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Abstract. The material point method (MPM) is an effective computational tool for
simulating problems involving large deformations. However, its direct mapping of the
material-point data to the background grid frequently leads to severe inaccuracies. The
standard function reconstruction techniques can considerably decrease these errors, but
do not always guarantee the conservation of the total mass and linear momentum as
the MPM algorithm does. In this paper, we introduce a novel technique, called Taylor
Least Squares (TLS), which combines the Least Squares approximation with Taylor basis
functions to reconstruct functions from scattered data. Within each element, the TLS
technique approximates quantities of interest, such as stress and density, and when used
with a suitable quadrature rule, it conserves the total mass and linear momentum after
mapping the material-point information to the grid. The numerical and physical prop-
erties of the reconstruction technique are first illustrated on one- and two-dimensional
functions. Then the TLS technique is tested as part of MPM, Dual Domain Material
Point Method (DDMPM), and B-spline MPM (BSMPM) on a one-dimensional problem
experiencing small and large deformations. The obtained results show that applying the
TLS approximation significantly improves the accuracy of the considered versions of the
material point method, while preserving the physical properties of the standard MPM.
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1 INTRODUCTION

The material point method (MPM) [1, 2] is a computational tool for simulating prob-
lems involving large deformations. Despite its good performance in the occurrence of
complex engineering studies, MPM has some numerical shortcomings. For example, when
large strains are considered, the direct mapping of material-point data to the background
grid can lead to considerable inaccuracies [3]. In addition, unphysical oscillations, known
as grid-crossing errors, arise when particles travel between the elements [4].

Methods such as the Dual Domain Material Point method (DDMPM)[5] and B-Spline
MPM (BSMPM) [6, 7] smoothen the gradients of the basis functions thereby reducing the
grid-crossing error. Moreover, Sulsky and Gong [3], and Tielen et al. [7] have shown that
advanced function reconstruction techniques can significantly decrease the quadrature er-
rors within MPM and BSMPM. However, in contrast to the original MPM approach,
standard reconstruction techniques do not necessarily conserve the mass and linear mo-
mentum of the system.

In this paper, we propose a novel reconstruction technique, called the Taylor Least
Squares (TLS), that combines Least Squares approximation with local Taylor basis func-
tions [8]. For each element, it reconstructs quantities of interest, such as stress and density,
from the particle data. The functions are evaluated at the integration points and Gauss
quadrature is applied to determine the internal forces and velocities at the degrees of free-
dom (DOFs). If each element contains a sufficient number of Gauss points, the proposed
mapping approach preserves the total mass and linear momentum.

First, the numerical and physical properties of the TLS reconstruction are illustrated
without including it in the MPM algorithm. After that, the reconstruction technique
is applied within MPM, DDMPM, and BSMPM for a time-dependent one-dimensional
problem under small and large deformations. The obtained results show that TLS re-
construction leads to a conservative projection, while significantly decreasing the spatial
errors and improving the convergence behaviour of the considered material point methods.

This paper is structured as follows. Section 2 introduces the main concepts of the TLS
reconstruction and demonstrates its performance for one- and two-dimensional functions.
Section 3 outlines the use of the technique within the MPM algorithm. Section 4 gives
a formal analysis of its conservative properties. Section 5 describes the performance of
MPM, DDMPM, and BSMPM with the TLS reconstruction based on a one-dimensional
problem that undergoes small and large deformations. Section 6 provides the conclusions.

2 TAYLOR LEAST SQUARES RECONSTRUCTION

Let {xp}Np

p=1 be a set of Np distinct data points from Rn with n = {1, 2} and {u(xp)}Np

p=1

contain the corresponding values. It is assumed that u ∈ F , where F is a normed
function space on R, and P = span{ψi}nb

i=1 ⊂ F is a set of nb basis functions. Defining
the basis function vector ψ(x) = [ψ1(x) ψ2(x) . . . ψnb

(x)]T , and vector of coefficients
a = [a1 a2 . . . anb

]T , the Least Squares [9] approximation at a point x ∈ Rn is the value

2
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û ∈ P given by

û(x) =

nb∑
i=1

aiψi(x) = ψT (x)a with a = D−1BU, (1)

where

D =

Np∑
p=1

ψ(xp)ψ
T (xp), B = [ψ(x1) ψ(x2) . . . ψ(xNp)], U = [u(x1) u(x2) . . . u(xNp)]T .

