fundamental relation requirements are satisfied if its parameters
are chosen correctly. In fact, Requirement 3–5 are satisfied if:

vcrit ≤ vu,max ≤ v1,max ≤ 2vcrit (4)

To understand this, we first discuss the shape of the fundamental relation. The multi-class Smulders
density-flow fundamental relation (Figure 2(b)) is a combination of a parabola (free flow) and a
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0 ρcrit ρjam

qmax = qcrit

(a) v1,max < 2vcrit: qmax = qcrit, flow increases in
free flow.

0 ρcrit ρjam

qcrit
qmax

(b) v1,max > 2vcrit: qmax 6= qcrit, flow in-
creases and decreases in free flow.

FIGURE 3 Density-flow fundamental relations. If the critical velocity is relatively large
(critical density relatively small) (a), the top of the parabola is not included in the fundamen-
tal relation and the maximum flow equals the flow at critical density. However, if the critical
velocity is relatively small (i.e. critical density is relatively large) (b), the top of the parabola
is included in the fundamental relation and the maximum flow does not equal the flow at
critical density. Moreover, part of the free flow branch is decreasing.

straight line (congestion). In free flow, the flow increases if the density increases, in congestion
the flow decreases. Both branches intersect at critical density ρcrit and at this density the flow is
maximum. However, as Figure 3 shows, this only holds if the fundamental relation parameters are
chosen such that vu,max ≤ 2vcrit, ∀u. Without loss of generality, it is assumed that class 1 is the
fastest class.

Theorem 1. If condition (4) holds, then the following holds:
1. Class specific velocities may be unequal if effective density is below critical (0 ≤ ρ < ρcrit).
2. Velocities are equal if effective density is above or at critical (ρcrit ≤ ρ ≤ ρjam).

3. Velocities may be decreasing
(
∂vu
∂ρ

< 0
)

if effective density is below critical (0 ≤ ρ < ρcrit).

Proof. It can readily be concluded from the fundamental relation (3) that in free flow the velocities
of two classes are different if their maximum velocity vu,max is different (Requirement 3 and first
part of the theorem). Furthermore, in congestion the velocity of all classes is equal (Requirement
5 and second part of the theorem) and since vcrit ≤ vu,max the class specific velocity in free flow
strictly decreases if vcrit < vu,max (Requirement 4 and third part of the theorem).

From the fundamental relation (3) we can furthermore conclude that the velocity does not
increase with increasing effective density. Indeed, in free flow ∂vu

∂ρ
= −vu,max−vcrit

ρcrit
≤ 0 and in

congestion ∂vu
∂ρ

= −w ρjam
(ρ)2

< 0. However, from this we may not conclude that the velocity does
not increase if a class specific density increases (Requirement 7). In fact, the requirement is only
satisfied if furthermore dρ

dρu
≥ 0. It may seem obvious that this holds, but below we show that some

additional conditions on the model parameters are needed for that. Therefore, first the effective
density function is introduced.

Effective Density and PCE-function
The fundamental relation (3), with effective densities ρ, and the conservation equation (1), with
class-specific densities ρu must be linked to each other to form a complete set of model equations.
Therefore, we introduce the effective density, the passenger car equivalent (pce) and the space
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occupancy. The effective density ρ is a weighted summation of all class specific densities:

ρ =
∑
u∈U

ηu(ρ)ρu (5)

with ηu(ρ) the pce function. A high pce-value ηu indicates that each vehicle in class u (e.g. trucks)
contributes a lot to the effective density. Consequently, a small increase in the number of vehicles
of class u leads to a large increase in the effective density and a large decrease in the vehicle
velocity. We note that this definition of the effective density (5) implies that the effective density
is not conserved over time and space. In other words: the continuity equation (1) holds for each
class separately, but there is no equivalent for the effective density. The pce-value in (5) depends
on the actual traffic state and is based on the relative space occupancy:

ηu =
ωu
ω1

(6)

with ωu the space occupancy of class u and class u = 1 the reference class, usually passenger cars.
Pce-values and space occupancy are illustrated in Figure 4. The space occupancy is the road length
(in meters) a vehicle needs, this is the vehicle length, plus some minimum headway:

