
4
Recent developments in improving the
numerical accuracy of MPM

Elizaveta Wobbes, Roel Tielen, Matthias Möller, Cornelis Vuik
Delft University of Technology, Delft, the Netherlands

Vahid Galavi
Deltares, Delft, the Netherlands

4.1 Introduction
The MP Method has shown to be successful in simulating problems that in-
volve large deformations. However, the standard algorithm suffers from many
numerical shortcomings.While some of these shortcomings are inherited from
the Finite Element Method (FEM), other drawbacks are MPM specific.

The FEM-type inaccuracies include interpolation, time integration, and
mass lumping errors [219]. On the other hand, MPM suffers from the grid
crossing errors [20] (see Chapter 2). The method typically projects the MP
data to the background grid, also called mesh, and vice versa using piecewise-
linear basis functions. The discontinuous gradients of these basis functions lead
to unphysical oscillations in the solution when MPs cross element boundaries.
In addition, MPM reconstructs scattered material point (MP) data using a
low-order function-reconstruction technique that causes severe inaccuracies
when large deformations are involved [222]. The most recent developments
outlined in this chapter largely enhance the mathematical accuracy of the
method, while keeping the physical qualities and computational efficiency close
to those of original MPM.

B-spline Material Point Method (BSMPM) provides a fundamental ap-
proach to smoothing the gradients of the basis functions. In essence, it replaces
the piecewise-linear basis functions by higher-order B-spline basis functions
that guarantee at least C0-continuity of the gradients. BSMPM was originally
introduced by Steffen et al. [218], but Tielen et al. [236] proposed a more
general and straightforward implementation. The new approach uses the Iso-
geometric Analysis (IgA) formulation of B-splines based on the Cox-de-Boor
formula [65].
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Although BSMPM reduces the grid crossing, interpolation, and time step-
ping errors within MPM [219, 236], the accuracy of the solution can be fur-
ther improved by replacing the direct mapping of the MP data to the back-
ground grid by more advanced techniques. Several function-reconstruction
methods have been proposed for the projection of the scattered MP (MP)
data [222,236,261].

In contrast with many standard techniques, which do not conserve physical
quantities like mass and momentum, the Taylor Least Squares (TLS) function
reconstruction [261] not only decreases the numerical errors but also ensures
the conservation of the total mass and linear momentum.
The TLS reconstruction is based on the least squares [128] approximation
constructed from a set of Taylor basis functions [142]. It locally approximates
quantities of interest, such as stress and density, allowing discontinuities across
element boundaries. When used in combination with a suitable quadrature
rule, the TLS technique preserves the mass and momentum after transferring
the MP information to the background grid.
Furthermore, the mapping of MP information involves the solution of a linear
system that includes a mass matrix at every time step. While a consistent
mass matrix can significantly increase the accuracy of BSMPM combined with
a reconstruction technique [236], it can also lead to stability issues. Therefore,
further research of this topic is needed.

Meanwhile, p-multigrid can be applied to solve linear systems resulting
from IgA discretisations to ensure an efficient computation with a consistent
mass matrix. Compared to the standard techniques, such as the Conjugate
Gradient method, p-multigrid requires a considerably lower number of itera-
tions. In addition, p-multigrid can be used to solve the momentum balance
equation within BSMPM. Based on the research of Love and Sulsky [137], it is
expected that a consistent mass matrix will conserve the energy and angular
momentum.

4.2 Most relevant MPM concepts
This section explains the mass lumping procedure and presents the com-
putational steps of the widely used Modified-Update-Stress-Last (MUSL)
scheme [223]. For simplicity, only one-dimensional deformations of a 1-phase
continuum are considered.

4.2.1 Mass lumping
MPM solves the momentum balance equation in its weak form (see Chapter 1).
After the spatial discretisation, the system solved on the background grid
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follows Eq. 4.1.
MC~a = ~f ext − ~f int (4.1)

where MC is the consistent mass matrix, ~a the acceleration vector, ~f ext is the
external force vector, and ~f int is the internal force vector.
The consistent mass matrix is given by Eq. 4.2.

MC =
∫

Ω
ρ~φ~φ T dΩ (4.2)

where ρ is the density, ~φ is the basis function vector, and Ω is the considered
domain.
If the domain discretisation generates Nn degrees of freedom (DOFs), the
basis function vector is denoted by ~φ(x) = [φ1(x) φ2(x) . . . φNn(x)]T, where
φi represents a basis function associated with the ith DOF.

Similar to FEM, this non-diagonal matrix can be transformed into a diag-
onal matrix by the lumping procedure when piecewise-linear or B-spline basis
functions are used. Denoting element (i, j) of the consistent and lumped mass
matrices by MC

(i,j) and M(i,j), respectively. The lumping procedure can be
described by Eq. 4.3.

