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A B S T R A C T

The past decades have witnessed an increasing interest in numerical simulation for flow in fractured porous
media. To date, most studies have focused on 2D or pseudo-3D computational models, where the impact of
3D complex structures on seepage has not been fully addressed. This work presents a method for modeling
seepage in 3D heterogeneous porous media. The complex structures, typically the stochastic discrete fractures
and inclusions, are able to be simulated. A mesh strategy is proposed to discretize the complex domain. In
particular, a treatment on the intersected elements is developed to ensure a conforming mesh. Then, numerical
discretization is provided, in which the flux interactions of fractures, inclusions and surrounding rock matrix are
included. Numerical tests are performed to analyze the hydraulic characteristics of 3D fractured media. First,
the developed framework is validated by comparing numerical solutions with the results of embedded discrete
fracture model. Next, the effects of orientation, aperture and radius of fractures on fluid flow and equivalent
permeability tensor are analyzed. The variations of pressure distribution are studied in heterogeneous and
homogeneous media. Finally, the hydraulic properties of a medium with complex structures are investigated
to show the difference of hydraulic feature between fractures and inclusions.
1. Introduction

Modeling of seepage in fractured porous media is of great interest in
geotechnical engineering and geoscience applications (Hajibeygi et al.,
2020; Mejia et al., 2021; Wang et al., 2022a). In practice, fractures are
randomly distributed in the geological fields, and they have contrasting
hydraulic properties compared to that of the rock matrix (Berkowitz,
2002; Kolditz et al., 2012; Adler et al., 2013). As a result, fractures
play a critical role in determining the dynamics of flow and transport
in such fractured systems.

There are different approaches for numerical investigation of frac-
tured porous media. They can be mainly divided into two categories.
The first category is related to the geological modeling techniques and
thegeostatistics (Yin and Chen, 2020; Jacquemyn et al., 2021; Cañamón
et al., 2022), which also studies the distribution law of natural fractures
from the perspective of the statistical methods. In this category, field
investigation provides the massive data of geological information of
fractures. The researchers do not focus on numerical simulations, such
as the seepage and deformation simulations, but study the statistical
characteristics of fracture networks. However, the second category
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focuses on the numerical methods related to hydraulic and mechani-
cal processes of the deformable fractured media, in which the finite
element method and the finite volume method are the commonly used
numerical approaches (Karimi-Fard and Durlofsky, 2012; Wang et al.,
2020, 2022b; Hajibeygi et al., 2020; Sui et al., 2022). In the presented
study, we mainly focus on the second category.

Three representative numerical models have been widely used to
simulate seepage in fractured porous media, namely, (a) the equivalent
continuum model (ECM) (Ghahfarokhi, 2017; Chung et al., 2018; Wang
et al., 2022a), (b) the discrete fracture network (DFN) (de Dreuzy
et al., 2013; Hyman et al., 2015), and (c) the discrete fracture model
(DFM) (Karimi-Fard et al., 2004; Zidane and Firoozabadi, 2018; Wang
et al., 2022c). The ECM, which is proposed based on the upscaling
technique, is an efficient computational model but it cannot reflect the
interaction between the fractures and the rock matrix. Especially, for a
fractured medium with a few fractures with large size, the equivalent
permeability tensor may not exit. In this case, the ECM does not work.
The DFN is a simplified model which neglects flow in the rock matrix.
It provides an acceptable solution if the permeability of fractures is
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Fig. 1. Schematic of a 3D porous medium with discrete fractures and inclusions.
Fig. 2. Parameters of a 3D fracture and an inclusion.
much higher than that of the rock matrix, whereas the validity will be
violated if fracture permeability is comparable or even lower compared
to the matrix. Therefore, in the past decades, the DFM was proposed
to accurately simulate seepage in fractured reservoirs. In contrast to
ECM and DFN, it accounts for the flux exchange between the matrix
and the lower-dimensional discrete fractures. It models the control
volumes associated with the intersected fractures through a star-delta
transformation, as described by Karimi-Fard et al. (2004). As such, DFM
enabled simulation of multiphase flow in porous reservoirs with multi-
ple intersecting fractures. The advantages of DFM, through its accurate
transmissibility calculations and complex conforming mesh require-
ments, come with the major challenge of extending it to 3D domains
with complex fracture geometries (Hyman et al., 2014; Karimi-Fard and
Durlofsky, 2016; Huang et al., 2021).

Several simplifications have been introduced to overcome with the
DFM challenges associated with unstructured complex mesh in 3D
domains. Examples include the boundary element method (Dershowitz
and Fidelibus, 1999) and the pipe-network method (Cacas et al., 1990).
The basic principle of these methods is to reduce the 3D problem to
2D problem, to achieve the efficient simulations. Nevertheless, these
treatments fall short of describing the complex structures, such as
the discrete fractures and inclusions. To achieve the flux connection
between the fractures and the surrounding matrix, the conforming
scheme based on the unstructured grids has been employed to dis-
cretize such geometries (Hyman et al., 2015; Wang and Shahvali,
2016; Zidane and Firoozabadi, 2018). Normally, the rock matrix is
discretized by the tetrahedrons, while the fractures are discretized by
the triangles. To this end, the conforming Delaunay algorithm has
been developed for 3D discrete fractures (Hyman et al., 2014; Karimi-
Fard and Durlofsky, 2016). In addition, the commonly used two-point
flux approximation scheme requires k-orthogonal grids in the case of
2

anisotropic permeability fields, which can impose limitations for real-
field applications. To resolve this issue, the grid optimization technique
has been presented to improve the grid orthogonality (Karimi-Fard,
2008; Karimi-Fard and Durlofsky, 2012). Furthermore, a novel meshing
strategy has been devised to generate an unstructured system with high
quality grids for both the matrix and 3D fractures (Karimi-Fard and
Durlofsky, 2016).

