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We consider numerical solution methods for the incompressible Navier-Stokes equations 
discretized by a finite volume method on staggered grids in general coordinates. We use 
Krylov subspace and multigrid methods as well as their combinations. Numerical experiments 
are carried out on a scalar and a vector computer. Robustness and efficiency of these methods 
are studied. It appears that good methods result from suitable combinations of GCR and 
multigrid methods. 

1. I n t r o d u c t i o n  

We compare various iterative methods for linear systems resulting from discret- 
ization of  the time-dependent incompressible Navier-Stokes  equations. Before 
discretization the physical domain is mapped onto a computational  domain 
consisting of  a number  of  rectangular blocks. In this paper we restrict ourselves 
to the one-block case and two space dimensions. For  the space discretization we 
use finite volumes and a staggered grid. For  the time discretization we use the 
Euler Backward finite difference scheme together with pressure correction. 

Krylov subspace and multigrid methods are two types of  promising iterative 
methods for the solution of  large unsymmetric non-diagonally dominant  linear 
systems of  algebraic equations. These types of  methods are much used to solve 
discretized Navier-Stokes  equations. Our research using Krylov subspace 
methods is described in [19-22] and using multigrid methods is described in 
[26-28,8-12]. Both types of  method give satisfactory results. In this paper we 
compare the two approaches. Furthermore,  we propose and compare combi- 
nations of  these methods. 

As Krylov subspace method we choose the G M R E S R  method [18] (a com- 
bination of  G C R  [2] and GMRES [15]). The reason for this is that G M R E S R  is 
more robust than the Bi-CGSTAB method [17] and requires less memory  and 
CPU time than the G M R E S  method [15]. For  the multigrid method we use a 
Galerkin coarse grid approximation and two different smoothers. Using the 
G M R E S R  method we observe that the number  of  iterations grows significantly 
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if the grid gets finer. For multigrid the number of iterations is in principle indepen- 
dent of the grid size. It appears that GMRESR is faster for medium grid sizes 
whereas multigrid (or combined) methods are faster for large grid sizes. 

Since many of the faster computers are vector computers we also compare the 
vectorization properties of the different methods. Although we expect in the near 
future that parallel computers beat vector computers, the comparison will 
remain relevant because good vectorization properties imply in many cases good 
parallelization properties. Furthermore, vectorization aspects remain of interest 
because future high-performance parallel computing platforms will contain 
vector processors. Note that GMRESR is easy to vectorize, since most of its arith- 
metic operations are vector updates, vector-vector and matrix-vector operations. 
Vector length becomes large as the grid is refined, which improves speed on vector 
computers. With respect to multigrid we have the following choices: 

• use a simple smoother, like point Jacobi, which is easily vectorized but not 
robust, or 

• use a more complicated smoother, like ILU, which is robust but harder to 
vectorize. 

A disadvantage of multigrid methods is that the occurrence of vectors of short 
length is inevitable, since use of coarse grids is necessary. This diminishes multigrid 
efficiency on vector computers. 

The foregoing observations on the advantages and disadvantages of the two 
types of method suggest that combinations of them may be profitable. A com- 
bination of a Krylov subspace method with a multigrid method has already been 
described in [6]. In this paper the combined methods consist of an outer loop 
and an inner loop. The inner loop may be different in every outer iteration, so 
these combinations are very flexible. We investigate and compare the two types 
of methods and their combinations, specifically: 

Method 1: GMRESR with ILU preconditioning; 
Method 2: Multigrid with Jacobi line smoothing; 
Method 3: Multigrid with ILU smoothing; 
Method 4: GCR with Method 2 as inner loop; 
Method 5: GCR with Method 3 as inner loop. 

This paper is organized as follows. In section 2, the pressure correction scheme 
used and discretization are explained briefly. The five iterative methods are 
described in section 3, together with some analyses of their characteristics. In 
section 4 numerical results are presented, and analyses and discussions are given. 
Finally, we summarize observations and draw conclusions in section 5. 

2. Equations and discretization 

In this paper, general boundary-fitted coordinates are used to compute flows in 
complicated geometries. In general coordinates, the incompressible Navier-Stokes 
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Figure t. Staggered grid in computational domain. At certain boundaries, virtual cells are introduced, 
which are indicated by dashed lines. 

equations are formulated in standard tensor notation as follows [16]: 

momentum equations 

O U ~ ~ ,.~fl U'r 
0---~+ U~U%= -g"~p,~+ R e - l ( g ~ U ~ +  s ,a:,~, (1) 

continuity equation 
U ~ = 0 ,  (2) 

where U ~ is the contravariant representation of the velocity vector field, p the 
pressure, Re the Reynolds number, and g ~  the metric tensor. The range of 
Greek indices is {1,2}, because we restricted ourselves to two space dimensions. 
As mentioned in section 1, a complicated physical domain is mapped onto a 
square computational domain. Figure 1 illustrates the computational domain 
and the staggered grid arrangement. We use a lexicographic ordering of the grid- 
points, where the points in (~ direction are numbered first. Due to the use of 
virtual cells the number of u 1-, u 2- and p-points is the same. Using finite volume 
discretization in space and the backward Euler method for time discretization, 
we obtain the following discrete systems at each time step (see references 
[16,4,24] for details): 