M(i,j) = δi,j
∑
j

MC
(i,j) (4.3)

where δi,j is the Dirac delta function.
Since piecewise-linear and B-spline basis functions satisfy the partition

of unity property (i.e.
∑Nn

i=1 φi(x) = 1 ∀ x ∈ Ω), mass lumping can also be
achieved variationally (Eq. 4.4).

M =

�~m
�

 with ~m =
∫

Ω
ρ~φ dΩ (4.4)

In the version of MPM considered in this chapter, Eq. 4.1 is typically used
with the lumped mass matrix M. Lumping of the mass matrix has a number
of advantages. For example, it reduces the computational costs and improves
convergence characteristics of the method [137]. However, generally a lumped
mass matrix limits the spatial convergence to O(h2) [219] and hinders the
conservation of energy and angular momentum [137].

4.2.2 Modified-Update-Stress-Last algorithm
Throughout this section, the superscript t denotes the time level, and ∆t is
the time-step length. The Nmp MPs are initialised at t = 0 s. Each MP carries
a certain volume Vmp, density ρmp, position xmp, displacement ump, velocity
vmp, and stress σmp. These values are time dependent, but the MP mass mmp
remains constant throughout the simulation. Assuming that all MP properties
are known at time t, the computation for time t+ ∆t proceeds as follows.
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1. The data from the MPs is mapped to the DOFs of the background grid.
For instance, the diagonal of the lumped mass matrix (Eq. 4.5) and the
internal forces ~f int (Eq. 4.6) are computed.

~mt =
Nmp∑
mp=1

mmp~φ
(
xt

mp
)

(4.5)

(
~f int

)t
=

Nmp∑
mp=1

σt
mp
~φ′
(
xt

mp
)
V t

mp (4.6)

In other words, Eq. 4.5 implies that for the ith DOF Eq. 4.7 holds.

mt
i =

Nmp∑
mp=1

mmpφi
(
xt

mp
)

(4.7)

This direct mapping technique is typical for standard MPM. An improved
approach is provided in Section 4.4.

2. The accelerations at the DOFs are obtained after combining the internal
forces with any external forces.

~a t =
(
Mt)−1

[(
~f ext

)t
−
(
~f int

)t
]

(4.8)

3. The velocity of each MP at time t+ ∆t is determined.

vt+∆t
mp = vt

mp + ∆t ~φ T (xt
mp
)
~at ∀mp = {1, 2, . . . , Nmp} (4.9)

4. The velocities at the DOFs are subsequently obtained.

~v t+∆t =
(
Mt)−1

Nmp∑
mp=1

mmp~φ
(
xt

mp
)
vt+∆t

mp (4.10)

where ~v is the velocity vector consisting of the velocities at the DOFs vi.

5. The incremental displacement vector ∆~u is computed.

∆~u t+∆t = ∆t ~v t+∆t (4.11)
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6. After these steps, the remaining part of the MP properties is updated.

ut+∆t
mp = ut

mp + ~φ T (xt
mp
)

∆~u t+∆t (4.12)

xt+∆t
mp = xt

mp + ~φ T (xt
mp
)

∆~u t+∆t (4.13)
∆εt+∆t

mp = ∇φ T (xt
mp
)

∆~u t+∆t (4.14)

where ∆εmp is the MP incremental strain.
The MP stress at time t + ∆t is computed from σt and ∆εt+∆t

mp using a
constitutive model.
Considering only one-dimensional elastic deformations, it follows from
[103, 148] that for small and large deformations, the stress is given by
Eqs. 4.15 and 4.16, respectively.

σt+∆t
mp =σt

mp + E ∆εt+∆t
mp ∀mp = {1, 2, . . . , Nmp} (4.15)

σt+∆t
mp =σt

mp +
(
E − σt

mp
)

∆εt+∆t
mp ∀mp = {1, 2, . . . , Nmp} (4.16)

where E is the Young’s modulus.

7. The volume and density of each MP are obtained from the volumetric
strain increment εvol (Eqs. 4.17-4.18).

V t+∆t
mp =

(
1 + ∆εt+∆t

vol,mp

)
V t

mp (4.17)

ρt+∆t
mp =

ρt
mp(

1 + ∆εt+∆t
vol,mp

) (4.18)

4.3 B-spline Material Point Method
BSMPM [218,236] replaces the piecewise-linear basis functions by higher-order
B-splines. The univariate B-spline basis functions can be introduced using a
knot vector, a sequence of ordered non-decreasing points in R that are called
knots. A knot vector is denoted by Ξ = {ξ1, ξ2, . . . , ξNn+p+1} with Nn and p
being the number of basis functions and the polynomial order, respectively.
The first and last knot are repeated p+1 times to make the resulting B-spline
interpolatory at both end points. In contrast to linear basis functions, φi,p is
not interpolatory, that is, φi,p(xj) 6= δi,j.