Modeling approaches for 2D fractured porous media have been well
developed over the past decades, where fractures are directly depicted
by line segments (Hajibeygi et al., 2011; Tan et al., 2021; Wang et al.,
2022c). In 3D space, however, fractures are represented by planes or
surfaces, in which numerical treatment on intersected fractures still
remains a challenge (de Dreuzy et al., 2013; Hyman et al., 2015; Huang
et al., 2021). Moreover, in geological fields, the coexistence of the
discrete fractures and inclusions (Wang et al., 2022a), adds to the diffi-
culty of partitioning the computational domain, which has become one
of the key challenges in numerical simulations. At present, commercial
software cannot even fully addressed these challenges (Kolditz et al.,
2012; Zidane and Firoozabadi, 2018; Bilke et al., 2019). Therefore, it
is critical to develop an efficient and robust modeling and meshing
strategy that is able to capture the complex topological structures in 3D
domain (Hyman et al., 2014; Huang et al., 2021). To the best of our
knowledge, this task has not been fully resolved. There is a common
treatment that 3D fractures are modeled as pseudo-3D geometries,
which are created directly by stretching the 2D planar fractures (Ahmed
et al., 2015; Yan et al., 2018). Obviously, this treatment is oversimpli-
fied and fails to reflect the geometrical complexities and the relations
between the rock matrix and the 3D fractures.

Despite being crucially important, numerical simulation of the 3D
fractured media with complex structures remains to a large extend
unexplored. In this work, we present a 3D discrete fracture modeling
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Fig. 3. Visualization (top row) and mesh partition (bottom row) of several typical patterns.
approach which is based on the DFM concepts. The complex geomet-
rical structures, especially the stochastic fractures and inclusions, are
explicitly captured in the presented framework. Appropriate treatments
for the conforming grids are presented, specially for the intersecting
fractures and inclusions. Then, using the developed DFM strategy, the
effect of complex structures on seepage is analyzed for several test
cases.

The rest of this paper is organized as follows. First, the description
of 3D complex structures and the meshing strategy are provided in
Section 2. Then, the governing equations of seepage are presented in
Section 3. Later, numerical discretization is provided based on two-
point flux approximation (TPFA). Grid convergence evaluation and
numerical validation are carried out to verify the presented method.
Finally, numerical tests are conducted to study the hydraulic char-
acteristics of the 3D fractured porous media, in which the effects of
heterogeneity and the complex structures are studied.

2. Modeling approach

In this section, a modeling approach based on the analytic geometry
is introduced to describe the position, size and orientation of the
3D discrete fractures. Then, the discrete fractures and inclusions are
generated according to the statistical laws. A meshing strategy is given
based on the conforming unstructured grids.

2.1. Description of 3D fractures and inclusions

As shown in Fig. 1, we define three main components for a porous
media, namely the rock bulk 𝛺𝑟, the union of all fractures 𝛺𝑓 and the
union of all inclusions 𝛺𝑐 . The entire domain 𝛺 consists of the union
of these three components:

𝛺 = 𝛺𝑟 ∪𝛺𝑓 ∪𝛺𝑐 (1)

A strict constraint is that any overlapping among 𝛺𝑟, 𝛺𝑓 and 𝛺𝑐 is
not allowed. Obviously, 𝛺𝑓 and 𝛺𝑐 can be then decomposed as:

𝛺𝑓 = ∪
𝑁𝑓
𝑖=1𝜔𝑓,𝑖, 𝛺𝑐 = ∪𝑁𝑐

𝑖=1𝜔𝑐,𝑖 (2)

where 𝑁𝑓 and 𝑁𝑐 are the numbers of fractures and inclusions, respec-
tively. 𝜔𝑓,𝑖 or 𝜔𝑐,𝑖 is an individual fracture or inclusion, as shown in
Fig. 2.
3

The key point is to obtain the explicit expressions of 𝜔𝑓,𝑖 and 𝜔𝑐,𝑖
in Eq. (2). Here we provide an efficient way to represent the fractures
and inclusions based on the analytic geometry.

For convenience, we use the planar assumption of a fracture. As
displayed in Fig. 2, the radius 𝑅𝑖 of an 3D elliptical fracture 𝑖 along the
direction 𝛼 is generally given by (Swokowski, 1979; Qiu, 2017):

𝑅𝑖 =
1 + tan2 𝛼

(1∕𝑟𝑚𝑎𝑥,𝑖)2 + (tan 𝛼∕𝑟𝑚𝑎𝑥,𝑖)2
(3)

where 𝑟𝑚𝑎𝑥,𝑖 and 𝑟𝑚𝑎𝑥,𝑖 are the minor and major axes of the elliptical
fracture.

Then, we introduce the disk assumption of fractures (Mustapha
et al., 2011; Hyman et al., 2015; Huang et al., 2021). It assumes that
the shape of a fracture is a flat disk, which leads to 𝑟𝑚𝑎𝑥,𝑖 = 𝑟𝑚𝑖𝑛,𝑖 in
Eq. (3).

Consequently, to define a 3D fracture 𝑖, the key geometrical param-
eters should be given, as shown in Fig. 2, including the coordinates of
center point 𝑂𝑖(𝑥0𝑖 , 𝑦

0
𝑖 , 𝑧

0
𝑖 ), the radius 𝑅𝑖, the two azimuth angles 𝜑𝑖 and

𝜃𝑖.
The orientation of fracture 𝑖 is determined by the normal vector

𝐧𝑖, which is calculated by the two azimuth angles, 𝐧𝑖 = (𝐴𝑖, 𝐵𝑖, 𝐶𝑖).
The expressions of these components are 𝐴𝑖 = |𝐧𝑖| sin 𝜃𝑖 cos𝜑𝑖, 𝐵𝑖 =
|𝐧𝑖| sin 𝜃𝑖 sin𝜑𝑖 and 𝐶𝑖 = |𝐧𝑖| cos 𝜃𝑖.