ωu = Lu + Tuvu (7)

with Tu a parameter that may be interpreted as the minimum time headway. Lu is the gross vehicle
length of class u, that is: the length of the vehicle plus the distance between 2 vehicles of this class
at standstill. Therefore, and since class 1 is the reference class, L1 = 1/ρjam. We note that the
space occupancy is equal to the safe following distance in Pipes’ car following model (40). Figure
4 illustrates that at low densities and high velocities, the minimum headways play the largest role
in the space occupancy. They are similar for all types of vehicles and therefore pce-values are
relatively low. At high densities and low velocities, the influence of the (physical) vehicle length
determines largely how much space is occupied by a vehicle. Since vehicle lengths can differ
greatly among classes, pce-values differ as well.

Finally, the condition on the parameters of the space occupancy function is:

T1 ≤
L1

w
≤ Lu

w
(8)

We show later that if the condition holds, the final requirement on the fundamental relation (Re-
quirement 7) holds, as well as the model dynamics requirements (Requirement 8 and 9). However,
we first interpret the condition (8), see also Figure 5. The first inequality puts constraints on the
minimum time headway of class 1 (T1) and ensures that the space occupancy takes a realistic value.

Theorem 2. Consider any congested traffic state (i.e. ρcrit ≤ ρ ≤ ρjam) with only vehicles of class
1 (i.e. ρu = 0 for all u 6= 1). If the first inequality of (8) holds, then the space occupancy is not
larger than the spacing ω1 ≤ s = 1/ρ.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/ρ = 1/ρ1. Because
the velocity is decreasing in congestion

(
dv1
dρ
≤ 0
)

, also the space occupancy (7) is decreasing in
congestion:

dω1

dρ
= T1

dv1
dρ
≤ 0 (9)
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FIGURE 4 Illustration of pce-values and space occupancy. Top: free flow, the space
occupancy of a truck is similar to the space occupancy of a car, therefore the pce-value of
the truck is low. Bottom: congestion, the space occupancy of a truck is much larger than the
space occupancy of a car, therefore the pce-value of the truck is high.

−w

1/L1

min(1/T1)

1/
T
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(a) First part: w ≤ L1

T1
, i.e. 1

T1
≥ w
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(b) Second part: L1

T1
≤ Lu

Tu
, i.e. 1

Tu
≥ L1

T1
Lu.

FIGURE 5 Schematic view of the condition on the space occupancy parameters, Condition
(8). The gray areas illustrate the admissible values of 1/T1 and 1/Tu respectively.
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Therefore, it suffices to show that ω1 ≤ s at critical density ρcrit. We substitute ρjam = 1/L1 and
the fundamental relation (3) into the space occupancy function (7). Rewriting the result gives:

ω1 = L1 + T1w

(
1

ρL1

− 1

)
=

1

ρ

[
(L1 − T1w)ρ+

T1w

L1

]
(10)

Furthermore, substituting ρ = ρcrit ≤ ρjam = 1/L1 into (10) gives:

ω1 ≤
1

ρ

[
L1 − T1w

L1

+
T1w

L1

]
=

1

ρ
= s (11)

Theorem 2 implies that, in congestion with only vehicles of class 1, no part of the road can
be occupied by two vehicles at the same time. That is: their space occupancies do not overlap.

The second inequality of (8) puts constraints on the gross vehicle lengths Lu and ensures
that the pce-values are nondecreasing.

Theorem 3. Consider any congested traffic state (i.e. ρcrit ≤ ρ ≤ ρjam) with only vehicles of class
1 (i.e. ρu = 0 for all u 6= 1). If the second inequality of (8) holds for a certain class u, then the
pce-value of class u is nondecreasing: dηu/dρ ≥ 0.

Proof. There are only vehicles of class 1 and thus the spacing is s = 1/ρ = 1/ρ1. We apply the
pce function (6) and the space occupancy function (7) and use that vu = v1 and dvu/dρ = dv1/dρ
to compute the density derivative of the pce vale ηu:

dηu
dρ

=
(L1 + T1v1)Tu

dvu
dρ
− (Lu + Tuvu)T1

dv1
dρ

(ω1)2
=

L1Tu
dv1
dρ
− LuT1 dv1dρ

(ω1)2

=
T1Tu
(ω1)2

[
L1

T1
− Lu
Tu

]
dv1
dρ

(12)

We have already shown that the velocity is decreasing (dv1
dρ
≤ 0). Therefore, if and only if, the

second inequality of (8) holds, the term between square brackets in (12) is nonpositive and the
pce-value is nondecreasing.

