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Abstract Biogrout is a soil improvement method in which
microorganisms are used to produce the solid calcium car-
bonate, which strengthens the soil by connecting soil par-
ticles. Microorganisms in the soil are supplied with some
nutrients, which they convert into calcium carbonate. These
nutrients and the side product of the reaction are dissolved
in water. Because of these chemicals, the fluid is denser
than water. Moreover, the density changes as a result of the
varying composition. This changing density has a signifi-
cant impact on the flow. Since the composition and hence,
the density is not known beforehand, a careful choice of
the (pressure) boundary conditions, especially on the out-
flow boundary, is needed. In this article, several methods
to approximate the pressure on the outflow boundary are
compared. The method that we propose also works for an
unstructured mesh, which gives a large freedom in the mesh
generation.

Keywords Biogrout · Pressure boundary condition ·
Transport in porous media · MICP

1 Introduction

Biogrout is a soil improvement method, in which microor-
ganisms are used to produce calcium carbonate (CaCO3).
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This solid strengthens the soil by connecting soil particles.
The microorganisms are already present in the soil [10] or
injected into it [17]. The microorganisms are supplied with
urea (CO(NH2)2) and calcium chloride (CaCl2). The micro-
bial enzyme urease provides the hydrolysis of urea. The
hydrolysis reaction equation is given in [17]:

CO(NH2)2 + 2H2O
bacteria−→ 2NH+

4 + CO2−
3 . (1)

The reaction products of this reaction are ammonium
(
NH+

4

)
and carbonate

(
CO2−

3

)
. In the presence of calcium

ions
(
Ca2+)

, the carbonate precipitates as calcium carbonate
(CaCO3):

Ca2+(aq)+ CO2−
3 (aq) → CaCO3(s). (2)

Combining reactions (1) and (2) gives the overall reaction
equation:

CO(NH2)2(aq)+ Ca2+(aq)+ 2H2O(l) → 2NH+
4 (aq)+ CaCO3(s).

(3)

The urea and calcium chloride are dissolved in water,
as well as the side product ammonium chloride (NH4Cl).
Because of these chemicals, the fluid is denser than pure
water. In [12], the following relation between the density of
the solution ρl (at 20 ◦C) and these concentrations is used:

ρl = 1, 000 + 15.4996Curea + 86.7338CCa2+ + 15.8991CNH+
4 . (4)

In this relation, Curea is the concentration of urea,
CCa2+

is the concentration of calcium chloride and CNH+
4

is the concentration of ammonium chloride, each with
M(=kmol/m3) as a unit. This relation has been found, using
[16]. From the tables of the individual species, a linear rela-
tion between the various concentrations and the density has
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been found for a single species dissolved in water. How-
ever, in the Biogrout case, several species are present in
the fluid. We assume that the contributions of the various
species can be added in the case that more than one species
are dissolved. Experimental validation showed that this rela-
tion gives a good description of reality [15]. In this article,
Eq. (4) is used in the simulations.

Due to biochemical reaction (3), the solution has a vary-
ing composition and hence, also the density changes. This
changing density has an effect on the water pressure. Flow
boundary conditions are often given in terms of pressure,
especially on the outflow boundaries, where usually a fixed
head is applied to prevent desaturation of the soil. Unsatu-
rated soil can occur when a fixed flow rate is prescribed. A
fixed head gives a hydrostatic pressure boundary condition.
At the injection, the composition of the solution is usu-
ally known, but at the extraction, the density is not known
beforehand. Therefore, a careful choice of the boundary
condition is necessary.

In this article, several methods to calculate the pressure
on the extraction boundary are presented and compared. The
last method, which is most robust, works for any finite-
element mesh, even including unstructured grids. This gives
a large freedom in the mesh generation.

2 Mathematical model

In this section, we give the model equations with the initial
and boundary conditions for the model.

2.1 Model equations

In this subsection, the model equations for the Biogrout pro-
cess are presented. For a derivation and a more thorough
discussion, we refer to [12].

To model the concentration of the aqueous species (urea,
calcium chloride and ammonium chloride), we use an
advection–dispersion-reaction equation:

∂(θCi)

∂t
= ∇ · (θDi · ∇Ci)−∇ · (qCi)+ niθrhp. (5)

In this equation, θ is the porosity, D is the dispersion ten-
sor, q is the Darcy velocity, ni is a constant that deals with
the stoichiometry in the biochemical reaction Eq. (3) and
rhp is the reaction rate of the production of calcium carbon-
ate. From the stoichiometry of reaction (3), the values of ni
for the various aqueous species are given by: nurea = −1,
nCa2+ = −1 and nNH+

4
= 2.

The left-hand side of Eq. (5) models the accumulation. In
the right-hand side, we have terms for dispersion/diffusion,
for advection and for the biochemical reaction (3).

In this paper, we use the following relation for the
reaction rate rhp in Eq. (3):

rhp = vmax
Curea

Km,urea + Curea . (6)

Here, vmax is the bacterial conversion rate constant for a
(given) specific bacterial density and Km,urea ≥ 0 is the
saturation constant. In this paper, we use a bacterial con-
version rate that is constant over the whole domain, thereby
neglecting any variations of temperature, bacterial density
or pH over the time and space. The concentration of bac-
teria can also be simulated, using the model proposed in
[13]. This model describes the placement of bacteria: bacte-
ria are injected in the soil. After the injection of the bacteria,
a pulse with fixation fluid is injected. This fixation fluid has
less retardation than the bacterial pulse and will overtake
the bacterial pulse, fixating the bacteria in the subsoil. Since
the focus of this paper is on the pressure boundary condi-
tion, we use this simplified reaction rate, which implies a
homogeneous distribution of bacteria.