The Cox-de Boor formula [65] defines B-spline basis functions recursively.
For p = 0, the basis functions are provided in Eq. 4.19.

φi,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1

0 otherwise
(4.19)
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FIGURE 4.1: Example of quadratic B-spline basis functions.

For p > 0, the basis functions are given by Eq. 4.20

φi,p(ξ) = ξ − ξi
ξi+p − ξi

φi,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

φi+1,p−1(ξ) ξ ∈ Ω̂ (4.20)

Fig. 4.1 shows quadratic basis functions with Ξ = {0, 0, 0, 1/3, 2/3, 1, 1, 1}.
B-spline basis functions satisfy the following properties.
1. They form a partition of unity:

Nn∑
i=1

φi,p(ξ) = 1 ∀ ξ ∈ Ω̂ (4.21)

2. Each φi,p has compact support [ξi, ξi+p+1].

3. They are non-negative in their support:

φi,p(ξ) ≥ 0 ∀ ξ ∈ Ω̂ (4.22)

The gradients of the B-spline basis functions are defined as given in Eq. 4.23
[65].

dφi,p(ξ)
dξ = p

ξi+p − ξi
φi,p−1(ξ)− p

ξi+p+1 − ξi+1
φi+1,p−1(ξ) (4.23)

The gradients corresponding to the basis functions from Fig. 4.1 are provided
in Fig. 4.2.

B-spline basis functions bring many advantages over the typically used
linear ones. First of all, they guarantee at least C0-continuity of the gradients
and hence, significantly reduce the grid crossing error. Similarly to piecewise-
linear basis functions, B-splines enable lumping of the mass matrix due to
their non-negativity and partition of unity properties, which is an essential
for many engineering studies. In addition, they decrease the interpolation and
time-stepping errors [219].
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FIGURE 4.2: Example of the gradient of a quadratic B-spline basis function.

4.4 Mapping of material point data to background grid
In the MUSL algorithm, the computation of certain quantities involves a direct
mapping of the MP data to the background grid. For example, the velocities at
the DOFs are calculated from MP velocities and masses as shown in Eq. 4.10.
This MPM mapping technique ensures the conservation of the mass M and
linear momentum P of the system as follows.

M =
Nn∑
i=1

mi =
Nn∑
i=1

 Nmp∑
mp=1

mmpφi(xmp)

 =
Nmp∑
mp=1

mmp

Nn∑
i=1

φi(xmp)

=
Nmp∑
mp=1

mmp (4.24)

P =
Nn∑
i=1

mivi =
Nn∑
i=1

mi

 1
mi

Nmp∑
mp=1

mmpφi(xmp)vmp


=

Nmp∑
mp=1

mmpvmp

Nn∑
i=1

φi(xmp) =
Nmp∑
mp=1

mmpvmp (4.25)

The above expressions are obtained from Eqs. 4.5 and 4.10, and by exploiting
the partition of unity property of the piecewise-linear basis functions. Super-
scripts t and t + ∆t have been dropped to improve readability.

The MPM mapping can lead to significant numerical errors, especially
when large deformations are considered [222]. For this reason, the TLS tech-
nique is discussed in this chapter. For each element, the TLS technique recon-
structs quantities of interest, such as stress and density, from the MP data and
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evaluates them at the integration points. After that, a numerical quadrature
rule is applied to determine the internal forces and velocities at the DOFs.
If the integration is exact, the proposed mapping approach preserves the to-
tal mass and linear momentum. The ideas are introduced for 1D, but can be
extended to multiple dimensions in a straightforward manner. The proof of
the conservation properties of the TLS technique can be found in Wobbes et
al. [261].

4.4.1 Taylor Least Squares reconstruction
For the Least Squares approximation, a set of Nmp distinct data points
{xmp}

Nmp
mp=1 is considered. The generic data values of these points are denoted

by {f(xmp)}Nmp
mp=1. It is assumed that f ∈ F , where F is a normed function

space on R, and P = span{ψi}nb
i=1 ⊂ F is a set of nb basis functions. The

Least Squares approximation at a point x ∈ R can be written as in Eq. 4.26.

f̃(x) =
nb∑
i=1

αiψi(x) = ~ψT(x)~α with ~α = D−1B~F (4.26)

where ~α is the vector of coefficients for the basis functions obtained using
Eqs. 4.27, 4.28 and 4.29.

D =
Nmp∑
mp=1

~ψ(xmp)~ψT(xmp) (4.27)

B =[~ψ(x1) ~ψ(x2) . . . ~ψ(xNmp)] (4.28)
~F =[f(x1) f(x2) . . . f(xNmp)]T (4.29)

The basis for P is formed by the local Taylor basis functions, which are
defined using the concept of the volume average of a function u over Ωe shown
in Eq. 4.30.

f = 1
|Ωe|

∫
Ωe
f dΩe (4.30)

where |Ωe| is the volume of cell e.
For example, if the element is one dimensional (i.e, Ωe = [xmin, xmax] with
xmax > xmin), then |Ωe| = xmax − xmin.
The Taylor basis functions are then given by Eq. 4.31.