Theorem 3 implies that, if traffic is more congested, trucks (which are longer and have a
larger minimum time headway than passenger cars) have a higher pce-value than in free flow. This
reflects that at high densities they take relatively more space than in free flow, see Figure 4.

Reformulation of the Effective Density Function
The Fastlane model equations in the previous subsections describing the velocity (3), the effective
density (5), the pce-value (6) and the space occupancy (7) form a set of implicit functions, see
Figure 6. In fact, by combining the equations, a quadratic equation with two solutions is found.
One of them leads to unrealistic, not meaningful solutions, for example with negative velocities.
The correct solution is selected such that the effective density becomes a uniquely defined function
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ρ = ρ(ρ1, ..., ρU ,
η1, ..., ηU)

vu = vu(ρ)

ωu = ωu(vu)

ηu = ηu(ω1, ωu)

quadratic equation
with 2 solutions
ρ = ρ+ or ρ = ρ−

1 meaningful
solution

ρ = ρ(ρ1, ..., ρU)

FIGURE 6 Schematic view of the reformulation of the effective density. The implicit
effective density is rewritten into a quadratic equation with two solutions and the correct one
is selected. The reformulated function expresses the effective density ρ as a function of only
the class specific densities ρu.

and has a meaningful value:

ρ =


a1 −

∑
u buρu −

√
(a1 −

∑
u buρu)

2 + 4b1
∑

u auρu

−2b1
if b1 6= 0 (13a)∑

u auρu
a1 −

∑
u buρu

if b1 = 0 (13b)

with in free flow (if 0 ≤ ρ ≤ ρcrit):

au = aff
u = Lu + Tuvu,max and bu = bff

u = −Tu
vu,max − vcrit

ρcrit
(13c)

and in congestion (if ρcrit ≤ ρ ≤ ρjam):

au = acn
u = Tuwρjam and bu = bcn

u = Lu − Tuw (13d)

With this new effective density function (13), only the class specific densities are needed to calcu-
late the effective density. The velocities, space occupancies and pce-values are incorporated, but
their values are not needed anymore. This way, all variables in the model are defined uniquely
(Requirement 1). The derivation of the new effective density function (13) from (3), (5), (6) and
(7) is not straightforward (41). However, it can be checked relatively easy that they are equiva-
lent by substituting (13) into the fundamental relation (3), substituting the obtained velocity in the
space occupancy function (7) and substituting the obtained space occupancy in the pce function
(6). Subsequently, substituting the pce-value into the old effective density function (5), yields the
effective density ρ at the right hand side of (5).

With the new formulation of the effective density (13), it is possible to show that the veloc-
ity is a nonincreasing function of the class specific densities (Requirement 7).

Theorem 4. If both condition (4) and (8) hold, then for all classes i and j

∂vi
∂ρj
≤ 0 (14)

We have already shown that ∂vu
∂ρ
≤ 0 for all classes u. It remains to show that dρ

dρu
≥ 0 for

all classes u, because then ∂vi
∂ρj

= ∂vi
∂ρ

dρ
dρj
≤ 0. The full proof of Theorem 4 can be found in (41).
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Lagrangian Formulation of the Model
We reformulate the model in the Lagrangian coordinate system. In this coordinate system the co-
ordinates move with the vehicles of class 1, instead of being fixed in space such as in the traditional
Eulerian coordinate system. The reformulation has two main advantages: 1. it becomes easier to
assess the model dynamics requirements, and 2. simulations can be done more efficiently (34).
More details on the reformulation can be found in (34). Vehicles are numbered in opposite driving
direction. The first vehicle gets number n = 1, it follower n = 2, etc. The main variables of the
model are class specific spacing su = 1/ρu and velocity vu. The Lagrangian fundamental relation
expresses the velocity as a function of the class specific spacings but can be rewritten in Eulerian
formulation:

v∗u = v∗u(s1, . . . , sU) = v∗u(1/ρ1, . . . , 1/ρU) = vu(ρ1, . . . , ρU) = vu(ρ(ρ1, . . . , ρU)) (15)