It is assumed that calcium carbonate is not transported.
Hence, there is only an accumulation term from the reaction
term in the differential equation for the calcium carbonate
concentration:

∂CCaCO3

∂t
= mCaCO3θrhp. (7)

In this equation, CCaCO3 is the concentration of calcium car-
bonate (in kilograms per cubic meter) and mCaCO3 is the
molar mass of calcium carbonate, which is used to convert
moles into mass.

The solid calcium carbonate that is formed in the
pores causes a decrease in porosity. The difference
(CCaCO3(t, x) − CCaCO3(0, x)) gives the amount of cal-
cium carbonate that has been formed per unit of volume in
time period t . Division by the density of calcium carbon-
ate ρCaCO3 gives the decrease in pore volume per unit of
volume. That leads to the following relation between the
calcium carbonate concentration and the porosity:

θ(t, x) = θ(0, x)− CCaCO3(t, x)− CCaCO3(0, x)
ρCaCO3

. (8)

For the flow, we use the continuity equation, that was
derived in [14]. This differential equations is an adaptation
of the differential equation derived in [12], since the differ-
ential equation in [12] does not conserve mass. It is based on
the assumption that reaction (3) does not influence the total
amount of liquid volume, which turned out to be untrue. The
adapted differential equation is given by:

∇ · q = Kθrhp. (9)

The constant K represents the amount of volume that is pro-
duced per kilomole formed calcium carbonate by reaction
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(3) and it has been defined as

K :=
(
mCaCO3

ρCaCO3

− (1 − Vs)

)
. (10)

This constant deals with two phenomena. When reaction
(3) takes place, various species disappear from the solu-
tion and therefore the liquid volume decreases. On the other
hand, due to the same reaction, the solid calcium carbon-
ate is formed, which causes a decrease in pore space. The
decrease in pore space per kilomole formed calcium carbon-
ate is

mCaCO3
ρCaCO3

, and the decrease in liquid volume per kilomole

formed calcium carbonate is 1 − Vs . These two phenomena
only partly cancel each other.

As a relation between the flow and the pressure p,
Darcy’s law is used [18],

qx = −kx

μ

∂p

∂x
, (11)

qy = −ky

μ

∂p

∂y
, (12)

qz = −kz

μ

(
∂p

∂z
+ ρlg

)
. (13)

In Darcy’s law, ki is the intrinsic permeability in the various
coordinate directions, i ∈ {x, y, z}, μ is the viscosity of the
fluid, ρl is the density of the fluid and g is the gravitational
constant.

The Kozeny–Carman equation is used to determine the
intrinsic permeability. This equation is an empirical relation
between the intrinsic permeability and the porosity, that is
commonly used in ground water flow modelling (see [2]):

k = kx = ky = kz = (dm)
2

180

θ3

(1 − θ)2
. (14)

In this relation, dm is the mean particle size of the soil.
Substituting Eqs. (11), (12) and (13) into Eq. (9), using

relation (14), gives a partial differential equation for the
pressure. This partial differential equation is solved to com-
pute the flow pattern if the boundary conditions are given
in terms of pressure, or if density differences influence the
flow:

∇ · q = ∇ ·
(
− k

μ
(∇p + ρlgez)

)
= Kθrhp. (15)

Here, ez is the unit vector in vertical direction, taken positive
upwards.

2.2 Experimental set-up and initial and boundary conditions

As a model experiment, we take the 100-m3 experiment as
reported in [9]. The configuration is shown in Fig. 1. A con-
crete box (8 m × 5.6 m × 2.5 m) is filled with sand and
fully saturated. Three injection wells (left) and three extrac-
tion wells (right) are used to flush the liquids through the
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Fig. 1 Set-up of the experiment. Injection lances are denoted by �in
and the extraction lances by �out. The other boundaries (�closed) are
closed

sand body. The distance between injection and extraction is
5 m. The other boundaries are closed.

Initially, the concentration of calcium carbonate, urea,
calcium and ammonium are equal to zero and the porosity
equals some constant θ0.

Table 1 displays the boundary conditions for the vari-
ous concentrations and the flow. On the inflow boundary,
we prescribe the inflow velocity and the flux. On the closed
boundary, there is no flow perpendicular to the boundary
and hence the flux over the boundary equals zero. On the
outflow boundary, we prescribe the pressure and for the
concentrations an advective flux is assumed. Due to the
gravitational force, it is required that each part of the out-
flow boundaries is part of a vertical plane. In the extraction
wells, at a certain depth (equal to the top of the sand body),
a pump has been installed, which keeps the water level in
the well at a fixed position. Note that the container is cov-
ered with a watertight foil, which is loaded with another
layer of sand. This makes it possible to create an over-
pressure around the injection wells, which results into flow
from injection to extraction. Since the resistance to flow in
the extraction wells is very low, we assume a hydrostatic
pressure on its boundaries, see for example [2]. That leads
to the following differential equation on the surface of the
extraction boundaries:

∂p

∂z
= −ρlg, (16)

with at the height of the pump (at z = 2.5 m)

p(2.5) = patm, (17)

in which patm is the atmospheric pressure. Integration of
Eq. (16), combined with boundary condition (17), gives
the following equation for the pressure for all points z on
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the surface of the extraction boundaries, for which holds
0 ≤ z ≤ 2.5 m :

p(x, y, z) = patm +
∫ 2.5

z

ρl(x, y, z̄)gdz̄, (18)

see also Table 1.
To compute the pressure given by Eq. (18), all the nodes

of the mesh should be positioned on vertical lines. On
these lines, the x- and y-coordinates are constant, while the
z-coordinate is variable. Over these lines, the integral in
Eq. (18) is computed, which gives the pressure at all nodes
on these lines.