The basis for P can be constructed from local Taylor basis functions [8]. To define these
basis functions we introduce the concept of the volume average. For a generic function f ,
the volume average over Ωe is equal to f = 1

|Ωe|

∫
Ωe
f dΩe, where |Ωe| is the volume of cell

e (i.e., in one dimension, Ωe = [xmin, xmax] with xmax > xmin, and |Ωe| = xmax − xmin).
The Taylor basis functions are then given by [8]

ψ1 = 1, ψ2 =
x− xc

∆x
, ψ3 =

y − yc
∆y

, ψ4 =
(x− xc)2

2∆x2
− (x− xc)2

2∆x2
,

ψ5 =
(y − yc)2

2∆y2
− (y − yc)2

2∆y2
, ψ6 =

(x− xc)(y − yc)− (x− xc)(y − yc)
∆x∆y

.

Here, xc = xmax+xmin

2
, yc = ymax+ymin

2
, ∆x = xmax−xmin

2
, and ∆y = ymax−ymin

2
.

An important quality of the Taylor basis that ensures the conservative properties of
the reconstruction technique is the following:∫

Ωe

ψi dΩe =

{
|Ωe| if i = 1,

0 if i 6= 1.
(2)

Thus, if a function u has to be reconstructed so that its integral over Ωe,
∫

Ωe
u(x)dΩe =

c (c ∈ R), is preserved, the TLS approximation of u is equal to

u(x) ≈ û(x) =

nb∑
i=1

aiψi(x). (3)

From Equation (2), it follows that:∫
Ωe

û(x) dΩe =

∫
Ωe

nb∑
i=1

aiψi(x) dΩe =

nb∑
i=1

ai

∫
Ωe

ψi(x) dΩe = a1|Ωe|. (4)

This implies that the reconstructed function û preserves the integral value if

a1 =
c

|Ωe|
, (5)

which can be enforced explicitly. In this case, the Least Squares reconstruction would be
based on nb − 1 basis functions.
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2.1 Examples

First of all, we reconstruct a one-dimensional function u(x) = sin(x)+2 on [0, 4π]. The
integral is equal to 8π, in this case. The domain is discretised by four elements of size π
and contains two data points are located at π and in total 12 data points. In the first
element, two data points are positioned at the edges and one in the interior. In the third
cell, the data points are distributed uniformly. The remaining data points have random
positions creating several types of data distribution within each element.

0 2 3 4
0

0.5

1

1.5

2

2.5

3

Figure 1: TLS reconstructions of u(x) = sin(x) + 2 on [0, 4π] for different types of data
point distribution within an element.

The TLS approximation is produced using three Taylor basis functions. Figure 1
depicts the obtained results for 10 integration points per element. The overall performance
of the TLS technique is quantified by the Root-Mean-Square (RMS) error for the function
and the relative error for its integral. Both errors are calculated for 10 Gauss points within
each element. The RMS error is equal to 3.8139 · 10−2, whereas the relative error is equal
to 7.0679 · 10−16. When only two Gauss points per element are used, the relative error for
the integral is equal to 2.7903 ·10−15. Thus, for this example, the TLS approach preserves
the integral up to machine precision.

Moreover, we reconstruct a two-dimensional function u(x, y) = sin(x) cos(y) on [0, 5]×
[0, 5]. The corresponding integral is approximately equal to −6.8691 · 10−1. The domain
is discretised by 1 × 1 quadrilateral elements. Each element contains 6 data points with
x-coordinates equal to xmin + 1

3
and xmax− 1

3
, and y-coordinates set to ymin + 1

4
, ymin+ymax

2
,

and ymax − 1
4
. This is illustrated in Figure 2.

This data distribution allows the use of six Taylor basis functions for the approximation.
Four Gauss points per element were defined to compute the RMS and relative errors. The
RMS error for the function is equal to 6.17 · 10−3, while the relative error for the integral
is equal to 6.6613 · 10−16. The reconstruction is visualised in Figure 2.

3 INTEGRATION INTO MATERIAL POINT METHOD

When the TLS reconstruction technique is integrated into the material-point method or
its more advanced version, such as DDMPM and BSMPM, particles serve as data points.
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Figure 2: TLS reconstructions of u(x, y) = sin(x) cos(y) on [0, 5] × [0, 5] using 6 data
points within each element: side and top view.

To conserve the integral of a certain quantity within each element1, the coefficient of the
first basis function is specified according to Equation (5). The remaining coefficients are
calculated from Equation (1) without ψ1 so that the integral value is preserved. When the
conservation is not required, a standard Least Squares approach is followed. This implies
that all unknown coefficients are obtained from the Least Squares approximation. This
section provides a more detailed description for one-dimensional problems.
First, the TLS reconstruction is applied to replace the MPM-integration in the internal
force computation by an exact method, such as an element-wise Gauss quadrature. In
the standard one-dimensional MPM algorithm, the internal forces at the DOFs are given
by

f int =

Np∑
p=1

σpφ
′ (xp)Vp, (6)

where f int is the vector containing the internal forces at the DOFs, Np is the total number
of material points, σp is the particle stress, φ (x) = [φ1(x) φ2(x) φ3(x)]T is the vector of
one-dimensional basis functions, xp is the particle position, and Vp is the particle volume.