The plane, where the fracture 𝑖 lies, is expressed by the plane
equation based on the normal vector 𝐧𝑖 (Swokowski, 1979; Qiu, 2017):

𝐴𝑖𝑥 + 𝐵𝑖𝑦 + 𝐶𝑖𝑧 +𝐷𝑖 = 0 (4)

where 𝐷𝑖 is the intercept of the plane, determined by the center point
and the normal vector of this fracture, 𝐷𝑖 = −

(

𝐴𝑖𝑥0𝑖 + 𝐵𝑖𝑦0𝑖 + 𝐶𝑖𝑧0𝑖
)

.
Therefore, we obtain the geometrical equation of the plane based

on analytic geometry:

𝑧 =
sin 𝜃𝑖 cos𝜑𝑖

cos 𝜃𝑖

(

𝑥0𝑖 − 𝑥
)

+
sin 𝜃𝑖 sin𝜑𝑖

cos 𝜃𝑖

(

𝑦0𝑖 − 𝑦
)

+ 𝑧0𝑖 (5)

In addition, to define the spatial range of a fracture, the boundaries
should be given. Here, as show in Fig. 2, we use a cylinder to confine
the range of a fracture in the plane. The equation of the cylinder
reads (Swokowski, 1979; Qiu, 2017):
‖

‖

‖

‖

‖

𝐞1 𝐞2 𝐞3
𝑥 − 𝑥0𝑖 𝑦 − 𝑦0𝑖 𝑧 − 𝑧0𝑖

‖

‖

‖

‖

‖

= 𝑅𝑖 (6)

‖

‖

𝐴𝑖 𝐵𝑖 𝐶𝑖 ‖

‖
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Fig. 4. Schematic of 3D intersected geometries and the arrangement of grids.
where 𝑅𝑖 is determined by Eq. (3). ‖.‖ is the 2-norm of matrix. 𝐞1, 𝐞2
and 𝐞3 are the three unit basis vectors of the global coordinate system,
as shown in Fig. 2.

For the inclusions, we apply the spherical assumption. It assumes
that the inclusions are spheres in 3D space. We employ the similar
notations in the above fracture description. The geometrical parameters
of an inclusion 𝑖 include the center point of the sphere 𝑂𝑖(𝑥0𝑖 , 𝑦

0
𝑖 , 𝑧

0
𝑖 ) and

the radius 𝑅𝑖, as shown in Fig. 2. The equation of inclusion 𝑖 reads:
(

𝑥 − 𝑥0𝑖
)2 +

(

𝑦 − 𝑦0𝑖
)2 +

(

𝑧 − 𝑧0𝑖
)2 ≤ 𝑅2

𝑖 (7)

2.2. Fracture generation and visualization

Eqs. (5) and (6) provide the explicit expressions of a fracture, and
Eq. (7) defines an inclusion. We use these expressions iteratively, until
𝑁𝑓 and 𝑁𝑐 , then all of the fractures and inclusions can be generated
and visualized.

The key parameters are obtained by the random number generator:

Rand(𝑥0𝑖 , 𝑦
0
𝑖 , 𝑧

0
𝑖 , 𝑅𝑖, 𝜑𝑖, 𝜃𝑖), 𝑖 = 1 ∼ 𝑁𝑓 (8)

According to the field investigations, the distribution of stochastic
fractures inside a geological domain follows the statistical laws (de
4

Dreuzy et al., 2013; Hyman et al., 2015), typically the Fisher distri-
bution, normal distribution and the logarithmic normal distribution.
Therefore, the generator Eq. (8) obeys the statistical laws, where dif-
ferent parameters are allowed to be assigned to different distribution
laws. We refer to literature (Hyman et al., 2016; Wu et al., 2021) for the
details. Several typical examples with different patterns are displayed
in Fig. 3.

2.3. Strategy of mesh partition

The unstructured grids are generated based on the Delaunay tetra-
hedrons and triangles (Shewchuk, 2002; Hyman et al., 2014). It follows
the conforming scheme, in which the high-dimensional cells (the matrix
and inclusion cells) are confined by the relative low-dimensional cells
(the fracture cells).

Especially, the treatment at the intersected fractures should be
drawn attention. According to the principle of conforming meshes, the
matrix cells should be arranged along the intersected line between
two crossing fractures. Otherwise, the overlapping between them will
happen, then the correct topological relation may be broken.

To solve this issue, we build the equation of the intersected line. As
shown in Fig. 4a, the two crossing fractures are labeled as 𝑖 and 𝑗, then
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Fig. 5. Schematic of intersected fractures in two special situations.
Fig. 6. Schematic of cell pairs and the parameters.
the intersected line is expressed by (Swokowski, 1979; Qiu, 2017):

(

𝐴𝑖 𝐵𝑖 𝐶𝑖
𝐴𝑗 𝐵𝑗 𝐶𝑗

)

⎛

⎜

⎜

⎝

𝑥
𝑦
𝑧

⎞

⎟

⎟

⎠

= −
(

𝐷𝑖
𝐷𝑗

)

, (𝑖 ≠ 𝑗) (9)

The vector 𝐦𝑝 parallel to this line is then obtained from Eq. (9),
as displayed in Fig. 4a. It reads 𝐦𝑝 =

(

𝐷𝑝, 𝐸𝑝, 𝐹𝑝
)

. The components
are determined by the normal vectors of these two crossing fractures,
𝐷𝑝 = 𝐵𝑖𝐶𝑗 − 𝐶𝑖𝐵𝑗 , 𝐸𝑝 = 𝐶𝑖𝐴𝑗 − 𝐴𝑖𝐶𝑗 and 𝐹𝑝 = 𝐴𝑖𝐵𝑗 − 𝐵𝑖𝐴𝑗 . Then, the
line is generated in the pre-processing stage to confine the cells in a
conforming way. This effect can be observed in Fig. 4a.
5

Similarly, the treatment on the intersected fracture and inclusion is
based on the equation of the intersected curve, as shown in Fig. 4b.
This equation can be determined by combining Eqs. (4), (6) and (7).
Therefore, the nodes are arranged along the intersected curve to ensure
the conforming grids. An example is illustrated in Fig. 4b.