1 u I 1 ul n= -~kA21 A22 A23 II~ 
~-t u 2 / ~ t  u 2 f2] 

u2 = O, (4) 

where u ~, u z and p are algebraic vectors that approximate on the grid v'~U ~ and 
v ~ U  2 and p, respectively, with v'g the Jacobian of the mapping, and f~ and f2 
represent source terms. The nonlinear terms have been linearized with Newton's 
method. The linear operators (A 31 A32), resulting from discretization of the 
divergence operator in the continuity equation, and A ~3 and A 23, resulting from 
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discretization of the gradients of the pressure in the momentum equations, do not 
depend on time. The remaining operators are time-dependent. The structure of 
stencils of the discrete operators are given by 

I*** 'A' I 'A' *i] [ A l l ] =  , _, , , 1 2 =  * * * * 1 3 =  
• • • • 

L *  * * * 

r ltA21]= , = . . , = , 

(5) 

(6) 

F.7 
• 1, [A32]= [ . ] ,  (7) 

where a star with an underscore corresponds to the center of  the finite volume 
concerned. 

Equations (3) and (4) are solved by the pressure correction method, as presented 
in [5], which consists of three steps. In the first step, the momentum equations are 
solved to give an intermediate value for the velocities, using the old pressure: 

/INCA3/ ~-~I + A12 u 1 * 1 u I p,,. 

l i  A 22 u 2 = f2 +~-~ U2 ~A2 3 (8) 
A21 At + 

This equation system behaves like a discretization of a convection-diffusion equation. 
The main diagonal is enhanced by a contribution 1/At due to the time-derivative. 
Then the pressure equation, which is derived from the momentum equations (3) 
and the continuity equation (4), is solved to give the difference p~+l _ p,,: 

(u) (A 3' A 3 2 ) / A 1 3 " ~ ( p " + l - p " ) = - I ~ ( A 3 ~  A 32) (9) 
~kA23 f At u 2 

The coefficient matrix of p,,+l _ p,, does not change with time, and resembles a 
discretization of the Laplacian operator (in general coordinates), but is not 
symmetric. Finally, the velocities at time step n + 1 are computed by means of  

( u l )  n+!= (UI~* I I  ( A I 3 ~  
u 2 \ u 2 J  + A t  \A23 / (P"+' - P~)" (10) 

In the next section we describe the iterative methods used for the solution of  (8) 
and (9). 

3.  S o l u t i o n  m e t h o d s  

In this section the iterative methods to be tested are described. The G M R E S R  
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method combined with ILU type preconditioners is given in subsection 3.1. This is 
a summary of the methods described in [22]. In subsections 3.2.1 and 3.2.2, 
the multigrid methods using an alternating Jacobi line smoothing and an 
ILU smoothing are presented. New methods, consisting of combinations of  
GMRESR and multigrid are proposed in subsection 3.2.3. Finally, the vectoriz- 
ation properties of  the iterative methods are summarized in subsection 3.3. 

3.1. Method 1: GMRESR with ILU preconditioning 

In section 2 we have seen that there are two types of  linear systems to be solved: 
the momentum equations and the pressure equation. Each has its own character- 
istic properties. We use G M R E S R  for both but with different preconditioners. 
The G M R E S R  method is defined in [18], successfully applied to the Navier-  
Stokes equations in [20], and analyzed further in [19,21]. The G M R E S R  algorithm 
can be formulated as follows: 

Algorithm G M R E S R  

r 0 = b -  Ax0 ,k  = - 1  

while Ilrk+ ll/llr0ll > to! do 
k : = k + l  
apply one iteration of GMRES(m) to Ayk = rk and 
denote the result by u~ °) 
c~°)= Au~ °) 
for i = 0 ,  1 , . . . , k -  1 do 

c~ ~T~(i) 
( i + 1 )  " ' ( i )  ( i + 1 )  : u~ i )  

C k : C k - -  C~ i Ci ;  I l  k - -  O~ i U i 

od 
ck --  k>/ltc k)ll2; Uk --  k>/ltc k)tl2 

Xk+ = x .  + u k c l r k ;  rk+ = rk - e k c l r k  
end while 

G M R E S R  consists o fa  G C R  outer loop and a GMRES inner loop. In this paper 
the G M R E S R  algorithm is used with the "min alfa'" truncation strategy (see [19]). 
A truncation strategy is necessary to restrict the required memory. Truncation 
means the following: choose the number (ntrunc) of search directions (Uk) that 
may be kept in memory. If the number of  iterations becomes larger than ntrune, 
a search direction uj and its companion ej (=Auj) are overwritten by the new 
search direction uk+~ and ek+l. The min alfa truncation strategy is a method to 
decide which search direction should be discarded by the following criterion: find 

T ( j )  j such that aj = e) ek+ l satisfies the following equation: 

= min [all. (11) 
[aj[ o .< i ~< ,,tr,,,,c 

To obtain an efficient solver, G M R E S R  is combined with a preconditioner. For 
the pressure equation we use the classical incomplete LU decomposition (all fill-in 
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is neglected). For the details of this preconditioner and the combination with 
GMRESR we refer to [22]. The preconditioning matrix must be stored and 
requires nine extra memory vectors. This memory is available, because the 
memory required to store the momentum matrix can be overwritten. 