We propose replacing Equation (6) by the following computational procedure.

1. Apply a quadratic TLS technique to reconstruct the stress field from the particle
data within each active element without explicitly specifying the coefficient of the
first Taylor basis function:

σ̂e =

nb∑
i=1

siψi, (7)

where σ̂e is the stress in element e, si is the coefficient corresponding to the ith
Taylor basis function. Outside of the considered element, σ̂e is zero. The global

1For BSMPM, an element is defined as a non-empty knot span.
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approximation of the stress function, σ̂, is then equal to σ̂ =
∑Ne

e=1 σ̂e.

2. Integrate the stress approximation using a two-point Gauss quadrature:

f int ≈
∫

Ω

σ̂(x, t)φ′ dΩ =

Ng∑
g=1

σ̂ (xg)φ
′ (xg)ωg,

where Ng is the total number of Gauss points, xg is the global position of a Gauss
point, and ωg is the weight of a Gauss point. To assure the exact integration of the

approximated function Ng should be selected so that nb ≤ 2Ng

Ne
.

Within the widely used Modified-Update-Stress-Last (MUSL) scheme [2], the TLS
technique should also be applied for the computation of the material-point velocities. In
the standard MUSL calculation, the material-point velocities are directly mapped to the
DOFs:

v = M−1

Np∑
p=1

mpφ (xp) vp, (8)

where v is the vector containing the velocity at the DOFs, M is the mass matrix, mp is
the particle mass, and vp is the particle velocity. The proposed mapping procedure has
the following steps.

1. Apply a quadratic TLS approach to reconstruct the density field and the product
of density and velocity within each active element ρe and (ρ̂v)e, respectively, while
preserving the mass and momentum of the element:

ρ̂e =

nb∑
i=1

riψi with r1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mp

(ρ̂v)e =

nb∑
i=1

γiψi with γ1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mpvp.

where ri and γi are the coefficients corresponding to the ith Taylor basis function.
Outside of element e, ρ̂e and (ρ̂v)e are zero. The global approximations are then
equal to ρ̂ =

∑Ne

e=1 ρ̂e and (ρ̂v) =
∑Ne

e=1(ρ̂v)e.

2. Integrate the approximations using a two-point Gauss quadrature to obtain the
momentum vector p and and the consistent mass matrix MC :

p =

Ng∑
g=1

(ρ̂v) (xg)φ (xg)ωg, (9)

MC =

Ng∑
g=1

ρ̂ (xg)φ (xg) (φ (xg))
T ωg, (10)
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3. Compute the velocity vector:
v = (MC)−1p. (11)

It should be noted that MC may be replaced by a lumped mass matrix without a
loss of conservative properties of the mapping procedure.

4 CONSERVATION OF MASS AND MOMENTUM

As mentioned in Section 3, the TLS technique uses the following approximations:

ρe ≈ ρ̂e =

nb∑
i=1

riψi with r1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mp

(ρv)e ≈ (ρ̂v)e =

nb∑
i=1

γiψi with γ1 =
1

|Ωe|
∑

{p|xp∈Ωe}

mpvp,

According to Equation (4) and (5), this preserves the mass Me and momentum Pe of
element e. As a result, the total mass and momentum of the system are conserved after
the TLS reconstruction:

M =
Ne∑
e=1

Me =
Ne∑
e=1

∑
{p|xp∈Ωe}

mp =

Np∑
p=1

mp, (12)

P =
Ne∑
e=1

Pe =
Ne∑
e=1

∑
{p|xp∈Ωe}

mpvp =

Np∑
p=1

mpvp. (13)

The mass- and momentum-conservation properties of the mapping obtained using TLS
reconstruction and Gauss quadrature can be shown as well.