ψ1 = 1 ψ2 = x− xc

∆x ψ3 = (x− xc)2

2∆x2 − (x− xc)2

2∆x2 (4.31)

where xc = xmax + xmin

2 and ∆x = xmax − xmin

2
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An important quality of the Taylor basis that ensures the conservation prop-
erty of the reconstruction technique is shown in Eq. 4.32 [142].∫

Ωe

ψi dΩe =
{
|Ωe| if i = 1,
0 if i 6= 1.

(4.32)

Suppose that a function f has to be reconstructed in such way that its integral
over Ωe,

∫
Ωe
f(x) dΩe = c (c ∈ R), is preserved. The TLS approximation of f

is equal to a linear combination of Taylor basis functions (Eq. 4.33).

f(x) ≈ f̃(x) =
nb∑
i=1

aiψi(x) (4.33)

Using Eq. 4.32, the integral of f̃ can then be written as Eq. 4.34.∫
Ωe

f̃(x) dΩe =
∫

Ωe

nb∑
i=1

αiψi(x) dΩe =
nb∑
i=1

αi

∫
Ωe

ψi(x) dΩe = α1|Ωe| (4.34)

Therefore, explicitly enforcing the condition shown in Eq. 4.35 conserves
the integral.

α1 = c

|Ωe|
(4.35)

Consequently, the number of basis functions in the Least Squares approxima-
tion is reduced by one.

4.4.2 Example of Taylor Least Squares reconstruction
The outstanding properties of the TLS technique can be illustrated by recon-
structing f(x) = sin(x) + 2 on [0, 4π]. In this case, the integral that should
be preserved is equal to 8π. The domain is discretised using four elements
of size π and contains 11 data points. Two data points are located at the
boundaries of the first element, (i.e., 0 and π). In [2π, 3π], the data points are
distributed uniformly in the interior of the domain. The remaining data points
have random positions creating different types of data distribution within each
element.

The TLS approximation is obtained using three Taylor basis functions.
Fig. 4.3 visualises the data-point distribution for 10 integration points per
element. The overall performance of the TLS technique is quantified by the
Root-Mean-Square (RMS) error for function f and the relative error for its
integral. Both errors are computed using 10 Gauss points within each element.
The RMS error is equal to 3.8139·10−2, while the relative error for the integral
is equal to 7.0679 · 10−16. It should be noted that the relative error for the
integral computed with only two Gauss points per element is equal to 2.7903 ·
10−15. Thus, the TLS approach preserves the integral up to machine precision
for this example.
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FIGURE 4.3: TLS reconstructions of f(x) = sin(x) + 2 on [0, 4π] for different
types of data point distribution within an element.

4.4.3 Integration of Taylor Least Squares reconstruction into
MPM algorithm

When the TLS reconstruction is considered as part of the MPM algorithm,
MPs serve as data points. In order to ensure an accurate and conservative
mapping of the information from MPs to the grid, the technique is combined
with a Gauss quadrature rule with a suitable number of Gauss points. How-
ever, Gauss quadrature can be replaced by any numerical integration that
provides an exact result.

The TLS technique is applied to replace the MPM integration in Eq. 4.6.
Since in this case, the conservation is not required, all unknown coefficients of
the Taylor basis functions are obtained from the least-square approximation
(i.e. coefficient a1 is not enforced by Eq. 4.35. Thus, the internal forces at the
DOFs are computed as follows.

1. Apply TLS approximation to reconstruct the stress field from the MP data
within each active element without specifying the coefficient of the first
Taylor basis function (Eq. 4.36).

σ̃e =
nb∑
i=1

siψi (4.36)

where si is the coefficient corresponding to the ith Taylor basis function.
Outside of Ωe, σ̃e is zero.
The global approximation of the stress function, σ̃, is then given by
Eq. 4.37.

σ̃ =
Ne∑
e=1

σ̃e (4.37)
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2. Integrate the stress approximation using a Gauss quadrature (Eq. 4.38).

~f int ≈
∫

Ω
σ̃(x, t)~φ′ dΩ =

Ng∑
g=1

σ̃ (xg) ~φ′ (xg)ωg (4.38)

where Ng is the total number of Gauss points, xg the global position of a
Gauss point, and ωg the weight of a Gauss point.
For exact integration of the approximated function, each active element
should contain Ng/Ne Gauss points, where Ne is the total number of
elements (knot spans) and Ng satisfies nb ≤ 2Ng/Ne. This implies that
for a quadratic TLS approach the numerical integration requires at least
two Gauss points per element.