To save memory, we restrict ourselves to ILUD preconditionings for the 
momentum equations. In this type of preconditioning the off-diagonal parts 
of L and U are the same as that of the given matrix and only the diagonal 
is adapted. Thus only one extra memory vector is required. For further details 
we refer again to [22]. In the present paper, we use the RILUD_2 version for 
the momentum equations. One needs 2 x ntrunc + m vectors in memory for 
the GMRESR(m) method for both systems of equations. In all the numerical 
experiments given in section 4, we use the GMRESR(5) method (so m = 5). 

3.2. Multigrid methods 

In this paper, we use multigrid methods consisting of the F-cycle with one pre- 
and one post-smoothing. In subsection 3.2.1 the coarse grid operators are defined. 
The two used smoothing operators are given in subsection 3.2.2, which lead to 
Methods 2 and 3. 

3.2.1. Formulation o f  coarse grid operators 
Coarse grid operators are formulated by means of Galerkin coarse grid approxi- 

mation [23]. 
For brevity, we write equations (8) and (9) as (A 

A21 A22 u 2 = f2 , (12) 

A33p = f3. (13) 

Let l be the grid index, with l = 1 indicating the coarsest grid. Galerkin coarse grid 
approximation is carried out from grid l + 1 to grid l as follows: 

momentum equations 

A ll(t) A 12(1)) : ( RIAII(t+I)PI RIAl2(t+l)p2~ 

A21(I) A22(l) ~k R2A2I(I + 1)p1 R2A22(I+ l)p2 } '  

fl(tl (Rlrt(t+i) 

f2(t) ) = \ R2r2(t+ 1) ) (14) 

and pressure equation 

A33(l) = R3A33(I+I)p3, f3(/) = R3r3(/+l). (15) 

The r's are the residuals, for example, r 3 = f3-A33p. Here, the R's and P's are 
restriction operators and prolongation operators, which are described below. 
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Figure 2. Cell-centered coarsening and correspondence between grid points (here for the u I velocity 
unknowns) on a fine and a coarser grid; e I = (1,0). 

For an explanation of the principle of Galerkin coarse grid approximation, 
see [23]. In [28], an algorithm for efficient implementation of Galerkin coarse grid 
approximation is presented, and the properties of coarse grid operators are discussed 
(see also [25]) for various choices of restriction and prolongation operators. 

Standard cell-centered coarsening is used: a cell on the next coarse grid is formed 
by taking the union of four fine grid cells, as illustrated in figure 2. The restriction 
operators R t and R 2 are for the momentum equations and R 3 for the pressure equa- 
tion. The prolongation operators pl, p2 and p3 are applied to u 1, u 2 and p, respec- 
tively. The prolongation used for the coarse grid corrections is the same as in 
Galerkin coarse grid approximation. 

The operators R 1 and R 2 use so-called hybrid interpolation, which, for example 
for R l, is obtained by using the adjoint of linear interpolation for u ~ in direction 1 
but the adjoint ofpiecewise constant interpolation in direction 2. Operator R 3 is simply 
the adjoint of piecewise constant interpolation. Operators R 1 and R 3 are given by 

l [ w e  2 we] 1[1  11] (16) 
[R1]=2 w e  2 ' [R3]=2 1 ' 

where w = 0 when the "west" points are on or outside of the "west" boundary and 
w = 1 elsewhere, and similarly for s, e and n. l{ 2 is similar to R 1 . The elements with 
an underscore correspondto the fine grid point 2k when restriction results in a func- 
tion value in the coarse grid point k. The prolongation operators P~, pZ and p3 employ 
bilinear interpolation. The adjoints P~* and p3, of P~ and p3 are given by: 

n w  2n ne  

1 ( 4 - n ) w  2 ( 4 - n )  ( 4 - n ) e  

[ p l , ] = 8  ( 4 - s ) w  2 ( 4 - s )  ( 4 - s ) e  ' 

sw  2s se 

[p3,]  = 

n w  n(4 - w) n(4 - e) ne 

( 4 - n ) w  1 6 - 4 ( n + w ) + n w  1 6 - 4 ( n + e ) + n e  ( 4 - n ) e  

( 4 - s ) w  1 6 - 4 ( s + w ) + s w  1 6 - 4 ( s + e ) + s e  ( 4 - s ) e  

sw s(4 - w) s(4 - e) se 

, ( 1 7 )  
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and p2, is similar to P~*. For a more detailed exposition of  these transfer operators, 
see [23] and [28]. 