The requirement that all the nodes are on certain verti-
cal lines pats a severe requirement on the mesh generation.
Another possibility, which also allows unstructured meshes,
is solving differential Eq. (16) with a finite element method.
In that case, the partial differential equation is solved on a
(2D) manifold as a boundary condition for a 3D domain.
Some examples from literature in which differential equa-
tions are solved on manifolds are in [3, 5–7].

3 Numerical methods

In this section, it is explained which numerical methods
are used to solve the partial differential equations in the
3D domain, Eqs. (5) to (15), as well as the equations for
the pressure boundary condition, Eq. (16) and alternatively
Eq. (18).

Equations (5), (11), (12), (13) and (15) are solved using
the Standard Galerkin Finite Element Method. These equa-
tions are multiplied by a test function η and integrated over
the domain � to derive the weak formulation. For the time
integration of Eq. (5), an implicit scheme is used. Since
the reaction rate rhp is non-linear in the urea concentration,
Newton’s method is used to calculate the urea concentration.
Since the differential equation for the calcium carbonate
concentration (7) is an ordinary differential equation in each
node, the finite element method is not used to solve Eq. (7).
An implicit time integration method is used to solve this
equation. For more details about the numerical methods to
solve these equations, we refer to [11] and [12], where this
has been reported in more detail.

In this article, the pressure on the outflow boundary is
calculated in three different ways. The first two methods
involve a calculation, based on Eq. (18). In the first method
(method 1), the integral in Eq. (18) is approximated using
the Lower Riemann Sum (see [1]). This is a first-order
method. Let n be the number of nodes on one of the verti-
cal lines. The nodes on this line are ordered in the following
way: 0 = z0 < z1 < .... < zn−1 < zn = 2.5. Then, Eq. (18)
is approximated by:

p(x, y, zj ) ≈ patm +
n−1∑

i=j

gρl(x, y, zi+1)(zi+1 − zi). (19)

This sum is calculated for each node on each vertical line.
In the second method (method 2), the second-order trape-

zoid rule is used to approximate (18), see [1]. Using the
same notation as for the Lower Riemann Sum, we get the
following approximation:

p(x, y, zj ) ≈ patm +
n−1∑

i=j

g
ρl(x, y, zi )+ ρl(x, y, zi+1)

2
(zi+1 − zi).

(20)

This sum is calculated for each node on each vertical line.
As a third method (method 3), the pressure on the bound-

ary is calculated, by solving Eq. (16) subject to boundary
condition (17). For this calculation, the Standard Galerkin
Finite Element Method is used. To derive the weak for-
mulation, Eq. (16) is multiplied by a test function η and
integrated over the surface of the outflow boundary �out:
∫

�out

∂p

∂z
ηdS = −

∫

�out

ρlgηdS. (21)

The pressure p is approximated by

p ≈
N∑

j=1

pjϕj , (22)

in which ϕj is a linear basis function and where pj denote
the pressure approximations on nodes on the boundary. The
z-derivatives of the basis functions are determined after a
mapping to the (x − z)-plane. The integral over the outflow
boundary is approximated by the sum of the integrals over
the elements. The Newton–Cotes quadrature rules have been
used to develop the element matrices and vectors. Triangu-
lar boundary elements have been used. Differential Eq. (16)
with boundary condition (17) can be considered as an initial

Table 1 Boundary conditions for the various concentrations and the flow

�in �out �closed

Curea (Dθ∇C − qC) · n = qincin (Dθ∇C) · n = 0 (Dθ∇C − qC) · n = 0

CCa2+
(Dθ∇C − qC) · n = qincin (Dθ∇C) · n = 0 (Dθ∇C − qC) · n = 0

CNH+
4 (Dθ∇C − qC) · n = 0 (Dθ∇C) · n = 0 (Dθ∇C − qC) · n = 0

q −q · n = qin p(x, y, z) = patm + ∫ 2.5
z ρl(x, y, z̄)gdz̄ q · n = 0;
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Table 2 Comparison of the three pressure calculation methods with the analytical solution on a structured mesh for a linear relation between the
depth and the density

Number of Method 1 Method 2 Method 3

elements Error α Computing Error α Computing Error α Computing

time (s) time (s) time (s)

40 613 1.00 0.0005 0 0.0005 302 1.93 0.0006

160 307 1.00 0.0008 0 0.0008 79 1.89 0.0013

640 153 1.00 0.0021 0 0.0018 21 1.89 0.0036

2,560 77 1.00 0.0035 0 0.0037 5.8 1.95 0.0193

10,240 38 1.00 0.0113 0 0.0115 1.5 1.97 0.1335

40,960 19 0.0471 0 0.0478 0.38 1.7352

The α-factor is determined from the (unrounded) errors of two subsequent meshes, using Eq. (40). The computing time (average of 10 simulations)
for the various methods is also given

value problem. Using the Standard Galerkin Finite Element
Method and choosing η = ϕi for i ∈ {1, · · · , N} as a
test function will lead to stability problems. Inspired by the
Streamline-Upwind/Petrov-Galerkin (SUPG) method, see
[8], we choose as a test function: η = ϕi − hξ

2
∂ϕi
∂z

, for
i ∈ {1, · · · , N}. In this equation, h is some representative
distance in the element and ξ is some constant. In case of
application on a surface, we choose for h:

h :=
√

2A

nel
, (23)

in which A is the total surface of the domain and nel is the
number of elements on the surface. As a value for ξ , we take
ξ = 10−5. As differential Eq. (16) is similar to a stationary
advection equation, the SUPG method will introduce some
artificial diffusion, which stabilizes the system. If the SUPG
method is not used, then the discretization matrix might
have an eigenvalue that is equal to zero.