The conservation equation (1) is reformulated in Lagrangian coordinates:

∂s1
∂t

+
∂v1
∂n

= 0 and
∂su
∂t

+
su
s1

∂vu
∂n

+
v1 − vu
s1

∂su
∂n

= 0, ∀u 6= 1 (16)

To assess the model dynamics requirements, the model is subsequently rewritten in matrix
vector notation:

∂~s

∂t
+ J(~s)

∂~s

∂n
= ~0 (17)

with the vector of class specific spacings ~s = (s1, s2, . . . , sU)T and Jacobian matrix:

J =

a1,1 · · · a1,U
... . . . ...

aU,1 · · · aU,U

 with ai,j =


si
s1

∂v∗i
∂si

+ v1−vi
s1

for i = j (on the diagonal)

si
s1

∂v∗i
∂sj

for i 6= j (off the diagonal)
(18)

and v∗i (s) = v∗i (1/ρ) the Lagrangian fundamental relation. A detailed derivation of this formula-
tion can be found in (42).

Model Dynamics Requirements
We show that the Fastlane model satisfies the model dynamics requirements on finite characteristic
velocity (Requirement 8) and anisotropy (Requirement 9). Theory of partial differential equations
tells us that the characteristic velocities in the Lagrangian coordinate system are equal to the eigen-
values of the Jacobian (18). The model is anisotropic if the characteristics are not faster than the
vehicles of the fastest class. In the Lagrangian coordinate system, the coordinates move with the
vehicles of the fastest class. Therefore, the model is anisotropic if the eigenvalues of the Jacobian
(18) are nonnegative. The main challenge here is that the eigenvalues can not be computed di-
rectly, at least not for the generic case with U > 4. However, some theorems from linear algebra
can be applied to analyze whether the eigenvalues are finite and the sign of the eigenvalues. The
procedure is explained in more detail in (41, 42). It is shown that the Fastlane model satisfies the
Requirements 8 and 9 if the class specific velocity is a nonincreasing function of the class specific
densities (Requirement 7). We have already shown (Theorem 4) that this is indeed the case if
Condition (4) and (8) hold.
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Finally, we conclude that if conditions (4) and (8) hold, then the Fastlane model satisfies all
requirements, except for Requirement 2 which is not discussed yet. Requirement 2 states that the
entropy solution should be selected. It depends on the numerical method whether this requirement
is satisfied. For the simulations in the next section, we apply a numerical method that maximizes
the flow in pce units per time unit. This yields an unique entropy solution and thus the requirement
is satisfied.

SIMULATIONS AND RESULTS
We provide simulation results to show some of the properties of Fastlane. We study the differ-
ences in scatter reproduced in the fundamental diagram between Fastlane and models with con-
stant pce-values and without pce-values (ρ =

∑
u ρu). Furthermore, we study the impact of traffic

composition on characteristic velocity in congestion in Fastlane and other models.
Before continuing with the simulation setup and its results we shortly discuss the discretiza-

tion of the Fastlane model equations.

Discretization
To apply a macroscopic traffic flow model in a simulation tool, its continuous equations have to be
discretized and solved using numerical methods. Alternatively, one could shock wave and rarefac-
tion wave velocities and calculate the exact solution. However, that would be rather complicated,
if at all possible, with the proposed model and many vehicle classes. For discretization, in the
original introduction of the Fastlane model (14) the mixed class minimum supply demand method
(26, 39) is adapted to include multiple classes (41). The mixed class Godunov method in La-
grangian coordinates (33) has been adapted to include multiple vehicle classes and is shown to
be more efficient (34). In simulations time is divided into K time steps of size ∆t. Furthermore,
vehicles are divided into groups of ∆n vehicles. In each time step, the position of each vehicle
group is calculated. In the simulations in this section, the parameters of the numerical method are
time step size of ∆t = 1 s and vehicle group size of ∆n = 0.833 vehicles.