With our choice of R's and P's, the structures of all A's on coarse grids remain 
unchanged. The total number of coarse grid cells is about 1/3 of the number of cells 
on the finest grid. Therefore, to store the coarse grid operators for the momentum 
equations requires 17 x 2/3 ~ 11 vectors. The storage of  the coarse grid operators 
for the pressure equation overwrites the storage of  the momentum equations. This 
implies that at every time step, the coarse grid operators for the pressure equation 
are recomputed, which takes only little CPU time. 

3.2.2. The smooth&g operators 
In this subsection we describe the smoothers which are used in the multigrid 

method: Jacobi smoothing and ILU smoothing. The reason for this choice is 
that Jacobi smoothing has good vectorization (parallelization) properties but is 
not robust, whereas the ILU smoothing is robust but not easily vectorized. 

Method 2: Multigrid with Jacobi smoothing 
Our Jacobi smoothing method consists of  one horizontal Jacobi line iteration 
followed by one vertical Jacobi line iteration. The momentum equations are 
smoothed in a decoupled way, i.e., the two momentum equations are smoothed 
successively. In a horizontal smoothing iteration, mutually independent tri- 
diagonal systems have to be solved: MySxy = rj for a horizontal line j.  The three 
non-zero elements at row i in Mj are denoted by li, j ,  di, j, and uij. The matrix My 
is factorized into: 

My = (Lj + Dj)D/ '(Dj + Uj), (18) 

where Lj and Uj have only one non-zero diagonal below and above the main 
diagonal, equal to li,j and ui, j and Dj is a diagonal matrix. Comparable formulas 
are used in a vertical smoothing iteration. Variables are updated after each 
horizontal and after each vertical step with a fixed underrelaxation factor 
w = 0 . 7 .  

Now we discuss the storage required by this smoother. L, D and U can overwrite 
M, and also r and 6x can share the same memory. So apart from the storage for 
the original system on all grids, additional memory is required to store M and r. 
On the finest grid, the horizontal smoothing needs six vectors to store M for the 
momentum equations. For the coarser grids about 1/3 of the storage on the 
finest grid is required. Therefore, one needs 6 x 4/3 = 8 vectors to hold M for 
the horizontal smoothing. The same is true for the vertical smoothing. To store r 
one needs one vector on the finest grid, since the momentum equations are 
smoothed in a de.coupled way. No additional storage for r on coarse grids is 
needed, as r (and also 6x) is used only once in a smoothing and can be overwritten 
after the smoothing. The solution of  the pressure equation just uses the memory for 
the momentum equations. Therefore, this smoother needs additional storage of 17 
vectors. 
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Method 3: Multigrid with ILU smoothing 
Suppose that the equation to be smoothed is denoted by 

A x = b .  (19) 
A smoothing iteration is given by 

6x = M-l (b  - Ax), x := x + ~ 6 x  (20) 

with 0~ = 0.8 fixed. For the ILU smoothing we choose M = (L + D)D -l (D + U), 
where L and U are strictly lower and upper triangular matrices, and D a diagonal 
matrix. Matrices L and U have non-zero entries in the positions corresponding 
to the standard 9-point stencil pattern and are chosen such that the elements 
of  M belonging to the 9-point pattern are equal to the corresponding elements 
of  A. The momentum equations are smoothed in the same decoupled manner 
as in Method 2. Again, factorization takes place only at the beginning of  
multigrid iterations for a time step, and L, D and U are kept until the next time 
step. Here we need nine diagonals to store M for a momentum equation. There- 
fore, the additional memory required by this smoother is 9 x 2 × 4/3 + 1 = 25 
vectors. 

3.2.3. The comb&ed methods 
The Jacobi line smoother is easy to vectorize but is less robust than ILU. There- 

fore it seems a good idea to combine line-Jacobi multigrid with GCR acceleration 
to obtain a fast and robust method. In the literature (other) combinations of  
Krylov subspace methods with multigrid are given in [6,7,13,14]. 

The methods presented below are very flexible. In many other combinations of 
Krylov subspace and multigrid methods, the inner loop procedures must be the 
same for every outer loop iteration. In these methods this is not necessary, so in 
different outer iterations one may use different inner loops, for instance a mix of 
GMRES and multigrid, or a different number of  iterations with multigrid or multi- 
grid with different smoothers, etc. The methods are based on the G M R E S R  idea 
where we use a G C R  outer loop and a GMRES inner loop. The algorithms for 
the new methods are given below and only differ in the construction of  the new 
search directions. 

Method 4: GCR with Method 2 as inner loop 
This method is obtained by replacing the statement 

apply one iteration of GMRES(m) to Ayk = r~ and denote the result by u~ °/ 

in Method 1 by 

apply one iteration of Method 2 to Ayk = rk and denote the result by u(k °). 