Since the total mass is equal to the sum of the entries in the consistent mass matrix
from Equation (10), it can be written as

M =
Nn∑
i=1

Nn∑
j=1

MC
ij =

Nn∑
i=1

Nn∑
j=1

Ng∑
g=1

ρ̂ (xg)φi (xg)φj (xg)ωg

=

Ng∑
g=1

ρ̂ (xg)
Nn∑
i=1

φi (xg)
Nn∑
j=1

φj (xg)ωg =

Ng∑
g=1

ρ̂ (xg)ωg. (14)

The last equality is derived using the partition of unity property of the considered basis
functions (i.e., piecewise-linear and B-spline basis functions). In the remaining part of
the proof, we assume that nb ≤ 2Ng

Ne
, so that the Gauss quadrature with Ng

Ne
integration

points per element is exact. Therefore, the following holds:

M =

Ng∑
g=1

ρ̂ (xg)ωg =
Ne∑
e=1

∑
{g|xg∈Ωe}

ρ̂e (xg)ωg =
Ne∑
e=1

∫
Ωe

ρ̂e dΩe =
Ne∑
e=1

Me =

Np∑
p=1

mp.
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The last two steps emerge from the conservation of mass per element and Equation (12).
For the linear momentum, we also assume that nb ≤ 2Ng

Ne
. Repeating the above steps,

the total momentum after the mapping can be written as

P =
Nn∑
i=1

pi =
Nn∑
i=1

Ng∑
g=1

(ρ̂v)(xg)φi(xg)ωg =

Ng∑
g=1

(ρ̂v)(xg)
Nn∑
i=1

φi(xg)ωg

=

Ng∑
g=1

(ρ̂v)(xg)ωg =
Ne∑
e=1

∑
{g|xg∈Ωe}

(ρ̂v)e(xg)ωg

=
Ne∑
e=1

∫
Ωe

(ρ̂v)edΩe =
Ne∑
e=1

Pe =

Np∑
p=1

mpvp.

Therefore, we have shown that if the Gauss quadrature is performed using a sufficient
number of integration points, the mass and momentum balance is satisfied not only by
the TLS function reconstruction, but also by its combination with the Gauss quadrature.

5 NUMERICAL RESULTS

In this section, we consider a one-phase vibrating bar that undergoes small and large
deformations. The material-point solutions in terms of the particle displacement, velocity,
and stress are considered at the particle positions. For small deformations, the problem
has an analytical solution that allows us to perform a spatial convergence analyses. The
contribution of temporal errors is minimised by using small time-step sizes and short
simulation times. For large strains, the analytical solution is not available. Thus, the
numerical results are compared to the solution obtained with the Updated Lagrangian
Finite Element Method (ULFEM) [10]. The conservative properties of the material point
methods are quantified by calculating the maximum relative errors in the total mass and
momentum over all time steps before and after the computation of the velocity at the
DOFs. It should be noted that for MPM, DDMPM, and BSMPM, the errors in the mass
and momentum are bounded by 10−15. The TLS reconstruction technique is applied using
three basis functions (i.e., nb = 3).

The example describes the vibration of a one-phase bar with fixed ends. The motion
is captured by the following partial differential equations:

ρ
∂v

∂t
=
∂σ

∂x
,
∂σ

∂t
= E

∂v

∂x
, v =

∂u

∂t
.

Here, ρ is the density, v is the velocity, σ is the stress, E is the Young’s modulus, and u
is the displacement. The vibration is triggered by an initial velocity that varies along the
bar leading to the following initial and boundary conditions:

u(x, 0) = 0, v(x, 0) = v0 sin
(πx
H

)
, σ(x, 0) = 0, u(0, t) = 0, u(H, t) = 0,

where H is the length of the bar and v0 is the maximum initial velocity.
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Table 1: Vibrating bar problem: exemplary parameters allowing for small deformations.

Parameter Symbol Value Unit
Height H 1.00 m
Density ρ 2.00 · 103 kg/m3

Young’s modulus E 7.00 · 106 Pa
Max. initial velocity v0 0.28 m/s2
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(c) BSMPM

Figure 3: Vibrating bar problem without grid crossing: spatial convergence of material
point methods. The results are shown for the material point methods without TLS (solid
blue line, empty marker) and with TLS reconstruction (red filled marker).

For small strains, the analytical solution in terms of displacement is given by

u(x, t) =
v0H

π
√
E/ρ

sin

(
π
√
E/ρ t

H

)
sin
(πx
H

)
, (15)

The solutions for velocity and stress can be computed directly from Equation (15). Ta-
ble 1 provides exemplary parameter values for the vibrating bar benchmark under small
deformations. The time-step size and total simulation time are 1 · 10−7 s and 1.9 · 10−6 s,
respectively. Furthermore, the number of elements is varied from 5 to 40, while the num-
ber of particles per cell (PPC) is fixed to 12. Grid crossing does not occur, and the
maximal observed strain is equal to 5.3 · 10−7 m.