Simulation Setup
We apply a simple test case consisting of an initial value problem on a long homogeneous road
with a queue of length L = 2000 m:

ρ(x, 0) =


0 for x > 0

ρjam for −L ≤ x ≤ 0
1
2
ρcrit for x < −L

(19)

There are 2 vehicle classes: passenger cars and trucks. The initial truck share varies from 0% to
50%. The queue travels backward, its length decreases and after some time (about 1100 s), it is
dissolved. This is due to the expansion wave at the front of the queue and a backward traveling
shock wave at its tail. In the exact solution, within the queue and in the fan the velocities of both
classes are equal. In the rest of the domain the densities are below critical and thus the velocities are
unequal. We study the profile of the queue, i.e. the effective density and the class specific densities.
Moreover, we study how the profile depends on the pce-value or function and the truck share.
Therefore, we run the simulation with the Fastlane pce function (6), a large constant pce-value
(η2 = L2

L1
), a small constant pce-value (η2 = L2

2L1
) and no class specific pce-value (η2 = η1 = 1).
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TABLE 1 Parameter Settings for Simulation
parameter value unit
v1,max 30 m/s (= 108 km/h)
v2,max 27.5 m/s (= 99 km/h)
vcrit 25 m/s (= 90 km/h)
ρcrit 0.0278 pce/(m lane) (= ρjam/6)
ρjam 0.1667 pce/(m lane) (= 1/L1)
T1 1 s
T2 1.5 s
L1 6 m
L2 18 m

This corresponds to models with no pce-value (12, 17) and to models with a constant pce-value
(15, 16, 21), though these model mostly use different fundamental relations. All other parameters
are kept constant, see Table 1.

Simulation Results
The results of the simulations are shown in Figures 7–9. Figure 7 shows the evolution of the
effective densities computed with Fastlane and with initially 20% trucks. Simulation results with
constant pce-values (not shown) look very similar to this one. Therefore, we compare the results
in a different way. Figure 8 shows cross sections at time t = 600 s. The effective density and class
specific densities are shown. The results indeed depend on the pce function or value. The class
specific densities in the queue are equal to those with η2 = L2/L1. This is because in the queue, in
Fastlane the same pce-values hold. However, downstream of the queue the pce-values of Fastlane
are smaller and therefore its class specific densities are larger. Moreover, Figure 8 shows that
the queue travels upstream faster in the Fastlane simulation than with constant pce-values. This
implies a higher characteristic velocity, which is studied further in Figure 9. Figure 9 shows all
the density-flow pairs from all simulations. Each subfigure shows the results for one pce function
or value. The fundamental diagrams all show some scatter. With no pce-values (η2 = η1 = 1),
there is only scatter in the free flow branch of the fundamental diagram. With constant pce-values
the scatter in congestion is independent of the actual density. As can be expected, the influence of
the truck share is low with low pce-values and it is high with high pce-values. The fundamental
diagram reproduced by Fastlane combines both: it shows little scatter (little dependence on truck
share) at low densities and the scatter increases gradually for higher densities. This fundamental
diagram furthermore shows that the congestion wave velocity is higher if the truck share is higher.
This effect is not observed with constant pce-values.

SUMMARY AND CONCLUSION
We introduced Fastlane as a generic multi-class kinematic wave (MC-KW) traffic flow model. It
generalizes previously introduced MC-KW traffic flow models in the sense that it takes into account
heterogeneity in vehicle speed and space occupancy. Moreover, and this is what distinguishes
Fastlane from other such models, space occupancy of vehicles also depends on the actual traffic
state. This is reflected in dynamic pce-values.

We introduced some requirements on continuum traffic flow models, related to for example
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FIGURE 7 Effective densities computed with Fastlane pce function and initially 20%
trucks. Vertical white lines indicate times for which cross sections are shown in Figure 8.

the existence of a unique solution and anisotropy of traffic flow. It is shown that the Fastlane model
satisfies these requirements when appropriate model parameters are chosen. Furthermore, simula-
tion results show distinctive properties of Fastlane related to the model dynamics and the resulting
fundamental diagram. They show that scatter in measured density-flow plots can be explained
by differences in traffic composition using MC models with dynamic pce-values. Moreover, in
Fastlane, high truck shares lead to high congestion wave velocities in congestion.