The same truncation strategy as for G M R E S R  (see [19]) can be used. In our experi- 
ments, the number of iterations required for convergence was so small that no trun- 
cation was necessary. The memory requirements are 2 x ntrunc vectors for the 
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Table 1 
Megaflop rate of the vectorized preconditioner. 

Grid 16 x 64 32 x 128 64 x 256 128 x 512 

Mflop/s 15 22 32 35 

GCR outer loop and 28 vectors for the multigrid inner loop (11 for the coarse grid 
operators + 17 for the smoother). 

Method 5: GCR with Method 3 as inner loop 
This method is obtained by replacing the statement 

apply one iteration of Method 2 to Ayk = rk and denote the result by U(k °) 

in Method 4 by 

apply one iteration of Method 3 to Ayk = rk and denote the result by U(k °). 

The amount  of  memory required differs from that in Method 4, since Method 2 and 
Method 3 need different amounts of memory. The GCR outer loop requires still 
2 x ntrunc vectors, but the multigrid inner loop now needs 36 vectors (11 for the 
coarse grid operators + 25 for the smoother). 

3.3. Vectorizat ion propert ies  

In this subsection we discuss the vectorization properties of the iterative methods 
given in subsection 3.1 and 3.2. 

Method 1: GMRESR with ILU preconditioning 
Most parts of the G M R E S R  method with ILU type preconditioning are well 
vectorizable. The only part which is hard to vectorize is the multiplication by the 
preconditioning matrix. This multiplication involves the solution of  two linear 
systems, one with an upper and the other with a lower triangular matrix. In a 
straightforward algorithm recurrences prohibit vectorization. In [22] two ways 
are given to vectorize the solution of a triangular system: partial vectorization 
and a diagonal ordering of the computation. In this paper we use the second 
approach. Without vectorization the multiplication by the preconditioner has a 
speed of 9 Mflop/s on one processor of the Convex 3840. The speed of a vector 
update (which is fully vectorizable) is 35 Mflop/s. In table 1, the computing 
speeds are given for the vectorized version. For large gridsizes the speed of the 
preconditioner is equal to that of a vector update. 

Method 2: Multigrid and Jacobi line smoothing 
The computations of the coarse grid operators in (14) and (15) can be vectorized. 
With respect to the Jacobi line smoother, we note that for every horizontal l inej  a 
tridiagonal system M/.6x i = rj have to be solved. The factorization of  Mj as given in 
(18) can be computed by 

di, j = did - lid u i - , , j / d , _  l,j 
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Table 2 
The CPU times and computational speeds in one alternating Jacobi line smoothing sweep on different 
grids. 

Process 1 Process 2 

Grid CPU t Mflop/s CPU t Mflop/s 

16 x 64 0.020 7.8 0.0028 14.0 
32 x 128 0.048 13.0 0.0078 20.0 
64 x 256 0.13 18.0 0.024 25.0 
128 × 512 0.56 17.0 0.094 25.0 

for i = 1 ,2 , . . . ,  n 1, where all terms with index outside the domain are deleted. We 
achieve vectorization (parallelization) by nesting the loops as follows: 

f o r / - -  1 , 2 , . . . , n  I do 
for j = 1 ,2 , . . . ,  1"/2 do 

d,,j = ;l,,i - l,,j ui_ , , #  ai_ ,,j 
od 

od. 

Forward and backward substitution can be handled in a similar fashion. Note 
that in our case (Fortran, natural ordering of gridpoints), the memory is accessed 
with stride nl for the horizontal smoothing, but it is accessed contiguously for the 
vertical smoothing. 

The most CPU time consuming parts of a smoothing sweep are: Process 1: 
computat ion of  r, and Process 2: the solution of  the tridiagonal systems. Since 
we use an alternative direction line smoothing, a stride equal to n~ cannot be 
avoided. We have arranged storage of M and r such that in Process 2 memory is 
accessed contiguously for both the horizontal and the vertical smoothings. This 
speeds up Process 2 but slows down Process 1 somewhat (this can be verified by 
comparing Process 1 with the corresponding process in the ILU smoothing in 
the next subsection). In table 2, we present for one smoothing sweep the CPU 
times in seconds spent on Process 1 and 2, and the corresponding Megaflop rate 
on the Convex C3840. Note that Process 1, which essentially consists of two 
matrix vector products, is the most time consuming part. For both parts the 
Mflop rate grows for increasing gridsize. Finally the Mflop rate of Process 2 
shows that the solution of the tridiagonal system is well vectorized. 

Method 3: Multigrid with ILU smoothing 
Using an ILU smoothing the most CPU time consuming parts are: Process 1: 
computat ion of  r and Process 2: the solution of  (L + D)D-I(D + U)/6x = r. The 
corresponding CPU times and Mflop rates are given in table 3. Indeed the Mflop 
rate of Process 1 is somewhat better than that used in Method 2, but the Mflop 
rate of  Process 2 is only 1/3 of that used in Method 2. In this smoothing, Process 
2 is the time dominant  part. 
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Table 3 
The CPU times and computing speed for one ILU smoothing step on different grids. 