The TLS technique is also used to map the MP velocities to the DOFs (i.e.
it replaces Eq. 4.10). However, the coefficient of the first basis function is
specified according to Eq. 4.35. The remaining coefficients are calculated from
Eq. 4.26 without ψ1 to avoid changing of the integral value.

1. Apply TLS approximation to reconstruct the density field and momentum,
which is given by the product of density and velocity from the MP data
within each active element, while preserving the mass and momentum of
the element (Eqs. 4.39 and 4.40).

ρ̃e =
nb∑
i=1

riψi with r1 = 1
|Ωe|

∑
{p|xmp∈Ωe}

mmp (4.39)

(ρ̃v)e =
nb∑
i=1

γiψi with γ1 = 1
|Ωe|

∑
{p|xmp∈Ωe}

mmpvmp (4.40)

where ri and γi are the coefficients corresponding to the i-th Taylor basis
function. Outside of Ωe, ρ̃e and (ρ̃v)e are zero.
The global approximations are given by Eq. 4.41.

ρ̃ =
Ne∑
e=1

ρ̃e and (ρ̃v) =
Ne∑
e=1

(ρ̃v)e (4.41)

2. Integrate the approximations using a Gauss quadrature to obtain the mo-
mentum vector ~p and the consistent mass matrix MC (Eqs. 4.42-4.43).

~p =
Ng∑
g=1

(ρ̃v) (xg)ωg~φ (xg) (4.42)

MC =
Ng∑
g=1

ρ̃ (xg)ωg~φ (xg)
(
~φ (xg)

)T
(4.43)
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As previously mentioned, the number of Gauss points per element should
be specified so that exact integration is ensured.

3. Compute the velocity vector (Eq. 4.44).

~v = (MC)−1~p (4.44)

MC can be replaced in Eq. 4.44 by a lumped mass matrix without losing
the conservation properties of the algorithm. A consistent mass matrix typi-
cally provides more accurate results, but may lead to stability issues [261].

4.5 Application to vibrating bar problem
This section compares the performance of the standard MPM that follows
the MUSL algorithm with its more advanced versions, such as BSMPM and
BSMPM with the TLS reconstruction (TLS-BSMPM). The comparison is
done based on an example that describes the vibration of a 1-phase bar with
fixed ends. A system of partial differential equations for the velocity and stress
captures the motion (Eqs. 4.45 and 4.45).

ρ
∂v

∂t
= ∂σ

∂x
(4.45)

∂σ

∂t
= E

∂v

∂x
(4.46)

where v is the displacement. v is displacement or velocity? conflict with fol-
lowing equation. Most chapters have v for velocity and u for displacement.

The system is extended by a relation between the velocity v and displace-
ment u given by Eq. 4.47.

v = ∂u

∂t
(4.47)

The vibration is triggered by an initial velocity that varies along the bar
leading to the following initial and boundary conditions (Eqs. 4.48 and 4.49).

u(x, 0) = 0, v(x, 0) = v0 sin
(πx
h

)
, σ(x, 0) = 0; (4.48)

u(0, t) = 0, u(h, t) = 0 (4.49)

where H is the length of the bar and v0 is the maximum initial velocity.
For small deformations, the analytical solution in terms of displacement,
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velocity, and stress is given by Eqs. 4.50 to 4.52.

u(x, t) = v0h

π
√
E/ρ

sin
(
π
√
E/ρ t

h

)
sin
(πx
h

)
(4.50)

v(x, t) = v0 cos
(
π
√
E/ρ t

h

)
sin
(πx
h

)
(4.51)

σ(x, t) = v0
√
Eρ sin

(
π
√
E/ρ t

h

)
cos
(πx
h

)
(4.52)

Table 4.1 gives the parameter values for the vibrating bar benchmark under
small deformations. The contribution of the temporal errors to the overall error
generated during the computation is minimised by selecting a small time-step
size and short simulation time. To be more precise, the time-step size and total
simulation time are set to 1 ·10−7 s and 1.9 ·10−6 s, respectively. Furthermore,
the number of elements (knot spans) is varied from 5 to 40, while the number
of MPs per cell or knot span (PPC) is fixed to 12. Grid crossing does not
occur, and the maximal observed strain is equal to 5.3 · 10−7 m.

The obtained results are illustrated in Fig. 4.4. As expected, MPM shows
second-order convergence in the displacement and velocity. Since the stress is
computed as a derivative of the displacement, its convergence rate is one. The
use of BSMPM with the standard MPM mapping leads to a lower RMS error
and third-order convergence for the velocity, but hinders the performance of
the method for the displacement and stress. The poor performance of the
method in terms of displacement and stress is caused by the large values of
the error at the boundaries of the domain. This is illustrated in Fig. 4.5 for
the stress distribution.