An important next step in the development of Fastlane is calibration and validation using
experimental data and comparison with other models. Therefore, it would also be valuable to study
the influence of parameter values (such as maximum velocity vu,max and critical density ρcrit) on
the simulation results. Future research also includes testing our hypothesis on the influence of
composition on congestion wave velocity. A calibration and validation method for the model
parameters of Fastlane is developed (43). The model has been applied for traffic state estimation
(44) and model predictive control (45, 46). The studies show the added value of a multi-class
model because it enables multi-class measurements in state estimation. Furthermore, the model
predictive control method is applied to a freeway with many trucks (the A15 close to the port of
Rotterdam) and uses control aimed at specific classes (45).
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FIGURE 8 Cross sections of density profiles at t = 600 s.
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(a) Fastlane. (b) Large pce (η2 = L2

L1
).

(c) Small pce (η2 = L2

2L1
). (d) No pce (η2 = η1 = 1).

FIGURE 9 Resulting fundamental diagrams. Colors indicate the truck share: • 0%, •
2%, • 5%, • 10%, • 20%, • 50%. Note that the horizontal axis indicates the total density (in
vehicles per meter) and not the effective density (in pce units per meter).

TRB 2014 Annual Meeting Paper revised from original submittal.



Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 19

ACKNOWLEDGEMENT
This research was part of the PhD research of Femke van Wageningen-Kessels at ITS Edulab, a
collaboration between TUDelft and Rijkswaterstaat.

REFERENCES
[1] Bellomo, N. and C. Dogbe. On the Modeling of Traffic and Crowds: A Survey of Models,

Speculations, and Perspectives. SIAM Review, Vol. 53, Society for Industrial and Applied
Mathematics, 2011, pp. 409–463.

[2] Treiber, M. and A. Kesting. Traffic Flow Dynamics: Data, Models and Simulation. Springer,
Berlin Heidelberg, 2013.

[3] van Wageningen-Kessels, F. L. M., J. W. C. van Lint, C. Vuik, and S. P. Hoogendoorn. Ge-
nealogy of traffic flow models, under review.

[4] Kerner, B. S. Introduction to modern traffic flow theory and control: The long road to three-
phase traffic theory. Springer, 2009.

[5] Treiber, M., A. Kesting, and D. Helbing. Three-phase traffic theory and two-phase models
with a fundamental diagram in the light of empirical stylized facts. Transportation Research
Part B: Methodological, Vol. 44, No. 8-9, 2010, pp. 983–1000.

[6] Ossen, S. and S. P. Hoogendoorn, Multi-anticipation and heterogeneity in car-following em-
pirics and a first exploration of their implications. In Intelligent Transportation Systems Con-
ference, 2006. IEEE, 2006, pp. 1615–1620.

[7] Hoogendoorn, S. P. and P. H. L. Bovy. Generic gas-kinetic traffic systems modeling with ap-
plications to vehicular traffic flow. Transportation Research Part B: Methodological, Vol. 35,
No. 4, 2001, pp. 317–336.

[8] Bagnerini, P. and M. Rascle. A Multiclass Homogenized Hyperbolic Model of Traffic Flow.
SIAM Journal on Mathematical Analysis, Vol. 35, No. 4, SIAM, 2003, pp. 949–973.

[9] Gupta, A. K. and V. K. Katiyar. A new Multi-class continuum model for traffic flow. Trans-
portmetrica, Vol. 3, No. 1, 2007, pp. 73–85.

[10] Treiber, M. and D. Helbing. Macroscopic simulation of widely scattered synchronized traffic
states. Journal of Physics A: Mathematical and General, Vol. 32, No. 1, 1999.

[11] Daganzo, C. F. A behavioral theory of multi-lane traffic flow. Part I: Long homogeneous
freeway sections. Transportation Research Part B: Methodological, Vol. 36, No. 2, 2002, pp.
131–158.

[12] Wong, G. C. K. and S. C. Wong. A multi-class traffic flow model: an extension of LWR model
with heterogeneous drivers. Transportation Research Part A: Policy and Practice, Vol. 36,
No. 9, 2002, pp. 827–841.

[13] Ngoduy, D. Multiclass first-order traffic model using stochastic fundamental diagrams. Trans-
portmetrica, Vol. 7, No. 2, 2011, pp. 111–125.

TRB 2014 Annual Meeting Paper revised from original submittal.



Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 20

[14] van Lint, J. W. C., S. P. Hoogendoorn, and M. Schreuder. Fastlane: A New Multi-Class
First Order Traffic Flow Model. Transportation Research Record: Journal of the Transporta-
tion Research Board, Vol. 2088, Transportation Research Board of the National Academies,
Washington, D.C., 2008, pp. 177–187.

[15] Chanut, S. and C. Buisson. Macroscopic Model and Its Numerical Solution for Two-Flow
Mixed Traffic with Different Speeds and Lengths. Transportation Research Record: Jour-
nal of the Transportation Research Board, Vol. 1852, Transportation Research Board of the
National Academies, Washington, D.C., 2003, pp. 209–219.

[16] Benzoni-Gavage, S. and R. M. Colombo. An n-populations model for traffic flow. European
Journal of Applied Mathematics, Vol. 14, No. 05, 2003, pp. 587–612.

[17] Zhang, P., R.-X. Liu, S. C. Wong, and S.-Q. Dai. Hyperbolicity and kinematic waves of a class
of multi-population partial differential equations. European Journal of Applied Mathematics,
Vol. 17, Cambridge University Press, 2006, pp. 171–200.

[18] Ngoduy, D. and R. Liu. Multiclass first-order simulation model to explain non-linear traffic
phenomena. Physica A: Statistical Mechanics and its Applications, Vol. 385, No. 2, 2007, pp.
667–682.

[19] Logghe, S. and L. H. Immers. Multi-class kinematic wave theory of traffic flow. Transporta-
tion Research Part B: Methodological, Vol. 42, No. 6, 2008, pp. 523–541.

[20] Ngoduy, D. Multiclass first-order modelling of traffic networks using discontinuous flow-
density relationships. Transportmetrica, Vol. 6, No. 2, 2010, pp. 121–141.

[21] Nair, R., H. S. Mahmassani, and E. Miller-Hooks, A Porous Flow Model for Disordered Het-
erogeneous Traffic Streams. In Moisture Sensitivity of Asphalt Pavements. CD-ROM. Trans-
portation Research Board of the National Academies, Washington, D.C., 2012.

[22] Lighthill, M. J. and G. B. Whitham. On Kinematic Waves II: A Theory of Traffic Flow on
Long Crowded Roads. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, Vol. 229, No. 1178, The Royal Society, 1955, pp. 317–345.

[23] Richards, P. I. Shock Waves on the Highway. Operations Research, Vol. 4, No. 1, INFORMS,
1956, pp. 42–51.

[24] Payne, H. J., Models of freeway traffic and control. In Simulation Council Proceedings, 1971,
Mathematical models of public systems, pp. 51–61.

[25] Ansorge, R. What does the entropy condition mean in traffic flow theory? Transportation
Research Part B: Methodological, Vol. 24, No. 2, 1990, pp. 133–143.

[26] Lebacque, J.-P., The Godunov scheme and what it means for first order traffic flow models.
In Transportation and Traffic Theory: Proceedings of the 13th International Symposium on
Transportation and Traffic Theory, 1996 (J.-B. Lesort, ed.). Pergamon, 1996, pp. 647–677.

TRB 2014 Annual Meeting Paper revised from original submittal.



Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 21

[27] del Castillo, J. M. Three new models for the flow-density relationship: Derivation and testing
for freeway and urban data. Transportmetrica, Vol. 8, No. 6, 2012, pp. 443–465.

[28] Hoogendoorn, S. P., Multiclass continuum modelling of multilane traffic flow. Ph.D. thesis,
Delft University of Technology/TRAIL Research school, Delft, 1999.

[29] Kerner, B. S. and H. Rehborn. Experimental features and characteristics of traffic jams. Phys-
ical Review E: Statistical, nonlinear and soft matter physics, Vol. 53, APS, 1996, pp. 1297–
1300.

[30] Helbing, D. Fundamentals of traffic flow. Physical Review E: Statistical, nonlinear and soft
matter physics, Vol. 55, American Physical Society, 1997, pp. 3735–3738.

[31] Daganzo, C. F. Requiem for second-order fluid approximations of traffic flow. Transportation
Research Part B: Methodological, Vol. 29, No. 4, 1995, pp. 277–286.

[32] Daganzo, C. F. On the variational theory of traffic flow: well-posedness, duality and applica-
tions. Networks and Heterogeneous Media, 2006.