Process 1 Process 2 

Grid CPU t Mflop/s CPU t Mflop/s 

16 x 64 0.010 8.5 0.024 2.5 
32 x 128 0.024 14.0 0.052 4.4 
64 x 256 0.072 18.0 0.13 6.8 
128 × 512 0.24 21.0 0.41 8.7 

For both methods, but especially for Process 2 of Method 3, we observe that the 
computing speed on coarse grids is not high due to smaller vector lengths. However 
coarse grids cannot be avoided in multigrid. Choosing the coarsest grid not too 
coarse and using methods faster than the smoother on the coarsest grid could 
improve efficiency on vector computers. As we will see, Method 1 could be a 
suitable coarsest grid solver. 

Methods 4, 5: The combined methods 
Since the overhead of the GCR outer loop is small and well vectorizable, the vector- 
ization properties of  these methods is mainly determined by the multigrid part. This 
implies that Method 4 is better vectorizable than Method 5. 

4. N u m e r i c a l  exper iments  

4.1. Test problems 

We consider four test problems, which are the square driven cavity problem with 
uniform and non-uniform grids, the oblique driven cavity problem and the L- 
shaped driven cavity problem, as illustrated in figure 3. We refer to these problems 
as Problems 1 to 4, respectively. These problems give rise to different difficulties. In 
the first two problems, the coordinates are orthogonal, and as a result there are no 
mixed derivatives. By adding more difficulty, the second problem has strongly 
stretched cells near boundaries, where the maximum cell aspect ratio is 100. The 
last two test problems both introduce mixed derivatives, the last one being typical 
of a general case. 

We study these problems for Re = l, 1000, At = 0.0625, 0.125, 0.25, and three 
grid sizes 32 x 32, 64 × 64, 128 × 128 (sometimes also 256 × 256). The coarsest 
grid is 2 x 2, on which exact solution takes place by using a direct solver. The 
number of  time steps is fixed at 40. This number is a rather arbitrary choice, 
because our purpose here is not to solve problems until steady state, but to inves- 
tigate the performance (efficiency and robustness) of solution methods. Based on 
numerical experiments, the following stop criterion is chosen: the iterative solution 
of  the systems at each time step is terminated if the ratio of  the norm l lrll of  the 
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Figure 3. Grids of  size 32 x 32 for the four test problems: (a) The square driven cavity problem; 
(b) The non-uniform square driven cavity problem; (c) The oblique driven cavity problem; (d) The 
L-shaped driven cavity problem. 

residual to the norm l lr0tl of  the residual at the beginning o f  the present time step 
satisfies llrll/llr011 < tol, with t o l =  10 -4 for the momentum equations and 
tol = 10 -6 for the pressure equation. 

In subsection 4.2 experiments on a scalar computer are described whereas 
subsection 4.3 contains the results on a vector computer. 

4.2. Experiments on a scalar computer 

In this subsection we present numerical experiments on an HP 735 computer. We 
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Table 4 
The results for Method 1 on a 128 × 128 grid and Re = I000. 

~xt k,, tv 

0.0625 2 97 
0.125 4 132 
0.25 6 213 

have run all methods described in section 3 for the test problems given in subsection 
4.1. For brevity, here we only present a representative subset of  the results. In sub- 
section 4.2.1 the momentum equations are considered, whereas in subsection 4.2.2 
we show results for the pressure equation. Finally, subsection 4.2.3 contains results 
for an entering flow problem. 

4.2.1. The momentum equations 
The properties of  the linear systems originating from the discretized momentum 

equations that influence the iterative solvers depend on: the size of the time step, 
the Reynolds number, the grid size, and the shape of the space domain. Below 
the influence of these parameters is considered in more detail. In the first parts 
we restrict ourselves to Problem 3, only in the final part results are given for all 
test problems. The reason for this is that the results for the other problems are com- 
parable with those of Problem 3. 

Dependence on At 
As we have already said the main diagonal of the momentum matrix is enhanced 
by a contribution 1~At due to the time derivative. So for small At the matrix is 
diagonal dominant.  In our examples At is chosen relatively small, since for large 
At the pressure correction scheme diverges. It appears that Methods 2 to 5 are 
more or less independent of the time step. Method I depends on the time step as 
can be seen from table 4. In this table t~ is the total CPU time for the solution of 
the momentum equation over 40 time steps and k~ is the number of  iterations at 
the final step. Note that the number of iterations grows if At increases. 

Dependence on the Reynolds number 
Only Methods 1 and 2 show a clear dependence on the Reynolds number. For both 
methods the number of  iterations is less for Re = 1000 than for Re = 1, see table 5. 