The TLS reconstruction in conjunction with a lumped mass matrix has
little influence on the convergence behaviour of BSMPM. For this reason, the
corresponding results are not shown in Fig. 4.4. However, the TLS technique
eliminates the boundary issues due to the B-spline basis functions when a
consistent mass matrix is used for the mapping of MP information. As a
result, it significantly decreases the RMS error in the displacement and stress
and leads to a higher convergence order for both quantities. The performance

TABLE 4.1
Parameters for small and large deformation vibrating bar.
Parameter Symbol Unit Value
Height h m 1.00
Density ρ kg/m3 2.00 · 103

Young’s modulus E kPa 7.00 · 103

Max. initial velocity (small def.) v0 m/s2 0.28
Max. initial velocity (large def.) v0 m/s2 0.80



80 Recent developments in improving the numerical accuracy of MPM

(a)
101 102

10-13

10-12

10-11

10-10

10-9

10-8

10-7

3

2

(b)
101 102

10-7

10-6

10-5

10-4

10-3

10-2

10-1

3

2

(c)
101 102

10-5

10-4

10-3

10-2

10-1

100

101

2

1

FIGURE 4.4: Spatial convergence of MP methods for the vibrating bar prob-
lem without grid crossing: (a) displacement, (b) velocity, and (c) stress.
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FIGURE 4.5: Absolute error obtained with BSMPM for stress distribution in
the vibrating bar problem without grid crossing.
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FIGURE 4.6: Absolute error obtained with TLS-BSMPM for stress distribu-
tion in the vibrating bar problem without grid crossing.

of the TLS function reconstruction technique in terms of the absolute error
for the stress is depicted in Fig. 4.6. Moreover, the mapping with the TLS
reconstruction preserves the relative error in the total mass and momentum
under 7.5033 · 10−15 and 2.1007 · 10−16, respectively.

For large deformations, the parameters from Table 4.1 are used and the
simulation time is increased to 0.1 s. The computations are performed with
the time-step size of 1 ·10−5 s, 20 elements (knot spans) and initially 8 MPs in
each cell. Since the analytical solution is not available when large strains are
considered, the results are compared to the solution generated with Updated
Lagrangian Finite Element Method (ULFEM) [22] using 120 DOFs.

Under large deformations, the MPs cross the element boundaries more
than 450 times when the standard MPM is used. This results in unphysical
oscillations in the solution for the stress as shown in Fig. 4.7. The use of the B-
spline basis functions reduces the oscillatory behaviour, but still significantly
deviates from the ULFEM solution. When the TLS reconstruction (with a
consistent mass matrix) is applied as well, the solutions improves significantly
leading to the reduction of the MPM error by a factor of 9.8. The method limits
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FIGURE 4.7: Stress distribution and corresponding relative errors in the L2-
norm in the vibrating bar with grid crossing.

the error in the mass and linear momentum of the system to 2.9104 · 10−14

and 5.7205 · 10−15 during the simulation.
The vibrating bar example demonstrates that BSMPM with the standard

MPM mapping considerably reduces the unphysical oscillations originating
from grid crossing. However, its performance can be hindered by the issues
at the boundaries of the domain. The application of the TLS reconstruc-
tion ensures an accurate solution at the boundaries leading to higher-order
convergence. As a result, TLS-BSMPM significantly improves the solution of
the standard MPM for small and large deformations. The obtained results
also show that TLS-BSMPM conserves the mass and linear momentum of
the system up to machine precision. Thus, the method preserves the physical
properties of the standard MPM.

For this example, the use of a consistent mass matrix for the velocity com-
putation in TLS-BSMPM is vital for the optimal performance of the method.
Although not considered here, the consistent mass matrix in Eq. 4.1 can fur-
ther improve the accuracy and physical properties of the algorithm. Therefore,
it is important to ensure an efficient solution of the resulting linear systems.

4.6 Iterative solvers
When solving a linear system of equations, two general solution strategies can
be distinguished. Direct solvers, such as Gaussian Elimination and Cholesky
Decomposition, determine the solution of a linear system of equations di-
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rectly. However, since direct solvers require a high amount of computational
resources, they are less preferable in the solution of large linear systems. Direct
solvers can be used though in a different setting, for example as a precondi-
tioner [197].

Alternatively, iterative solvers can be adopted, in which an initial guess
is updated successively until a converged end-of-step solution has been
reached. Hence, when considering Eq. 4.1, a sequence of approximations
~a(0),~a(1),~a(2), . . . is constructed based on an initial guess ~a(0). For each solu-
tion ~a(n), the corresponding residual vector ~r(n) = ~f −MC~a(n) is determined.
Once the residual is smaller then a predefined tolerance, the method is said to
have converged and the solution at the corresponding iteration is used. Differ-
ent types of iterative methods can be distinguished. Basic iterative methods
like the (damped) Jacobi or Gauss-Seidel method are easy to implement but
require a relatively large number of iterations. The more advanced Krylov
subspace methods like the Conjugate Gradient and GMRES method define
acronym show better convergence rates, which results in a smaller number of
iterations needed to converge.