After defining all the constraints and geometrical entries in the
computational domain, we could generate the grids. Fig. 3 illustrates
several different patterns. It proves that the matrix cells are arranged
along the fractures, where the fracture cells are placed at the interfaces
of each of the matrix cell pairs. Furthermore, to show this meshing
strategy is able to handle the extreme situations, typically where frac-
tures are intersected at a narrow angle and almost intersecting, Fig. 5
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Fig. 7. The crossing-fractured model and meshes with different resolutions.
Fig. 8. Grid convergence of the 3D model with respect to the reference solution.

illustrates the grids of intersected fractures in two special situations.
It is observed from Fig. 5b that grid refinement is carried out at the
position that intersected at a narrow angle. Therefore, the conforming
grids are arranged along the intersected fractures. These fractures
provide the internal boundaries, as a constraint, for grid generation.
As displayed in Fig. 5c, the finer grids are generated within the gap
between these two fractures, which are almost intersected.

3. Governing equations and numerical method

3.1. Governing equations

Fluid flow in porous media is controlled by the law of mass conser-
vation and Darcy’s law (LeVeque, 1992; Wesseling, 2001). The general
form of the governing equation reads:

𝜕 (𝜙𝜌)
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 𝜌𝑞 (10)

where 𝜌 is the density of fluid, 𝜇 the viscosity of fluid, 𝜙 the porosity
of the porous medium, 𝑞 the volumetric flux rate. The Darcy’s velocity
6

𝐮 in the medium, denoted 𝐮𝑚, is determined by the Darcy’s law:

𝐮𝑚 = −
𝐤𝑚
𝜇

∇𝑝𝑚 (11)

where 𝑝𝑚 is the fluid pressure within the rock bulk. 𝐤𝑚 is the permeabil-
ity tensor. For a heterogeneous medium, 𝐤𝑚 is expressed by 𝑘𝑖𝑗 , (𝑖, 𝑗 =
𝑥, 𝑦, 𝑧). For an isotropic medium, we denote 𝐤𝑚 = 𝑘𝑚𝐈, where 𝐈 is the
identity tensor.

In this work, we assume an incompressible fluid, therefore Eq. (10)
reduces to a simplified form ∇ ⋅𝐮𝑚 = 𝑞. Considering the flux interaction
of fracture–matrix, the flux exchange term is expressed by 𝐪𝑚𝑓 ⋅ 𝐧𝑓 ,
where 𝐪𝑚𝑓 is the exchange of volumetric flux rate (Martin et al., 2005;
Hyman et al., 2021). 𝐧𝑓 is the unit normal vector of the interface
between fracture–matrix.

Therefore, the governing equations of fluid flow in fractures are
written as (Martin et al., 2005; Hyman et al., 2021):

∇ ⋅ 𝐮𝑓 = −
(

𝐪𝑚𝑓 ⋅ 𝐧𝑓
)

𝐮𝑓 = −
𝑘𝑓
𝜇

∇𝑝𝑓
(12)

where 𝑘𝑓 is the permeability of fracture. 𝐮𝑓 and 𝑝𝑓 are the velocity and
pressure within the fractures.

Consequently, at the interface of fracture–matrix, 𝐪𝑚𝑓 ⋅ 𝐧𝑓 can be
calculated by the pressure gradient between the matrix and fracture.
The constraint required by mass conservation is naturally satisfied:

𝑞𝑖𝑉𝑖 =
𝑛𝑛𝑏𝑖
∑

𝑘=1
𝐮𝑘𝛥𝐴𝑘 (13)

where 𝛥𝐴𝑘 is the area of interface between a cell pair. 𝐮𝑘 is the velocity
on the interface. 𝑛𝑛𝑏𝑖 is the number of neighbors of cell 𝑖. 𝑉𝑖 is volume
of the cell. Therefore, the flux of interface 𝑘 is 𝐮𝑘𝛥𝐴𝑘, where 𝐮𝑘 is
calculated by the pressure gradient according to the Darcy’s law.

3.2. Models of fracture permeability

The permeability of fracture 𝑘𝑓 shown in Eq. (12) is related to the
characteristic dimension 𝐿 or the aperture 𝛥𝑎 of fracture. Here, we refer
to two different models based on the relations of 𝑘𝑓 − 𝐿 and 𝑘𝑓 − 𝛥𝑎,
respectively.
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Fig. 9. Velocity (left) and pressure (right) distributions of the crossing-fractured model.
Fig. 10. Grids and simulation results of EDFM (by DARSim) and the presented method.
The classical cubic law provides the commonly used aperture-
depended relation (Dippenaar and Van Rooy, 2016):

𝑘𝑓 = 𝛥𝑎2

12
(14)

This form is simple and easy to implement. However, some studies
have revealed that it needs corrections in some situations (Klimczak
et al., 2010). Therefore, the dimension-depended relation has been pro-
posed (Hyman et al., 2016). Here, we introduce the so-called correlated
power law:

𝑘𝑓 = 𝜆1𝐿
𝜆2 (15)

where 𝜆1 and 𝜆2 are the model parameters. In this work, as suggested
by Hyman et al. (2016), 𝜆1 and 𝜆2 are set to 1.3 × 10−9 and 0.5, re-
spectively. Based on the assumption of disk fracture, the characteristic
dimension 𝐿 is equal to the radius 𝑅.
7

Furthermore, a simplest model of fracture permeability is to assign
a given value �̄�𝑓 to each of the fractures:

𝑘𝑓 = �̄�𝑓 (16)

Obviously, it can be seen from Eq. (15) that each of the fractures
may have different 𝑘𝑓 , since the radius 𝑅 of each fracture is different.
While as shown by Eq. (14), 𝑘𝑓 is a constant if the aperture of each
fracture is assumed as the same value. We will study the effect of
different permeability models on hydraulic property in Section 4.