Table 5 
The results for Methods 1 and 2 on a 128 x 128 grid and At  = 0.0625. 

Method 1 Method 2 
Reynolds 
number  k~, t~ t% t v 

1 14 774 6 741 
1000 2 97 4 508 
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Table 6 
The results for Method 1 using At  = 0.0625 and Re --- 1. 

4t 

Grid size k~ t~ 

32 x 32 5 7 
64 x 64 8 74 
128 x 128 14 774 

Note that Method 1 converges very fast for Re = 1000. However we have to keep in 
mind that one outer iteration of GMRESR(5) consists of 5 iterations of GMRES. 
It appears that the eigenvalues of  the preconditioned matrix are well clustered 
around 1, which explains the fast convergence of GMRESR(5).  Up till now we 
are not able to explain why the eigenvalues are close to one. 

Grid size dependence 
Again, only Method 1 depends on the grid size whereas the other methods are grid 
size independent. For the low Reynolds number some results are given in table 6. 
As expected, the number of iterations increases for increasing grid size. 

Problem dependence and comparison 
For a comparison of  the various methods on the four test problems we plot the 
CPU time on an HP735 per grid point for 40 time steps against the grid size. In 
these figures we use the following symbols: 

Method 1: solid lines and point marks, 
Method 2: dotted lines and circles, 
Method 3: dashed lines and stars, 
Method 4: dotted lines and plus marks, 
Method 5: dashed lines and x-marks. 

Where no symbols are shown they are off-scale. For Re = 1 the results are given in 
figure 4 and for Re = 1000 the results are given in figure 5. 

First, we discuss the combination of  G C R  and multigrid. From figures 4 and 5 it 
appears that the G C R  acceleration of the Jacobi smoothed multigrid is better than 
multigrid itself. If  the smoother is sufficiently powerful, as for instance for Method 
3 where we use an ILU smoother, then the combination of  GCR and multigrid 
gives a slightly worse performance. In these cases the number of iterations is the 
same but the CPU time increases somewhat due to the GCR overhead. 

Secondly, we compare Method 1 with the best multigrid method: Method 3. 
Note that for Method 3 the CPU time per grid point is more or less the same for 
every problem. For Method I there is more variation: the CPU time increases 
for a larger grid size and a smaller Reynolds number. For a large Reynolds 
number  Method 1 is much faster than Method 3 (except Problem 2). For  a small 
Reynolds number Method 1 is more efficient for medium grid sizes, whereas 
Method 3 is the best method for large grid sizes. For  Problems 1, 2 and 3 the 
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Figure 4. CPU times per grid point for the momentum equation during 40 time steps, for Re = 1 and 
At ---- 0.0625. 

break-even point is in the range [64,128] and for Problem 4 the break-even point is 
in the range [128,256]. 

Finally, we discuss robustness. Methods 3 and 5 are equally robust, because for 
all test cases they both work well. Method 1 is a little less robust, since for Problem 
2 it has several failure cases (not shown here) when At is large, on the fine grid for 
Re small or on the coarse grids for Re large. The least robust method is Method 2; it 
suffers from convergence problems when either the grid is refined or At is large for 
some problems. But when it is combined with GCR, resulting in Method 4, robust- 
ness is improved very much. Sometimes when Method 2 fails to work, Method 4 
still works rather satisfactorily. However, Method 4 falls behind Methods 1, 3 
and 5 for Re large. 

4.2.2. The pressure equation 
The properties of the discretized pressure equation depends only on: the grid size 

and the shape of  the space domain. 

Grid size dependence 
The multigrid and combined methods require the same number of iterations 
for increasing grid size. Again, Method 1 depends on the grid size: the number 
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Figure 5. CPU times per grid point for the momentum equations during 40 time steps for Re = 1000 
and At = 0.0625. 

of iterations grows for increasing grid size. This is illustrated by table 7, where the 
results for Problem 3 are given. The total CPU time to solve the pressure equation is 
denoted by tp and kp is the number of iterations at the final step. 

Problem dependence and comparison 
The CPU time on an HP 735 per grid point for 40 time steps is shown in figure 6. 
It appears from figure 6 that for both smoothers the combination of GCR and 
multigrid is more efficient than multigrid itself. Especially in Problem 3, Method 
4 is two times as fast as Method 2. Also for the strong ILU smoother the CPU 
time for Method 5 is considerably less than for Method 3. Note that the CPU 
time for Method 1 is approximately the same for Problem 2 to 4 but it is halved 

Table 7 
The results for Method 1 used in Problem 3. 

Grid size kp tp 

32 × 32 9 7 
64 x 64 13 57 
128 x 128 22 642 
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Figure 6. CPU times per grid point for the pressure equation during 40 time steps. 

for Problem 1. With respect to the multigrid (or combined) method we observe that 
Problem 3 takes the most CPU time. 