In this paragraph, we do some analysis to investigate the
influence of the value of ξ on the differences in eigenvalues

of the system with SUPG stabilization and the system with-
out SUPG stabilization, applied on a surface. Let H be the
matrix that is used to solve the system without SUPG sta-
bilization and Ĥ (hξ) the matrix for the system with SUPG.
Both matrices are n × n matrices. The entries of matrix
Ĥ (hξ) are given by Ĥij (hξ) = Hij + hξ�Hij and hence,
Ĥ (ε) = H + ε�H , with ε = hξ . The ε�H part in
the matrix accounts for the SUPG stabilization. Further, let
(λ, v) be an eigenpair of H (Hv = λv) and let (λ(ε), v(ε))
be an eigenpair of Ĥ (ε) (Ĥ (ε)v(ε) = λ(ε)v(ε)) and sup-
pose that wH is a left eigenvector of H (wHH = λwH).
Then

(H + ε�H)v(ε) = λ(ε)v(ε). (24)

To estimate λ(ε), Eq. (24) is differentiated with respect to ε,
which gives

�Hv(ε)+ (H + ε�H)
dv(ε)
dε

= dλ(ε)

dε
v(ε)+ λ(ε)

dv(ε)
dε

.

(25)

Table 3 Comparison of the three pressure calculation methods with the analytical solution on a structured mesh for a non-linear relation between
the depth and the density

Number of Method 1 Method 2 Method 3

elements Error α Error α Error α

40 4,880 0.879 485 1.963 1798 1.63

160 2,654 0.942 125 1.982 580 1.78

640 1,382 0.971 32 1.991 169 1.87

2,560 705 0.986 7.9 1.996 46 1.94

10,240 356 0.993 2.0 1.998 12 1.96

40,960 179 0.50 3.1

The α-factor is determined from the (unrounded) errors of two subsequent meshes, using Eq. (40)
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Table 4 Comparison of the three pressure calculation methods with the analytical solution on an unstructured mesh for a linear relation between
the depth and the density

Number of Method 1 Method 2 Method 3

elements Error α Error α Error α

Mesh a 38 1,628 −0.05 872 −0.53 296 1.94

Mesh b 152 1,690 −0.08 1,259 −0.30 77 1.39

Mesh c 608 1,780 −0.05 1,547 −0.15 29 2.66

Mesh d 2,432 1,843 −0.03 1,721 −0.08 4.6 1.81

Mesh e 9,728 1,879 −0.01 1,816 −0.04 1.3 1.73

Mesh f 38,912 1,898 1,866 0.40

Mesh f 2 40,860 1,929 1,850 0.39

The α-factor is determined from the (unrounded) errors of two subsequent meshes, using Eq. (40)

Set ε = 0, then we get (v(0) = v, λ(0) = λ)

�Hv +H
dv(0)
dε

= dλ(0)

dε
v + λ

dv(0)
dε

. (26)

Left-multiplication by wH gives

wH�Hv + wHH
dv(0)
dε

= dλ(0)

dε
wHv + λwH dv(0)

dε
. (27)

Hence, since wHH = λwH:

wH�Hv = dλ(0)

dε
wHv. (28)

Since wHv 	= 0, we get

∣∣∣∣
dλ(0)

dε

∣∣∣∣ =
∣∣wH�Hv

∣∣
∣∣wHv

∣∣ ≤
∥∥wH

∥∥
2 ‖�H‖2 ‖v‖2∣∣wHv

∣∣ = ‖�H‖2∣∣wHv
∣∣ .

(29)

The last step is motivated by choosing
∥∥wH

∥∥
2 = ‖v‖2 =

1. Furthermore,

‖�H‖2 ≤ ‖�H‖F :=
⎡

⎣
∑

i

∑

j

|�Hij |2
⎤

⎦

1/2

≤
[

max
i,j

cn|�Hij |2
]1/2

= C

h
max
i,j

|�Hij |, (30)

where cn is motivated by the sparsity of the matrix �H .
Moreover, it has been used that n = L2/h2 with L the
length of the domain and C has been defined as C := L

√
c.

Hence, we have

∣∣∣∣
dλ(0)

dε

∣∣∣∣ ≤
C maxi,j |�Hij |

h|wHv| . (31)

This can be rewritten as

lim
ε→0

|λ(ε)− λ(0)|
|ε| ≤ C maxi,j |�Hij |

h|wHv| . (32)

Table 5 Comparison of the three pressure calculation methods with the analytical solution on an unstructured mesh for a non-linear relation
between the depth and the density

Number of Method 1 Method 2 Method 3

elements Error α Error α Error α

Mesh a 38 9,118 −0.05 7,147 −0.28 2,188 1.23

Mesh b 152 9,413 −0.08 8,704 −0.16 934 1.86

Mesh c 608 9,974 −0.06 9,737 −0.08 258 2.01

Mesh d 2,432 10,394 −0.03 10,313 −0.04 64 1.91

Mesh e 9,728 10,645 −0.02 11,614 −0.02 17 2.09

Mesh f 38,912 10,781 10,768 4.4

Mesh f 2 40,860 11,037 10,884 2.3

The α-factor is determined from the (unrounded) errors of two subsequent meshes, using Eq. (40)
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Fig. 2 Two examples of
unstructured meshes. Left mesh
a, the number of elements is 38.
Right mesh b, this mesh is
formed from mesh a by dividing
each elements into four smaller,
equisized elements
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Herewith, we get for ε → 0

|λ(ε)− λ| ≤ C maxi,j |�Hij |
h|wHv| ε. (33)

Substitution of ε = hξ gives

|λ(hξ)− λ| ≤ C maxi,j |�Hij |
h|wHv| hξ = C maxi,j |�Hij |

|wHv| ξ.