Next to the choice of the iteration scheme, one or more stopping criteria
have to be chosen, such as Eq. 4.53.

||~r(k)||2
||~r(0)||2

< ε (4.53)

Apart from the adopted stopping criterion and iterative method, the prop-
erties of the corresponding matrix play an import role in the performance of
the iterative solver. In particular, the condition number influences the rate of
convergence of the chosen iterative method. The condition number κ(M) of a
matrix M ∈ RN·N in 2-norm is defined as given in Eqs. 4.54 and 4.55

κ(M) := ||M||2 · ||M−1||2 (4.54)

||M||2 :=
√
λmax(M>M) (4.55)

where λmax(·) denotes the maximum eigenvalue of the corresponding matrix.
In case the matrix is symmetric and positive definite (SPD), the condition
number is given by Eq. 4.56 [197].

κ(M) := λmax(M)
λmin(M) (4.56)

To illustrate the influence of the condition number on the convergence of
iterative methods, the Conjugate Gradient method is considered. The approx-
imated solution after n iterations, ~a(n), obtained with the Conjugate Gradient
method and the exact solution ~a satisfy inequality given in Eq. 4.57 [94].

||~a− ~a(n)|| ≤ 2
(√

κ(M)− 1√
κ(M) + 1

)n

||~a− ~a(0)|| (4.57)
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TABLE 4.2
κ(M) for different mesh widths and orders of B-spline
basis functions.

p \ h−1 8 16 32 64
1 7.38 · 100 8.55 · 100 8.89 · 100 8.97 · 100

2 5.21 · 101 5.51 · 101 5.60 · 101 5.62 · 101

3 4.40 · 102 4.24 · 102 4.20 · 102 4.22 · 102

4 3.77 · 103 3.36 · 103 3.29 · 103 3.30 · 103

5 3.30 · 104 2.61 · 104 2.52 · 104 2.52 · 104

Hence, the factor at which the initial difference between the approximation
and the exact solution ~a decreases every iteration, depends heavily on the con-
dition number of the matrix. High values of κ(M) imply a slow convergence,
while low values of κ(M) result in fast convergence.

Within MPM, the condition number of the mass matrix determines the
rate of convergence when an iterative method is used to solve Eqs. 4.1 and
4.10. Therefore, the condition number of the mass matrix for different orders
of the B-spline basis functions p and mesh widths h is presented in Table 4.2.

Although the numerical estimates are obtained on relatively coarse meshes,
the strong dependence of the condition number on the approximation order p
can be observed. Hence, a spatial discretisation with high-order B-spline basis
functions leads to an ill-conditioned linear system of equations.

To illustrate the effect of the condition number on the performance of
iterative solvers, Eq. 4.1 is considered and has to be solved in every time step
with the mass matrix is defined by Eq. 4.58.

MC =
∫

Ω
ρ~φ~φT dΩ (4.58)

where the B-spline basis functions φ can be chosen of arbitrary order p.
The force vector ~f is chosen to be constant, simulating a gravitational force
of 9.81 in the negative x- and y-direction. The resulting linear system is then
solved with the Conjugate Gradient method for different approximation orders
p. A tolerance of ε = 1 · 10−8 is chosen combined with a zero initial guess.
The number of iterations needed with the CG method, which can be adopted
since MC is SPD, are presented in Table 4.3.

The effect of the condition number on the number of iterations needed
before the CG method converges is clearly visible: a high condition number
leads to a high number of CG-iterations. The use of high-order B-spline basis
function therefore leads to a new challenge: The efficient solution of linear
systems arising in IgA discretisations.
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TABLE 4.3
Number of iterations needed with
the CG method for different values
of p and h.

p \ h−1 16 32 64 128
1 18 18 18 17
2 34 46 46 44
3 68 93 95 91
4 93 178 196 187
5 156 242 252 227

4.7 Efficient solvers for Isogeometric Analysis
Sangali and Tani [199] investigated the preconditioners based on the solution
of the Sylvester equation and Collier et al. [58] the use of direct solvers. An
alternative class of iterative solvers are multigrid methods. Multigrid methods
aim to solve linear systems of equations by using a hierarchy of discretisations
(Fig. 4.8). At each level of the hierarchy a basic iterative method (e.g. Jacobi,
Gauss-Seidel) is applied (smoothing), whereas on the coarsest level a correc-
tion is determined (coarse grid correction). This correction is then transferred
back to the finest level and used to update the solution. Information between
different levels is transferred using prolongation and restriction operators.

Starting from the finest level, different strategies can be adopted to traverse
the hierarchy, leading to different cycle types. Fig. 4.8 illustrates the most
common cycle type, the V-cycle.