3.3. Numerical discretization

According to Eqs. (11), (12) and (13), the governing equations
of the porous medium with multiple fractures and inclusions can be
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Fig. 11. Comparison of the pressure distributions calculated by EDFM (by DARSim) and the presented method.
Fig. 12. Geometry of the random-fractured model and simulation results.
Fig. 13. Frequency distribution histograms of radius (left), aperture (middle) and orientation (right) of discrete fractures.
summarized as:

− ∇ ⋅
(𝐤𝑚

𝜇
∇𝑝𝑚

)

= 𝑞𝑚,

− ∇ ⋅
(𝑘𝑓

𝜇
∇𝑝𝑓

)

= −𝐪𝑚𝑓 ⋅ 𝐧𝑓
(17)

The governing equation of seepage in inclusions is the same as
that of the matrix, since they obey an unified numerical discretization
scheme. Note that fluid flow in the inclusions follows Darcy’s law in
this work. Permeabilities of the inclusions and the matrix are allowed
to be set to different values.

The primary unknown of Eq. (17) is fluid pressure (𝑝𝑚, 𝑝𝑐 and 𝑝𝑓 ),
where the subscripts 𝑚, 𝑐 and 𝑓 represent the matrix, inclusion and
fracture. In this work, numerical discretization is derived from the
Galerkin finite element scheme (Wang, 2003; Zienkiewicz et al., 2013).
For convenience, the unknown is denoted as 𝑝. The shape function is
𝜂 , therefore the expression is given, 𝑝 ≈ 𝑝 =

∑𝑛 𝜂 𝑝 , where 𝑛 is
8

𝑖 ℎ 𝑖=1 𝑖 𝑖
the total number of cells. Then, Eq. (17) is discretized cell-by-cell. This
formulation will lead to the two-point flux approximation (TPFA) if
the piece-wise constant function is selected (𝜂𝑖 = 1), as shown in the
following discussion.

For a cell 𝑖, as shown in Fig. 6, the volume is 𝑉𝑖, and the neighbors
are either fracture cells or matrix cells. The integral over cell 𝑖 reads:
𝑛𝑚
∑

𝑖=1
∫𝑉𝑖

−𝜂∇ ⋅
(𝐤𝑚

𝜇
∇𝑝

)

𝑑𝑉 = ∫𝑉𝑖
𝜂𝑞𝑚𝑑𝑉

𝑛𝑓
∑

𝑖=1
∫𝑉𝑖

−𝜂∇ ⋅
(𝑘𝑓

𝜇
∇𝑝

)

𝑑𝑉 = −∫𝑉𝑖
𝜂
(

𝐪𝑚𝑓 ⋅ 𝐧𝑓
)

𝑑𝑉

(18)

where 𝑛𝑚 and 𝑛𝑓 are the numbers of the matrix cells and fracture cells,
respectively.

We then convert the volume integral at the left side of Eq. (18) to
surface integral, to eliminate the divergence operation. Consequently,
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Fig. 14. Results of the random-fractured model. Velocity (top) and pressure (bottom) distributions at different slices along 𝑦-axis.
Fig. 15. The effect of fracture radius and aperture on the components of equivalent permeability tensor.
the discretized form for a matrix cell 𝑖 is expressed as:
𝑛𝑛𝑏𝑖
∑

∗=1
∫𝛾𝑖∗

−𝜂
(𝐤𝑚

𝜇
∇𝑝

)

⋅ 𝐧𝛾𝑖∗𝑑𝛾 = ∫𝑉𝑖
𝜂𝑞𝑚𝑑𝑉 (19)

where 𝛾𝑖∗ is the interface between cell 𝑖 and its neighbor ∗. The number
of neighbors for cell 𝑖 is 𝑛𝑛𝑏𝑖. 𝐧𝛾𝑖∗ is the unit vector that points to the
outward of interface 𝛾 , as illustrated in Fig. 6.
9

𝑖∗
For a fracture cell 𝑖, it reads:

𝑛𝑛𝑏𝑖
∑

∗=1
∫𝛾𝑖∗

−𝜂
(𝑘𝑓

𝜇
∇𝑝

)

⋅ 𝐧𝛾𝑖∗𝑑𝛾 = −∫𝑉𝑖
𝜂
(

𝐪𝑚𝑓 ⋅ 𝐧𝑓
)

𝑑𝑉 (20)

Applying Eqs. (19) and (20) to each of the cells, we use the finite
difference scheme to approximate the pressure gradient ∇𝑝. Note that
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Fig. 16. The parallel-fractured models. Pressure profiles (top) and velocity vector field (bottom). Note that the rock matrix is hidden for visualization.
volume of cell 𝑖 is 𝛥𝑉𝑖. The shape function 𝜂𝑖 equals to 1 once the piece-
wise constant function is selected. Therefore, the fully discretized forms
of the matrix cells and fracture cells are expressed as:
𝑛𝑛𝑏𝑖
∑

∗=1
𝑇𝑖∗

(

𝑝𝑚𝑖 − 𝑝∗
)

= 𝑞𝑚𝑖𝛥𝑉𝑖

𝑛𝑛𝑏𝑖
∑

∗=1
𝑇𝑖∗

(

𝑝𝑓𝑖 − 𝑝∗
)

= −
(

𝐪𝑚𝑓𝑖 ⋅ 𝐧𝑓𝑖
)