(34)

Hence, we proved:

Proposition 1 Let Hv = λv, H ∈ R
n×n, and let wHH =

λwH, let Ĥij (hξ) = Hij + hξ�Hij where the number of
non-zero entries is c ·n, let C be defined as C := L

√
c, then

|λ(hξ)− λ| ≤ C maxi,j |�Hij |
|wHv| ξ = O(ξ), (35)

where

Ĥ (hξ)v(hξ) = λ(hξ)v(hξ).

The above analysis heavily relies on page 323 in [4]. If
wH�Hv 	= 0, then from this proposition and Eq. (29), we
can conclude that, by applying SUPG stabilization in case

of an unstable system, the zero eigenvalue is mapped onto a
non-zero one, where its magnitude is bounded by a value of
order ξ .

At each time step, the model equations are solved in the
following order. First, the porosity, permeability, fluid den-
sity and flow boundary conditions are updated. Then, the
flow is calculated. Finally, the boundary conditions for the
concentrations are updated and the concentrations of urea,
ammonium and calcium carbonate are calculated.

4 Results

Before the results of the 100 m3 experiment are presented,
we start with a simple 2D configuration to compare the three
methods to calculate the pressure on the outflow bound-
ary, that were proposed in the last section. This is done in
Subsection 4.1. Subsequently, in Subsection 4.2, we take the
configuration from Fig. 1 with some known density function
and calculate the pressure on the outflow boundary. Finally,
in Subsection 4.3, the model results, which incorporate the
numerical solution of the complete set of partial differential
equations, of the 100-m3 experiment are shown.

Table 6 Results of the variation of ξ . Errors for an application on a structured mesh and a linear relation between the depth and the density

Number of ξ = 10−1 ξ = 10−2 ξ = 10−5 ξ = 10−10 ξ = 10−15 ξ = 10−20

elements Error α Error α Error α Error α Error α Error α

8 555 1.82 323 1.47 287 1.52 287 1.52 287 0.05 287 −9.25

32 157 1.76 117 1.92 100 2.01 100 2.01 278 0.05 174,874 −1.62

128 46 1.47 30 1.83 25 2.02 25 2.02 269 2.5 536,618 0.45

512 17 1.14 8.7 1.90 6.2 1.90 6.1 2.02 47 −0.40 392,351 0.93

2,048 7.6 1.00 2.3 1.87 1.7 2.02 1.5 2.01 61 −0.21 206,335 0.57

8,192 3.8 0.64 0.41 0.38 71 138,858

The α-factor is determined from the (unrounded) errors of two subsequent meshes, using Eq. (40)
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Fig. 3 The mesh that is used to examine the effect of the value of ξ

4.1 Comparison of the three methods to calculate
the pressure boundary condition

As a domain, we take a rectangle with a width of 2 m and
a height of 2.5 m. In this domain, we compare the three
pressure calculation methods. This is done for two differ-
ent relations for the density. The comparison is done for six
structured meshes, with an increasing number of elements
and for some unstructured meshes, with approximately the
same number of elements as for the structured meshes.

As a density, the two following (arbitrarily chosen) rela-
tions between density and depth are used:

ρ1 = 1, 000 + 200z, (36)

ρ2 = 1, 000 + 200z3. (37)

These relations of course do not hold at the same time. Sub-
stituting both relations into Eq. (18), gives the following two

analytical solutions for the pressure:

p1(x, y, z) = patm +
∫ 2.5

z

ρ1(x, y, z̄)gdz̄

= patm + g(1, 000(2.5− z)+ 100(2.52 − z2)),

(38)

p2(x, y, z) = patm +
∫ 2.5

z

ρ2(x, y, z̄)gdz̄

= patm + g(1, 000(2.5 − z)+ 50(2.54 − z4)).

(39)

The first method, which uses the Lower Riemann Sum as
an integration technique, has a first-order error, but is exact
for a constant density function. The second method, based
on the Trapezium method, has a second-order error and is
exact for constant and linear density functions. The third
method also has a first-order error, due to the SUPG method.
But since the value of ξ has been chosen very small, a better
convergence is possible. When we describe the error to be
of the order O(hα), with h some measure for the mesh size,
we expect that for a regular mesh in the limit, α = 1 for the
first and third method and α = 2 for the second method. We
calculate the value of α from the following equation:

e1

e2
= hα1

hα2
= rα, (40)

in which ei is the error for mesh i, i ∈ {1, 2}, hi is the
mesh size of mesh i and r is the ratio between h1 and h2

(r = h1/h2). As a measure for hi , we use Eq. (23).
In Tables 2 to 5, we display the results of the comparison

of the three pressure calculation methods with the analyti-
cal solution on both a structured mesh and an unstructured
mesh for an increasing number of elements and for the two
relations between the density and the depth. In Table 2, the

6.5
2

2.5
3

3.5

0

0.5

1

1.5

2

2.5

0  pi 2pi
0

0.5

1

1.5

2

2.5

φ

z

0  pi 2pi
0

0.5

1

1.5

2

2.5

φ

z

Fig. 4 Mesh on the extraction lances. The left plot shows the mesh
on the extraction lances for mesh 1. The number of elements on the
extraction lances is 618. The middle plot shows the same mesh on one
of the extraction lances, but now as a function of the angle. Mesh 2
is formed from mesh 1 by subdividing the outflow boundary elements

into four (equisized) elements. Mesh 3 is formed in the same way from
mesh 2. In the right plot, mesh 3b is shown. This is an irregular mesh
that has approximately the same number of outflow boundary elements
as mesh 3. The number of elements on the extraction lances is 618 for
mesh 1, 2,472 for mesh 2, 9,888 for mesh 3 and 9,600 for mesh 3b
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Table 7 Comparison of the numerical solution with the analytical solution for the pressure on the outflow boundary for three meshes and two
relations for the density