Finally, we compare Method 1 with the best multigrid method: Method 5. It 
appears that Method 1 is more efficient for medium grid sizes, whereas Method 
5 is more efficient for large grid sizes. For Problems 2 and 4 the break-even 
points is in range [32, 64] whereas for Problems 1 and 3 the break-even point is 
in the range [64, 128]. For the pressure equation, Method 1 has a superlinear 
convergence behaviour [22], which means the reduction of residuals is faster in 
later iterations than in the first ones. Since the multigrid and combined method 
are linear convergent this implies that decreasing the termination criterion tol 
would benefit Method 1 and vice-versa. 

4.2.3. A test problem with an entering flow 
In subsections 4.2.1 and 4.2.2 we have considered examples of driven cavity 

flows. In other test problems we have observed comparable results. In order to illus- 
trate this we present in this subsection results for an entering flow, namely a Back- 
ward Facing Step problem [3]. The 46 x 16 grid for the problem is given in figure 7. 
The results for the momentum and pressure equations are given in figure 8. The 
results are in good agreement with the observations made in subsections 4.2.1 
and 4.2.2. 
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Figure 7. The 48 x 16 grid for the Backward Facing Step problem. 

4.3. Exper iments  on a vector machine 

In this subsection we report on some experiments on a Convex C3840. First we 
compare Methods 1, 3 and 5, because they are the best methods on the scalar 
machine and have different vectorization properties. Thereafter, Methods 3 and 
5 are compared with Methods 2 and 4 to analyse the performance of methods 
using a weaker smoother but with greater vectorization potential and using a 
stronger smoother but with smaller vectorization capacity. 

Comparing the best methods 
In figures 9 and 10 we present the CPU time per grid point against grid size for 
Problems 3 and 4. To show the effect of an increasing vector length computations 
on a 256 × 256 grid are included for Problem 4 (note the difference in horizontal 
scale). From these figures it appears that the behaviour of the different methods 
is comparable to that on a scalar machine: the efficiency of Method 1 deteriorates 
and that of  Methods 3 and 5 improves with grid refinement. Due to the good 
vectorization properties of the Krylov methods the break-even point moves to 
finer grids and the GCR overhead for the combined methods becomes negligible. 
Finally, the curves for Methods 3 and 5 become flatter when going to finer grids, 
which indicates that the efficiency gain from a larger vector length is gradually 
exhausted. 
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Figure 8. CPU times per grid point for the Backward Facing Step problem during 40 time steps, for 
Re = 150 and At = 0.0625. Left: the momentum equations, right: the pressure equation. 
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Figure 9. CPU times per grid point for the momentum equations during 40 time steps for Re = 1 and 
At = 0.0625. 

Comparing the vectorization properties of the smoothers 
It appears that the higher Mflop rate of Methods 2 and 4 does not compensate the 
slower rate of convergence, although on the vector machine they compete better 
than on the scalar machine. This is true for all test problems and is illustrated 
with the momentum equations of  Problem 4 in figure 11. Note that for a low 
Reynolds number Methods 2 to 5 are comparable, but for a high Reynolds 
number Methods 3 and 5 are superior to Methods 2 and 4. Method 2 does not 
work on finer grids and even fails on the 256 × 256 grid. 

5. C o n c l u s i o n s  

We have investigated numerically five iterative methods, namely, Method 1: 
GMRESR: GCR with GMRES as inner loop, Method 2: multigrid with a 
Jacobi line smoothing, Method 3: multigrid with an ILU smoothing, Method 4: 
GCR with multigrid with Jacobi line smoothing as inner loop and Method 5: 
GCR with multigrid with ILU smoothing as inner loop, in the context of appli- 
cation to the solution of the incompressible Navier-Stokes equations in general 

O0: 

OO2 

4 

J 

oo~ 

004 

O00 

ool  

a n 

Figure 10. CPU times per grid point for the pressure equation during 40 time steps. 
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Figure 11. CPU times per grid point for the momentum equations during 40 time steps for Problem 4 
and At = 0.0625. Above: Re = 1 below Re = 1000. 

coordinates on staggered grids, using the pressure correction method in the time- 
dependent case. 

From our numerical experiments we draw the following conclusions: 

• For the solution of the momentum equations with a high Reynolds number 
Method 1 is the best method. 

• Solving the momentum equations for a low Reynolds number Method 1 is 
faster for medium sized grids, whereas Method 3 is the best method for the 
large sized grids. 

• For the pressure equation Method 1 is also optimal for medium grid sizes. For 
large grid sizes Method 5 is the most robust and efficient method. 

• The GCR outerloop of  Methods 4 and 5 speeds up the rate of  convergence, 
especially for weak smoothers (Method 4). 

Finally, we remark that the break-even point, where the efficiency of the Krylov 
subspace method is equal to that of the multigrid method depends on many factors. 
Some of  them are: the domain of  the test problem, the termination criterion, the 
Reynolds number, the computer used (scalar, vector, or parallel) etc. In section 4 
we have investigated numerically in which direction the break-even point moves 
depending on the change of one of  these factors. 
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