𝛥𝑉𝑖

(21)

where 𝑇𝑖∗ is the transmissibility between cell 𝑖 and cell ∗. 𝑇𝑖∗ is
calculated by the half harmonic average 𝑇𝑖∗ = 𝛼𝑖𝛼∗∕

(

𝛼𝑖 + 𝛼∗
)

as sug-
gested in literature (Karimi-Fard et al., 2004; Stefansson et al., 2018).
The sub-transmissibility 𝛼𝑖, in the case of anisotropic permeability,
reads (Stefansson et al., 2018):

𝛼𝑖 =
𝛥𝐴𝑖∗

(

𝐧𝛾𝑖∗ ⋅ 𝐤𝑖
)

𝐃𝑖∗ ⋅ 𝐃𝑖∗
⋅ 𝐃𝑖∗ (22)

where 𝐃𝑖∗ is the distance vector from center of cell 𝑖 to the interface
sharing with cell ∗, as shown in Fig. 6. 𝛥𝐴𝑖∗ is the area of the interface.
We refer to Karimi-Fard et al. (2004) for the details of extension to
intersected fractures.

After assembling all of the cells into one unified matrix, the alge-
braic system is written as:

⎡

⎢

⎢

⎣

𝐓𝑚𝑚 𝐓𝑚𝑓 𝐓𝑚𝑐
𝐓𝑓𝑚 𝐓𝑓𝑓 𝐓𝑓𝑐
𝐓𝑐𝑚 𝐓𝑐𝑓 𝐓𝑐𝑐

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐩𝑚
𝐩𝑓
𝐩𝑐

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐐𝑚
𝐐𝑓
𝐐𝑐

⎤

⎥

⎥

⎦

(23)

where [𝐩𝑚,𝐩𝑓 ,𝐩𝑐 ]T is the unknown vector. 𝐐𝑚, 𝐐𝑓 and 𝐐𝑐 are the terms
induced by the source. The coefficient matrix 𝐓𝑖𝑗 (𝑖, 𝑗 = 𝑚, 𝑓 , 𝑐) is
composed by the transmissibility Eq. (22).

4. Numerical results and discussion

Numerical tests are conducted in this section to study the hy-
draulic properties of 3D fractured porous media. First, a crossing-
fractured model and a single-fractured model are simulated for grid
convergence evaluation and numerical validation. Then, the effects
of heterogeneity and fracture parameters on seepage characteristics
are investigated. Moreover, characteristics of a fractured medium with
complex structures are analyzed.
10
4.1. Grid convergence evaluation and numerical validation

As shown in Fig. 7, two crossing fractures are placed at the center of
the domain. The size of the domain is 100 m × 100 m × 100 m. The radius
𝑅 of these two fractures is 25 m. The aperture 𝛥𝑎 of fracture is 0.1 mm.
We assume an isotropic medium in this test, therefore the permeability
tensor of the rock matrix is 𝐤𝑚 = 𝑘𝑚𝐈, where 𝑘𝑚 = 10−15 m2. To simulate
the fractures with highly conductive and low-permeability properties,
the permeability of all fractures is set to 𝑘𝑓 = 10−10 and 10−17 m2.

The boundary conditions are prescribed-pressures on the right and
left surfaces of the model, as shown in Fig. 7. The inlet is 𝑝𝑖𝑛 = 6×106 Pa,
and the outlet is 𝑝𝑜𝑢𝑡 = 4 × 106 Pa. Other surfaces are impermeable.

Seepage in the fractured medium is simulated with different grid
resolutions ℎ. The meshes, with ℎ = 1.0, 0.5, 0.1 and 0.05, are displayed
in Fig. 7. For instance, the model is partitioned using 112 397 tetrahe-
drons for the matrix, 840 triangles for the fractures and 21 031 nodes
if ℎ = 0.1, and 8669 tetrahedrons, 2250 triangles and 1951 nodes if
ℎ = 0.5. The convergence performance is provided in Fig. 8. The error
𝜖ℎ is defined by:

𝜖ℎ =
𝑁𝑝
∑

𝑖=1

‖

‖

‖

𝑃𝑖 − 𝑝ℎ𝑖
‖

‖

‖2
‖

‖

𝑃𝑖
‖

‖2
(24)

where 𝑃𝑖 is the reference solution. 𝑝ℎ𝑖 is the solution calculated by
resolution ℎ. 𝑁𝑝 is the number of nodes selected to calculate the error.

As displayed in Fig. 8, it appears that the error gradually decreases
with the increase of grid resolution. Furthermore, fracture permeability
𝑘𝑓 shows an influence on convergence performance. The fractures with
low-permeability lead to a relative higher error than the conductive
fractures. The simulation results calculated by ℎ = 0.1 are shown in
Fig. 9. It shows that the presence of fractures influences the pressure
distribution as well as the velocity field. The velocity magnitude around
the fractures is greater than that of in the rock matrix if the fractures
play the role of conductive pathways.

Furthermore, to compare the simulation results obtained by our
method with that of an existing method, a single-fractured model is
created for this purpose. The computational domain and boundary
conditions are the same as the above crossing-fractured model. As
shown in Fig. 10, the single-fractured is a square with size 50 m×50 m,
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Fig. 17. The parallel-fractured models with multiple size fractures. Pressure profile (top) and velocity vector field (bottom). Note that the rock matrix is hidden for visualization.
Fig. 18. The orthogonal-fractured model. Pressure profiles and the slice contours (top). Velocity vector field and the slice contours (bottom).
which is placed at the center of this domain with an inclined angle 45◦.
Permeabilities are 𝑘𝑓 = 10−10 m2 and 𝑘𝑚 = 10−15 m2. The simulation
results calculated by the open source software DARSim (Hajibeygi
et al., 2011; Ţene et al., 2017; Wang et al., 2022) are selected as
a comparison to the results obtained by our method. The embedded
discrete fracture model (EDFM) in DARSim uses the structured grids,
where the grids of fracture and the matrix are independent, as displayed
in Fig. 10a. The gravity effect is neglected in this test. Simulation results
are shown in Fig. 10b. It demonstrates a good matching between the
solutions calculated by the presented method and EDFM. In addition,
Fig. 11 provides the additional results to illustrate this point. The results
of comparison prove that the presented method is reliable and accurate.
11
4.2. A fractured porous medium with different geometrical patterns

To investigate the effect of geometrical parameters of fractures, the
random-fractured model and the parallel-fractured model are simulated
with different radius, orientation and aperture distributions. The size
of this domain and boundary conditions are the same as the settings in
Section 4.1.