The hierarchy can be obtained in various ways. With h-multigrid, each level
of the hierarchy corresponds to a discretisation with a certain mesh width h.
Typically, one chooses h, 2h, 4h, . . . to construct the hierarchy. h-Multigrid
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FIGURE 4.8: Description of a V-cycle
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methods for IgA discretisations have been studied in [88,104]. An alternative
solution strategy is the use of p-multigrid based methods, in which a hierarchy
is constructed based on discretisations of different approximation orders. the
linear system is considered to illustrate the structure of p-multigrid methods.
Should this Eq. be cross-referenced in this paragraph?

MC
h,p~ah,p = ~fh,p (4.59)

Eq. 4.59 results from a discretisation with B-spline basis functions of order
p and mesh width h. Starting from an initial guess ~a0

h,p, a single iteration of
the (two-grid) p-multigrid method consists of the following steps [235].

1. Apply ν1 pre-smoothing steps on Eq. 4.59 using Eq. 4.60.

~a
(0,m+1)
h,p = ~a

(0,m)
h,p + S(~fh,p −MC

h,p~a
(0,m)
h,p ), m = 0, . . . , ν1 − 1 (4.60)

where S is a smoother (i.e. a basic iterative method like Jacobi or Gauss-
Seidel).

2. Project the residual from level p onto level p − 1 using the restriction
operator Ip−1

p and solve the residual equation given by Eq. 4.61 at level
p− 1 to obtain the coarse grid correction.

MC
h,p−1~eh,p−1 = ~rh,p−1 (4.61)

where ~eh,p−1 denotes the error (or correction) at the coarse level.

3. Project the correction ~eh,p−1 onto level p using the prolongation operator
Ip
p−1 and update ~a(0,ν1)

h,p using Eq. 4.62.

~a
(0,ν1)
h,p := ~a

(0,ν1)
h,p + Ip

p−1(~eh,p−1) (4.62)

4. Apply ν2 post-smoothing steps to Eq. 4.59 to obtain ~a(0,ν1+ν2)
h,p =: ~a1

h,p

The two-grid multigrid method can be applied recursively until level p = 1
has been reached, which results in a V-cycle. Alternatively, different schemes
can be applied.

Eq. 4.61 is solved at level p = 1 using a Conjugate Gradient (CG) solver.
Eq. 4.53 with ε = 10−4 is chosen as a stopping criterion for the CG method. A
detailed description of the prolongation and restriction operator can be found
in [235].

The mass matrices, which are needed at each level for the smoothing pro-
cedure, are obtained by rediscretisation. The solution ~a1

h,p is used as an initial
guess for the next cycle.

The advantage of p-multigrid methods is the fact that on the ’coarsest’ level
a linear system is solved, where the mass matrix has a more favourable con-
dition number. Furthermore, since they coincide with B-spline basis functions
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TABLE 4.4
Number of V -cycles needed
with p-multigrid for different
values of p and h.

p \ h−1 8 16 32 64
1 1 1 1 1
2 4 4 4 3
3 15 12 10 9
4 22 17 13 11
5 58 38 27 20

for p = 1, established solution techniques for Lagrange Finite Elements can be
used. The potential of p-multigrid is illustrated by considering, again, Eq. 4.1
resulting, again, from applying a force in the negative x- and y-direction. The
number of pre- and post-smoothing steps is identical for all numerical exper-
iments (ν1 = ν2 = 8).

The number of V-cycles needed with p-multigrid are presented in Table 4.4
and can be compared with the ones presented in Table 4.3. Note that the
number of cycles needed with p-multigrid is significantly lower compared to the
iterations needed with the CG method. Furthermore, p-multigrid, as standard
h-multigrid methods, exhibits the h-independence property, implying that the
number of cycles needed before the method has converged is independent of
the mesh width h.

Numerical results indicate that p-multigrid methods can be used as an
efficient solution technique to solve the equations arising in MPM.

4.8 Closure
The combined use of B-spline basis functions and a TLS reconstruction (TLS-
BSMPM) significantly improves the solution of the standard MPM algorithm.
For small strains, smaller errors and, in many cases, higher convergence rates
can be obtained, while for large deformations, TLS-BSMPM reduces the os-
cillations originating from grid crossing. Furthermore, in contrast to many
standard reconstruction techniques, the total mass and linear momentum are
conserved provided a sufficiently accurate numerical quadrature method is
adopted.

The use of the consistent mass matrix instead of the lumped one for the
mapping of MP data to the background grid considerably improves the solu-
tion. However, the use of the consistent mass matrix within BSMPM requires
efficient solution techniques for high order B-spline discretisations. Since the
condition number grows exponentially with p in this case, (standard) iterative
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methods are inefficient. p-Multigrid methods, in contrast, have been shown to
be an efficient solution approach that requires a significantly smaller number
of iterations as compared to CG in this case.