Mesh Number of elements on Density Error Density Error

the outflow boundaries

Mesh 1 618 ρ1 73 ρ2 675

Mesh 2 2,472 ρ1 17 ρ2 124

Mesh 3 9,888 ρ1 4.5 ρ2 40

Mesh 3b 9,600 ρ1 5.9 ρ2 41

three methods are also compared regarding computing time.
In the left plot of Fig. 2, mesh a, an unstructured mesh with
38 elements, is shown. This mesh is made with the mesh
generator in the COMSOL Multiphysics software. Mesh b

is formed from mesh a by dividing all the elements of this
mesh into four equisized elements. Mesh b is shown in the
right plot of Fig. 2. In the same way, the other unstructured
meshes, mesh c up to mesh f , are formed by dividing all
the elements of the coarser mesh into four smaller, equi-
sized elements. Mesh f 2 is not formed from a coarser mesh,
but directly generated with the COMSOL Multiphysics soft-
ware. It has approximately the same number of elements as
mesh f and is unstructured. Mesh c up to mesh f 2 are not
shown in this article.

The displayed error in Tables 2 to 5 is the mean of the
(absolute value of the) error that is made in each node:

E = 1

n

n∑

j=1

|pj − pE
j |. (41)

In this equation for the error, n is the number of nodes, pj is
the numerical solution for the pressure in point j and pE

j is
the exact solution for the pressure in point j . The α-factor is
determined from the (unrounded) errors of two subsequent
meshes.

From Tables 2 to 3, we conclude that the convergence of
methods 1 and 2 is as expected. For method 1, α converges
to 1 and for method 2, α converges to 2. For method 3, we
expected a first-order convergence but the convergence is
even one order better than expected since α converges to 2.
However, although the method behaves like a second-order
method for a small value of ξ , the method is first order. The
error looks like E(h) = ξh + Kh2. If ξ is very small, then
ξh > Kh2 only if h is very small. This gives ξ > Kh ⇐⇒
h < ξ/K . This implies that if h = O(ξ), then the results
will actually look first order. However, as long as h � ξ/K ,
which is used in general in practical purposes, then E(h)

behaves like O(h2), which is observed in our experiments.
For a linear relation between density and depth, method

2 is exact and hence, the error is equal to zero. Method 1
results in the largest error. The mean error using method 3
falls within the range of the errors from methods 1 and 2.

The computing time for method 1 and method 2 is almost
similar. The computing time for method 2 is slightly larger
since it has an extra addition compared to method 1, see
Eqs. (19) and (20). The largest part of the computing time is
used for finding the various vertical lines on which the nodes
lie and sorting the nodes on this lines. The computing time
for method 3 is comparable with methods 1 and 2 for the
coarse meshes but increases more rapidly for an increasing
number of elements.

In an unstructured mesh, the nodes usually do not lie on
vertical lines. Hence, methods 1 and 2 do not work properly.
As can be seen from Tables 4 and 5, there is no conver-
gence using these methods and the error even increases
somewhat for an increasing number of elements. Method
3, however, also works on an unstructured mesh. The error
decreases with a decreasing element size and also here we
see a second-order convergence, which is one order better
than expected, although the convergence is not as regular as
on the structured meshes.

In Table 6, we show some results of the effect of the vari-
ation of ξ on the error of method 3. We take a mesh of 8
elements as shown in Fig. 3 and refine this mesh. As can be
seen from Table 6, method 3 is first order for a high value
of ξ . For values of ξ around ξ = 10−2, the method behaves
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Fig. 5 The error of the density calculation on the outflow boundary
plotted against the number of elements. The errors for density ρ1 are
marked with a plus sign and the errors for density ρ2 are marked with
a diamond sign. Also the trend line for an O(h2)-convergence is given
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Table 8 The values that have been assigned to the various model parameters

θ0 = 0.41, mCaCO3 = 100.1 kg/kmol, μ = 1.15 × 10−3 Pa s,

D = 0.05[m] diag([q2
x q2

y q2
z ]T /||q||), ρCaCO3 = 2, 710 kg/m3, patm = 105 Pa,

vmax = 4.3681 × 10−6 kmol/m3/s, K = 0.00728 m3/kmol, g = 9.81 m/s2,

Km,urea = 0.01 kmol/m3, dm = 124 × 10−6 m. cin = 1.00 kmol/m3

Qin = 5m3/(8×3,600 s) Ain = 4.59 m2 qin = 3.78 × 10−5 m/s

second order. In this paper, we chose ξ = 10−5. Its value can
be even smaller, but for the several meshes we tried, prob-
lems arise around ξ = 10−15. Hence, ξ = 10−5 is a ‘safe’
value, which gives a second-order behaviour, for practical
values of h.

4.2 Calculation of the pressure on the outflow boundary
of the 100-m3 experiment

Before simulating the 100-m3 experiment, we first approx-
imate the pressure on the outflow boundaries for a known
density and compare this numerical solution with the ana-
lytical solution. We use the same relations between fluid
density and depth as in the previous subsection: ρ1 (36) and
ρ2 (37). We approximate the pressure, using four different
meshes: mesh 1, mesh 2, mesh 3 and mesh 3b. Mesh 1 is an
irregular mesh. Mesh 2 is formed from mesh 1 by dividing
each outflow boundary element into four smaller, equisized
elements. Mesh 3 is formed in the same way from mesh 2.
Mesh 3b is another irregular mesh, with approximately the
same number of outflow boundary elements as mesh 3. The
three extraction lances are modelled through a prism with
a regular octagon as a base. Partial differential Eq. (16) is
solved on the total surface of the extraction boundaries in
one matrix-vector solve, using method 3. In Fig. 4, mesh 1
(left and middle figure) and mesh 3b (right) are shown. The
results of the comparison of the numerical solution with the
analytical solution is shown in Table 7. As before, the error
is computed from Eq. (41).