The results in terms of spatial errors are shown in Figure 3. As expected, MPM
with piecewise-linear basis functions demonstrates second-order convergence in both the
displacement and velocity. Since the stress is not discretised, its convergence rate is one.
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The application of the TLS reconstruction technique has almost no influence on the stress,
but decreases the displacement error by a factor of 1.7. For DDMPM, the application of
the reconstruction technique tends to reduce not only the error in the displacement, but
also in the stress.

The use of quadratic B-spline basis functions leads to a significant decrease in the error
and a higher order of convergence for the velocity, but causes problems at the bound-
aries of the domain for both stress and displacement. The large values of the error at the
boundaries prevent the reduction of the RMS error and worsen the convergence properties
of the method. However, the use of BSMPM with the function reconstruction technique
eliminates the boundary issues. Consequently, third-order convergence is obtained for all
the considered quantities. It should also be noted that the integration of the TLS recon-
struction in BSMPM produces more accurate results than the other considered methods.

The errors produced by the TLS technique for the total mass and momentum remain
close to machine precision. For example, when 40 elements with 12 PPC are used, the
relative error in mass is equal to 7.5033 · 10−15 for MPM, 7.3896 · 10−15 for DDMPM, and
7.5033 · 10−15 for BSMPM.

For large-deformation simulations, the parameters from Table 2 are used. The time-
step size and the simulation time are increased to 1 · 10−5 s and 0.1 s, respectively. The
domain is discretised using 20 elements (knot spans) with initially 8 PPC. The maximal
strain that is reached is 0.056 m.

Table 2: Vibrating bar problem: exemplary parameters allowing for large deformations.

Parameter Symbol Value Unit
Height H 1.00 m
Density ρ 2.00 · 103 kg/m3

Young’s modulus E 4.00 · 104 Pa
Max. initial velocity v0 0.80 m/s2

In the standard MPM simulation, material points cross the element boundaries more
than 450 times leading to significant inaccuracies in the results. Although grid crossing
influences the computation of the displacement and velocity, its most evident consequences
are in the stress distribution. DDMPM and BSMPM reduce the grid-crossing error, but
their results still significantly deviate from the solution provided by ULFEM. This is
shown in Figure 4.

Table 3: Maximum relative errors in the total mass M and momentum P over the
simulation run with the TLS reconstruction when grid crossing occurs. The vibrating bar
is discretised using 40 elements (knot spans) and 12 PPC.

MPM DDMPM BSMPM
ErrorM ErrorP ErrorM ErrorP ErrorM ErrorP
2.933 · 10−14 5.847 · 10−15 2.910 · 10−14 5.773 · 10−15 2.910 · 10−14 5.721 · 10−15

10
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Figure 4: Vibrating bar problem with grid crossing: stress distribution and corresponding
relative errors in the L2-norm. The results are obtained for the material point methods
without reconstruction technique (dotted blue line) and ULFEM (grey circle marker).

The figure also illustrates that the application of the TLS approximation reconstruction
leads to close agreement of the MPM, DDMPM, and BSMPM solutions with that of
ULFEM. The maximal reduction of the relative error in L2-norm made by standard
MPM is achieved when the reconstruction technique is combined with BSMPM. More
precisely, the integration of the TLS reconstruction in BSMPM decreases the MPM error
by a factor of 9.8. With DDMPM, it reduces the MPM error by a factor of 8.1. The
conservative properties of the reconstruction techniques are provided in Table 3.

6 CONCLUSIONS

In this paper, we have introduced Taylor Least Squares reconstruction for one- and
two-dimensional functions. The proposed technique combines the Least Squares approxi-
mation with local Taylor basis functions to accurately reconstruct the quantities of interest
from scattered particle data within each element. We have shown that within MPM the
TLS approximation conserves the mass and linear momentum of the system after the
material-point data is mapped to the integration points. More importantly, when used
with a sufficiently accurate numerical quadrature rule, the technique preserves the total
mass and momentum after the information is projected to the degrees of freedom of the
grid.

For a one-dimensional example undergoing small and large deformations, the TLS

11
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technique was applied within MPM, DDMPM, and BSMPM. Without grid crossing, the
reconstruction technique had little influence on MPM, but was able to improve the con-
vergence properties of DDMPM and BSMPM. When material points started to cross cell
boundaries, the TLS approximation smoothened the solutions obtained by all considered
material point methods and brought them closer to the solution computed by ULFEM.
Therefore, the TLS reconstruction maintains the physical properties of the standard ma-
terial point methods, while significantly improving their accuracy.
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Didot, 1805.

[10] KJ Bathe, E Ramm, and EL Wilson. Finite element formulations for large deforma-
tion dynamics analysis. Int J Numer Methods Eng, 9(2):353–386, 1975.

12