The random-fractured model is displayed in Fig. 12. Both the frac-
tures and the rock matrix are meshed as shown in this figure, therefore
the flux connection of matrix-fractures is described by the governing
equations of fluid flow in fractured porous model Eq. (17). We assign
the randomly distributed radius 𝑅 and aperture 𝛥𝑎 to each of the
fractures. Therefore, the fracture permeability depends on the aperture,
where the 𝑘 − 𝛥𝑎 relation Eq. (14) is adopted.
𝑓
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Fig. 19. The orthogonal-fractured model with multiple size fractures. Pressure profiles and the slice contours (top). Velocity vector field and the slice contours (bottom).
Fig. 20. The effect of fracture orientation on permeability.
Fig. 13 provides the frequency distribution histograms of these
parameters. The number of fractures distributed in the medium is
𝑁𝑓 = 200. Furthermore, Fig. 13 illustrates the frequency distribution
histograms of fracture orientation, where the radial-axis represents the
number of fractures and the angular-axis is the orientation. We compare
the distributions of velocity and pressure at different slices, as displayed
in Fig. 14. The presence of fractures induces the conductive pathways.
It is appears that the velocity magnitude in the fracture medium is
on the order of 1 × 10−9 ∼ 10−7 m∕ s, which is consistent with the
experimental studies (Jung et al., 2012).

To analyze the effect of radius 𝑅 and aperture 𝛥𝑎 on permeability,
we compare the variation of the components of the equivalent perme-
ability tensor with respect to the radius, as shown in Fig. 15a. The
constant aperture is equal to 0.1 mm in this case, while the distribution
of the random aperture is shown in Fig. 13. In addition, the comparison
between the random radius and constant radius is shown in Fig. 15b,
where the constant radius is set to 15 m.

A fractured medium with parallel fractures and orthogonal fractures
is simulated. We select different orientations of the fractures, 𝜃 = 0◦, 45◦

and 90◦. The simulation results are shown in Fig. 16 for constant
radius and Fig. 17 for random radius. In addition, the orthogonal
fractures are simulated with different size of the fractures, as displayed
in Figs. 18 and 19. The slice contours show that the effect of large-size
fractures, on pressure distribution as well as the velocity magnitude, is
relatively larger than that of the small-size fractures, due to the large-
size fractures play a dominant role in the seepage process. We compare
12
the components of the equivalent permeability tensor, as illustrated in
Fig. 20. Note that the inlet and outlet are imposed on the left and right
surfaces, respectively. Therefore, the flow direction is along 𝑧-axis. The
orientation of the parallel fractures is measured with respect to 𝑧-axis.
Consequently, 𝑘𝑥𝑥 and 𝑘𝑧𝑧 are relatively larger than 𝑘𝑦𝑦 in the situation
of 𝜃 = 0◦. Similarly, 𝑘𝑥𝑥 and 𝑘𝑦𝑦 are relatively larger than 𝑘𝑧𝑧 in the
situation of 𝜃 = 90◦.

4.3. The effects of heterogeneity and permeability models

To analyze the effect of hydraulic property on fluid flow, the ran-
dom permeability fields are generated to reproduce the heterogeneous
characteristic, as shown in Fig. 21. Boundary conditions are the same
as in Section 4.2. The aperture of fractures is set to 0.1 mm. We
compare the pressure distribution along the flow direction, as shown in
Fig. 22. It shows that the orientation of fractures influences the pressure
distribution. Especially, it is observed that the curve of 𝜃 = 0◦ shows
a flat shape in the middle. The reason is that the parallel fractures
play the role of conductive pathways, therefore the fluid directly flows
through the fracture networks.

Furthermore, the permeability model of fractures has influence
on pressure distribution. We simulate seepage using three different
permeability models, namely the cubic law Eq. (14), the correlated
power law (15) and the random permeability show in Fig. 21. We
calculate the pressure deviation of these three models with respect to
the constant model Eq. (16). The results are shown in Fig. 22. It shows
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Fig. 21. Permeability field of the heterogeneous fractured porous medium.
Fig. 22. Pressure distribution along a survey line crossing the domain (left). Pressure deviation induced by different permeability models with respect to the constant model (right).
that the random model exhibits a relative large deviation compared to
other models, while the solutions calculated by the cubic law and the
correlated power law are very close.

The effect of heterogeneity on pressure distribution is illustrated in
Fig. 23. It shows that the presence of heterogeneous permeability, as
shown in Fig. 21, produces a small fluctuation on pressure distribution.
However, the tendencies of pressure variation in the situations of
heterogeneity and homogeneity are very close. Therefore, the influence
of heterogeneity on seepage is relatively smaller than that of fracture
orientation.

4.4. A fractured porous medium with complex structures

In practice, there are many discrete fractures and inclusions dis-
tributed inside the geological fields (Huang et al., 2011; Aliouache
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et al., 2019; Wang et al., 2022c). They have significant influence on
fluid flow in the fractured porous medium. In this section, we simulate
three different patterns with the complex structures. As shown in
Fig. 24, Patterns 1 and 2 consider both fractures and inclusions. The
radii of inclusions 𝑅𝑐 and fractures 𝑅𝑓 in Pattern 1 are 5 ∼ 10 m. In
Pattern 2, both 𝑅𝑐 and 𝑅𝑓 are 10 ∼ 15 m. In Pattern 3, 𝑅𝑐 is 6 ∼ 8 m.