In Table 7, we see that the error decreases for an increas-
ing number of elements, as was expected. The convergence
is good, as can be seen from Fig. 5. In this figure, the error
is plotted against the number of elements. The errors for
density ρ1 are marked with a +-sign and the errors for den-
sity ρ2 are marked with a diamond sign. Also the trend line
for an O(h2)-convergence is given. It is clear that method 3
gives a quadratic convergence approximately.

In Table 7, we also compare mesh 3 and mesh 3b. Mesh
3b is a “real” irregular mesh, while mesh 3 is formed from
another mesh by splitting the elements. Both meshes have
approximately the same number of elements and it turns out
that the error is also comparable, as was desired. The size
of the boundary elements in mesh 1 is comparable with the
mesh size of mesh c, the 2D mesh with 608 elements. In the
same way, mesh 2 and mesh 3 are comparable with mesh
d (2,432 elements) and mesh e (9,728 elements). For that
reason, one expects that the errors are of the same order
of magnitude. This turns out to be the case, although the
errors in this subsection are somewhat larger. The reason
might be that the geometry is more complex and that the
elements are located on three different lances instead of on
one rectangular 2D domain.

For mesh 1, we could also have used method 1 or method
2 to calculate the pressure on the boundaries since all the
nodes lie on certain vertical lines. In mesh 2 and 3, the nodes
also lie on some vertical lines. However, some of these lines
do not have a node on the top edge on which the pressure is
given. But after calculation of the pressure at the intersection

Fig. 6 Left The difference
between the pressure at the
middle extraction well and the
hydrostatic pressure of water.
Right The concentration of urea
and calcium chloride at the
middle extraction well
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of these lines and the top edges (which is very easy in case
of a constant pressure at the top), methods 1 and 2 can be
used. With mesh 3b, it is not possible to use method 1 or 2
to calculate the pressure on the outflow boundary and this
mesh clearly needs the application of method 3, where a
small SUPG stabilization has been applied.

4.3 Application: a 100-m3 experiment

For the 100-m3 experiment, we take the configuration
(Fig. 1), the boundary conditions (Table 1) and the initial
conditions from Subsection 2.2. In this paper, the focus is
on the calculation of the pressure on the boundary and not
on the validation of the model. Hence, we only model the
first part of the experiment. We lower the flow rate, such
that the density effect becomes more visible and we extend
the injection time to 80 h to allow the urea/calcium chlo-
ride pulse to reach the extraction wells. As a time step,
we use �t = 0.5h. The number of elements is approxi-
mately 23,000. The values that have been chosen for the
various model parameters are shown in Table 8. Since the
differential equation, the initial condition and boundary con-
ditions are the same for urea and calcium chloride, the urea
concentration is equal to the calcium chloride concentration.

In Fig. 6, we consider the pressure on the outflow bound-
ary of the middle extraction well as a function of time.
We focus on the (vertical) edge of the prism closest to the
injection. The pressure on this edge is compared to the
hydrostatic pressure of water with a density of ρwater =
1, 000 kg/m3 and the difference between these two pres-
sures is shown. This is done at several times.

During the first hours, the extraction wells are sur-
rounded by fresh water since it takes some time before
the urea/calcium chloride solution reaches the outlet. After
some time, some urea and calcium chloride will reach the
extraction. Due to density flow, this will happen first at the
bottom of the extraction, which is illustrated by the curves
for time t = 30 h and t = 40 h in the right plot of Fig. 6.
As a result, only in the lower part of the extraction well

the pressure (difference) increases, which results into the
quadratic-like shape of the pressure difference curves in the
left plot of Fig. 6 at t = 30 h and t = 40 h. Subsequently,
the urea/calcium chloride concentration increases and also
in higher regions the urea and calcium chloride reach the
outflow, as shows the right plot of Fig. 6. Consequently, also
the pressure further increases. Eventually, the urea/calcium
chloride concentration is more or less constant over the
depth. Due to this, finally the pressure distribution becomes
linear again, while during the first time only an increase in
the deeper parts was observed.

The pressure increase at the outflow at a depth of 2.5 m
is approximately 2.2 × 103 Pa. We do some simple calcu-
lations to get a feeling about the magnitude of this pressure
difference. The hydrostatic pressure of water at this depth
is 1.25 × 105 Pa. This means that the pressure increase is
1.8 % of the hydrostatic water pressure. This is not so very
much, but flow is caused by pressure gradients rather than
by the pressure itself. Given the inflow flow rate Qin from
Table 8, the cross section of 5.6 × 2.5 m2, the permeabil-
ity k and viscosity μ from this simulation and a distance of
5 m between injection and extraction, it can be calculated
that a pressure difference of 4.7 × 103Pa between injection
and extraction is needed to generate this flow rate. (Since
injection and extraction lances are used, rather than injection
and extraction sheets, the difference between the highest
and lowest pressure in a horizontal cross section will be
somewhat larger.) Compared to the pressure difference of
4.7× 103Pa, the pressure increase of 2.2× 103Pa due to the
higher density is 47 %. Hence, although the absolute pres-
sure does not change so much, the pressure increase due to
higher densities is significant compared to the other pressure
differences, which henceforth gives a significant diversion
of the flow.

Figure 7 shows a contour plot of the calcium carbonate
concentration in the top and bottom of the domain at time
t = 80 h. The highest concentrations are around the injec-
tion wells (the three blue circles left). Since there is urea and
calcium chloride present during the whole simulated time,

Fig. 7 The calcium carbonate
content in the top (left) and
bottom (right) part of the
domain at time t = 80 h
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the concentration is higher than around the extraction wells
(the three blue circles right), which are only after some time
reached by urea and calcium chloride. Due to density flow,
the urea/calcium chloride concentration is also higher in the
lower regions of the domain than in the higher ones. As
a result, on the bottom, more calcium carbonate has been
formed than in the top of the domain.