[33] Leclercq, L., J. Laval, and E. Chevallier, The Lagrangian coordinates and what it means
for first order traffic flow models. In Transportation and Traffic Theory 2007 (R. E. Allsop,
M. G. H. Bell, and B. G. Heydecker, eds.). Elsevier, Oxford, 2007, pp. 735–753.

[34] van Wageningen-Kessels, F. L. M., J. W. C. van Lint, S. P. Hoogendoorn, and C. Vuik.
Lagrangian formulation of a multi-class kinematic wave model. Transportation Research
Record: Journal of the Transportation Research Board, Vol. 2188, Transportation Research
Board of the National Academies, Washington, D.C., 2010, pp. 29–36.

[35] Zielke, B. A., R. L. Bertini, and M. Treiber. Empirical Measurement of Freeway Oscillation
Characteristics: An International Comparison. Transportation Research Record: Journal of
the Transportation Research Board, Vol. 2088, Transportation Research Board of the Na-
tional Academies, Washington, D.C., 2008, pp. 57–67.

[36] van Wageningen-Kessels, F. L. M., Y. Yuan, S. P. Hoogendoorn, J. W. C. van Lint, and
C. Vuik. Discontinuities in the Lagrangian formulation of the kinematic wave model. Trans-
portation Research Part C: Emerging Technologies, Vol. 34, 2013, pp. 148 – 161.

[37] Smulders, S. Control of freeway traffic flow by variable speed signs. Transportation Research
Part B: Methodological, Vol. 24, No. 2, 1990, pp. 111–132.

[38] Greenshields, B. D., A study of traffic capacity. In Proceedings of the 14th Annual Meeting
of the Highway Research Board, 1935, pp. 448–477.

[39] Daganzo, C. F. The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B: Methodological,
Vol. 28, No. 4, 1994, pp. 269–287.

[40] Pipes, L. A. An operational analysis of traffic dynamics. Journal of applied physics, Vol. 24,
No. 3, 1953, pp. 274–281.

TRB 2014 Annual Meeting Paper revised from original submittal.



Van Wageningen-Kessels, Van Lint, Hoogendoorn, Vuik 22

[41] van Wageningen-Kessels, F. L. M., Multi class continuum traffic flow models: Analysis and
simulation methods. Ph.D. thesis, Delft University of Technology/TRAIL Research school,
Delft, 2013.

[42] van Wageningen-Kessels, F. L. M., B. van ’t Hof, S. P. Hoogendoorn, J. W. C. van Lint, and
C. Vuik. Anisotropy in generic multi-class traffic flow models. Transportmetrica A: Transport
Science, Vol. 9, No. 5, 2013, pp. 451–472.

[43] Schreiter, T., J. W. C. van Lint, and S. P. Hoogendoorn, A Real-time Multi-class Traffic State
Prediction Framework for Incident Management on Highways. In Conference on Models and
Technologies for Intelligents Transport Systems, 2011.

[44] Yuan, Y., J. W. C. van Lint, R. E. Wilson, F. L. M. van Wageningen-Kessels, and S. P. Hoogen-
doorn. Real-Time Lagrangian Traffic State Estimator for Freeways. IEEE Transactions on
Intelligent Transportation Systems, Vol. 13, No. 1, 2012, pp. 59–70.

[45] Schreiter, T., R. L. Landman, J. W. C. Van Lint, A. Hegyi, and S. P. Hoogendoorn. Vehicle
Class-Specific Route Guidance of Freeway Traffic by Model-Predictive Control. Transporta-
tion Research Record: Journal of the Transportation Research Board, Vol. 2324, Transporta-
tion Research Board of the National Academies, Washington, D.C., 2012, pp. 53–62.

[46] Landman, R. L., T. Schreiter, A. Hegyi, S. P. Hoogendoorn, and J. W. C. Van Lint. Policy-
Based Service Level-Oriented Route Guidance in Road Networks: a Comparison with Sys-
tem and User Optimal Route Guidance. Transportation Research Record: Journal of the
Transportation Research Board, Vol. 2278, Transportation Research Board of the National
Academies, Washington, D.C., 2012, pp. 115–124.

TRB 2014 Annual Meeting Paper revised from original submittal.