The size of the domain and the boundary conditions are the same
as in Section 4.3. The permeabilities of the inclusions and fractures are
set to 𝑘𝑐 = 1 × 10−10 m2 and 𝑘𝑓 = 1 × 10−10 m2, respectively. The
permeability of the rock matrix is 𝑘𝑚 = 1 × 10−15 m2. Therefore, the
fractures and inclusions play the role of conductive pathways. Both the
fractures, inclusions and the matrix are meshed, as displayed in Fig. 24.
It can be seen that the velocity magnitude in the fractures is relatively
larger than in the inclusions. The reason is that the pressure gradient
around the interface between fractures and matrix is greater than that
of around the interface between inclusions and matrix.
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Fig. 23. Comparison of pressure distribution between heterogeneous and homogeneous models with different fracture orientations.
Fig. 24. Pressure distribution (top row) and velocity vector field (bottom row) of the model with three different patterns.
To analyze the effect of fractures and inclusions on permeability,
the components of the equivalent permeability tensor are calculated,
as shown in Fig. 25. It appears that 𝑘𝑥𝑥, 𝑘𝑦𝑦 and 𝑘𝑧𝑧 are increased
with the increase of fracture number. However, the increasing rate of
permeability in Pattern 3 is relatively smaller than in Patterns 1 and
2, since the effect of inclusions on seepage is smaller than that of the
fractures.

Then, we generate the heterogeneous permeability field, which is
the same as Fig. 21. Fig. 26 provides the comparison of pressure
distribution between the heterogeneous model and the homogeneous
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model. It is found that the oscillation of pressure is induced by the het-
erogeneity. The discontinuities of the pressure distribution is produced
by the presence of inclusions and fractures.

Later, in Pattern 3, the permeability of the rock matrix 𝑘𝑚 is set
to 1 × 10−15 m2, while that of the inclusions 𝑘𝑐 is set to two different
values 1 × 10−10 and 1 × 10−20 m2, to simulate the conductive pathways
and the barriers. We compare the distribution of velocity along the flow
direction in these two situations, as shown in Fig. 27. It appears that the
variation of velocity magnitude shows a regular shape, since the pres-
ence of the inclusions influences pressure distribution. The inclusions
with low-permeability produce a low speed of seepage, which is on the
order of 1 × 10−8 m∕s. The velocity magnitude reaches the maximum
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Fig. 25. Variation of the components of equivalent permeability tensor with different patterns.
Fig. 26. Comparison of pressure distribution along the diagonal of the model with different patterns.
Fig. 27. Comparison of velocity magnitude distribution of low-permeability and
conductive inclusions.

value at the center of the inclusions if the inclusions are modeled as
the conductive pathways.

5. Conclusions

This work investigates numerical modeling approach for seepage
in heterogeneous porous media with complex structures, especially the
discrete fractures and the inclusions. Based on the presented method,
we analyze the characteristics of heterogeneous fractured porous me-
dia, to study the effect of different patterns of these structures on
seepage process. The main concluding remarks are drawn below.

(1) To generate the randomly distributed geometrical structures, a
modeling approach of the 3D fractures and inclusions is introduced
based on the analytic geometry. Therefore, a fractured porous medium
15
is decomposed into three components, namely the rock matrix, frac-
tures and inclusions. The geometrical parameters, including the radius,
coordinates and orientation of discrete fractures, are generated by a
statistical approach.

(2) A meshing strategy is introduced to partition the geometry.
Especially, the treatment on intersected elements is discussed. The
extreme situations, typically where fractures are intersected at a narrow
angle and almost intersecting, are discussed to show the capacity of
this meshing strategy. On the other hand, the governing equations of
fluid flow are discretized by the TPFA, in which the flux connections
of fractures, inclusions and the rock matrix are considered.

(3) A series of numerical tests is carried out to analyze the hydraulic
characteristics of the 3D fractured porous media. The crossing-fractured
model is simulated with different grid resolutions, to evaluate the
convergence performance of this modeling method. A single-fractured
model is used to validate the developed conforming model by compar-
ing simulation results obtained using the nonconforming EDFM. Next,
models with random and parallel fractures are simulated to investigate
the effect of aperture and radius of fractures on seepage.

(4) The effect of the heterogeneity and permeability model on seep-
age is studied. It shows that the random model exhibits a relative large
deviation compared to other models, while the solutions calculated by
the cubic law and the correlated power law are very close. Finally, the
hydraulic properties of a fractured porous medium with complex struc-
tures are investigated. It appears that the presence of heterogeneous
permeability produces small fluctuations on pressure distribution. The
velocity magnitude in the fractures is relatively larger than in the
inclusions. The reason is that the pressure gradient around the interface
between fractures–matrix is greater than that of around the interface
between inclusions–matrix. The velocity magnitude reaches the maxi-
mum value at the center of the inclusions if the inclusions are modeled
as the conductive pathways.

Several extensions of the current framework deserve further in-
vestigations. Especially, adaptation of a grid optimization approach
is required in order to address a wide range of cases in which k-
orthogonality is not preserved (Karimi-Fard, 2008; Karimi-Fard and
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Durlofsky, 2016). Furthermore, extensions to hydro-mechanical cou-
pling and fracture propagation processes are key aspects in dealing with
deformation within the porous structure. Therefore, another promising
extension is to combine the discrete element method with the presented
continuum-scale model (Yan et al., 2018; Knight et al., 2020), to
achieve the simulation of hydro-mechanical processes in 3D deformable
fractured media with complex structures.
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