5 Discussion and conclusions

This article shows three different methods to calculate the
pressure on the boundary. In the first method, the lower Rie-
mann sum is used to calculate the pressure and in the second
method, the trapezoid rule is used. Both methods require
that all the nodes lie on certain vertical lines. In the third
method, the SUPG Finite Element method is used to cal-
culate the pressure from the solution of a boundary value
problem. The large advantage is that this also works for
unstructured meshes. Contrary to the first two methods, it is
not required that the nodes lie on certain vertical lines.

In Subsection 4.1, the three methods are compared
on a (2D) rectangle for two different relations between
density and height on a structured and an unstructured
mesh. Method 1 is a first-order method, while method 2
is a second-order method. That agrees with the results.
Although method 3 is a first-order method, we approxi-
mate second-order convergence for a small value of ξ . We
approximate first-order convergence for a larger value of
ξ . The value of ξ can be chosen smaller than the value
that is used in this paper, which is ξ = 10−5. A very
small value, however, deletes the Streamline Upwind part
of the SUPG method and brings the method back to the
Standard Galerkin method (with its instabilities). On a struc-
tured mesh, the first method gives the largest error, while
the second method gives the smallest error. For unstruc-
tured meshes, only method 3 can be used to get satisfactory
results.

In Subsection 4.2, the pressure is calculated on the out-
flow boundaries of the configuration in Fig. 1. This is done
for the same relations between density and height as in
Subsection 4.1. Method 3 is used to calculate the density
on the outflow boundaries and this numerical solution is
compared with the analytical solution. This is done on four
different meshes. The results show that method 3 is a proper
method to calculate the pressure on the boundary.

In Subsection 4.3, the first part of the 100-m3 experiment
as reported in [9] is simulated. Method 3 is used as a method
to calculate the pressure on the outflow boundary at every
time step. This results in a stable simulation and the results
for the pressure are in agreement with the expectations.

The computing time for the various methods is compa-
rable for coarse meshes, but for an increasing number of

elements, methods 1 and 2 are faster than method 3. Since
a 2D calculation is performed in method 3 to calculate the
pressure on the boundary, the computing time will be small
compared to the computing time for the 3D calculations
on the full domain. For example, the computing time for
the pressure on the outflow boundaries in the simulation of
Subsection 4.3 is more than 800 time as small as for the 3D
calculations in one time step on the full domain. Hence, the
contribution to the overall CPU time is not significant, and
thereby the overall CPU time is about the same for all the
three methods.

We can conclude that method 3 provides a good and
robust scheme to calculate the pressure on the outflow
boundary. It can be applied on a manifold that represents the
boundary of some domain. It works for both unstructured
and structured meshes. We note that the SUPG stabilization
is needed to make the method robust. For the differences
in eigenvalues of the system with SUPG stabilization and
the system without SUPG stabilization, we proved that
|λ(hξ) − λ| = O(ξ). In our observations, by applying the
SUPG stabilization method, the zero eigenvalue is mapped
onto a non-zero one, where its value scales with ξ . The
value of ξ can be chosen very small, which for a reasonable
mesh size gives the same convergence as the system with-
out SUPG, but the value should be larger than the round off
error of the computer with respect to the 8 bytes storage of
floating numbers in Matlab.

Differential Eq. (16), which is solved to find the pressure
on the boundary, only contains a z-derivative. The pressure
in a certain point only depends on the density of the fluid
straight above it. In this article, Eq. (16) is solved on the
boundary (elements) only. This approach only works if the
faces of the boundary are vertical, such that the fluid that
determines the pressure in an arbitrary point at the boundary
is on the boundary itself. If this is not the case, consid-
ering the (2D) boundary elements only is not sufficient.
Instead, one should consider the 3D region above the bound-
ary, since the density in this region determines the pressure
on the boundary. Subsequently, one should solve differential
Eq. (16) on this 3D subdomain to approximate the pressure
on the boundary.
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Appendix 1: List of symbols

Ci = concentration of specie i, for i ∈
{urea,Ca2+,NH+

4 }, [in kilomole per cubic
meter];
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CCaCO3 = concentration of calcium carbonate, [in kilo-
grams per cubic meter];

Di = dispersion tensor for specie i, for i ∈
{urea,Ca2+,NH+

4 }, [in square meter per second];
dm = mean particle size of the sand, [in meters];
g = gravitational constant, [in meters per square

second];
K = constant in the differential equation for the flow

that represents the amount of volume that is pro-
duced per kilomole formed calcium carbonate,
[cubic meters per kilomole];

ki = intrinsic permeability in the various coordinate
directions, i ∈ {x, y, z}, [in square meter];

Km,urea = saturation constant for urea, [in kilomole per
cubic meter];

mCaCO3 = molar mass of calcium carbonate, [in kilograms
per kilomole];

p = pressure, [in pascal]; patm = atmospheric pres-
sure;

q = Darcy velocity, [in meters per second];
rhp = reaction rate of the hydrolysis and precipita-

tion processes, [in kilomole per cubic meter per
second];

t = time, [in seconds];
vmax = bacterial conversion rate constant, [in kilomole

per cubic meter per second];
x, y, z = Cartesian coordinates, [in meters];

θ = porosity, [in cubic meter per cubic meter];
μ = viscosity of the fluid, [pascal second];

ρCaCO3 = density of calcium carbonate, [in kilogram per
cubic meter];

ρl = density of the fluid, [in kilograms per cubic
meter];

1 − Vs = decrease in liquid volume per kilomole formed
calcium carbonate, [cubic meters per kilomole].
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