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Problem formulation

Consider the velocity tracking problem for the stationary Oseen equation:
Find the velocity u ∈ H1

0 (Ω)
d,

the pressure p ∈ L2
0(Ω), where L2

0(Ω) = {q ∈ L2(Ω)},
∫
Ω
q dx = 1}, and

the control function f , that minimize the cost function

J (u, f) =
1

2
‖u− ud‖2 +

1

2
α‖f‖2,

subject to state equation for an incompressible fluid velocity u, such that

{
−∆u+ (b · ∇)u+∇p = f in Ω

∇ · u = 0 in Ω

and boundary conditions u = 0 on ∂Ω1, u · n on ∂Ω2 = ∂Ω\∂Ω1, where n

denotes the outward normal vector to the boundary ∂Ω.
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Problem formulation, cont.

Here:
– ud is the desired solution,
– α > 0 is a regularization parameter, used to penalize too large values of
the control function.
– b is a given, smooth vector. For simplicity we assume that b = 0 on ∂Ω1

and b · n = 0 on ∂Ω2.

In a Navier-Stokes problem, solved by a Picard iteration using the frozen
coefficient framework, b equals the previous iterative approximation of u,
in which case normally ∇ · b = 0 in Ω. For simplicity, we assume that this
holds here also.
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The variational form of the state, i.e., constraint equation reads as follows:

{
(∇u,∇ũ) + (b · ∇u, ũ)− (∇ũ, p) = (f , ũ) ∀ũ ∈ H1

0 (Ω)
d

(∇ · u, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

The Lagrangian functional, corresponding to the optimization problem is
given by

L(u, p,v, q, f) = J (u, f)+(∇u,∇v)+(b ·∇u,v)−(∇·v, p)−(∇·u, q)−(f ,v),

where v is the Lagrange multiplier function for the state equation and q for
its divergence constraint. Applying the divergence theorem, the
divergence condition ∇ · b = 0 and the boundary conditions, we can write

∫

Ω

b · ∇ũ · vdΩ = −
∫

Ω

(b · ∇v) · ũdΩ .
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The five first order necessary conditions for an optimal solution:

(u, ũ) + (∇v,∇ũ)− (b · ∇v, ũ)− (∇ · ũ, q) = (ud, ũ) ∀ũ ∈ H1
0 (Ω)

d

(∇ · v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇u,∇ṽ) + (b · ∇u, ṽ)− (∇ · ṽ, p)− (f , ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)

d

(∇ · u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

α(f , f̃)− (f̃ ,v) = 0 ∀f̃ ∈ L2(Ω)

Here u, p, f are the solutions of the optimal control problem with v, q as
Lagrange multipliers for the state equation and ũ, ṽ, p̃, q̃, f̃ denote
corresponding test functions.
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The control function f can be eliminated, f = α−1v, resulting in the
reduced system:

(u, ũ) + (∇v,∇ũ)− (b · ∇v, ũ)− (∇ · ũ, q) = (ud, ũ) ∀ũ ∈ H1
0 (Ω)

d

(∇u,∇ṽ) + (b · ∇u, ṽ)− (∇ · ṽ, p)− α−1(v, ṽ) = 0 ∀ṽ ∈ H1
0 (Ω)

d

(∇ · v, p̃) = 0 ∀p̃ ∈ L2
0(Ω)

(∇ · u, q̃) = 0 ∀q̃ ∈ L2
0(Ω)

To discretize: use an LBB-stable pair of finite element spaces for the pair
(u,v) and (p, q).
Taylor-Hood pair with {Q1, Q1, Q2, Q2}, namely, piece-wise bi-quadratic
basis functions for u,v and piece-wise bi-linear basis functions for p, q.
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2D: A0 is an 8× 8 block matrix

The linear system to be solved is then the following:

A0




u

−v

p

q


 =




M −KT 0 DT

K α−1M DT 0

0 D 0 0

D 0 0 0







u

−v

p

q


 =




Mud

0

0

0


 ,

where we have changed the sign of v.

Notational conventions: the matrices M,K,D are two-by-two block matrices (which
reflects the fact that we solve two-dimensional problems), namely,

M =


M 0

0 M


 , K =


K 0

0 K


 , D =

[
B1 B2

]
,

M – the velocity mass matrix, K = L+ C – the velocity stiffness matrix,
L – discrete diffusion operator, C – discrete convection operator,
BT

i and Bi, i = 1, 2 – discrete gradient and divergence operators.
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– For the Stokes problem C = 0.

– For the Oseen problem, the convection vector field is divergence-free,
thus, the matrix C is skew-symmetric (or nearly skew-symmetric in finite
arithmetic), thus, CT = −C. Then we have KT = LT + CT = L− C.

– Due to the use of an inf-sup (LBB) stable pairs of finite element spaces,
the divergence matrix D has full rank.
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To get a form, better suitable for the solution algorithms, we scale the
equations and unknowns as follows. Let v̂ = v/

√
α, q̂ = q/

√
α. We also

multiply the second and the fourth equations with
√
α:

A




u

−v̂

p

q̂


 =




M −√
αKT 0

√
αDT

√
αK M √

αDT 0

0
√
αD 0 0√

αD 0 0 0







u

−v̂

p

q̂




We denote the matrix as

A =

[
Ã D̃T

D̃ 0

]
,

Ã =

[
M −√

αKT

√
αK M

]
, D̃ =

√
α

[
0 DT

D 0

]
.
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General viewpoint - analysis of saddle point matrices

Consider a constraint saddle point system

Ax = b, where A =

[
A BT

B −C

]
,

– A symmetric and positive definite (spd),
– C is symmetric and positive semidefinite (spsd),
– B has full rank.
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We analyse the following preconditioners B1 and B2 to A.

B1 =

[
I 0

BP−1
A I

][
PA BT

0 −PS

]
=

[
PA BT

B BP−1
A BT − PS

]

and

B2 =

[
PA BT

0 −PS

]
,

PA and PS – spd preconditioners to A and to the Schur complement
matrix, S = C +BA−1BT , respectively.

Consider the generalized eigenvalue problem

λBix = Ax, x 6= 0, i = 1, 2.

Since, by assumptions, both A and S are nonsingular, it follows that λ 6= 0.
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Spectral properties of B−1
i A

To find the spectral properties of λBix = Ax we find it convenient to use a
congruence transformation,

[
A−1/2 0

0 S−1/2

][
A BT

B −C

][
A−1/2 0

0 S−1/2

]
.

Then the transformed matrix A takes the form
[

I B̃T

B̃ −C̃

]
,

where B̃ = S−1/2BA−1/2 and C̃ = S−1/2CS−1/2 = I − B̃B̃T . Note that
‖ B̃ ‖≤ 1.
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The transformed matrix can be factorized as
[

I B̃T

B̃ B̃B̃T − I

]
=

[
I 0

B̃ I

][
I B̃T

0 −I

]

For the preconditioner B1 =

[
I 0

BP−1
A I

][
PA BT

0 −PS

]
, the transformed

generalized eigenvalue problem takes the form,

1

λ

[
I B̃T

B̃ −C̃

][
x̃

ỹ

]
=

[
P̃A B̃T

B̃ B̃P̃−1
A B̃T − P̃S

][
x̃

ỹ

]
.
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Proposition: Assume that

PAx = αAx,x 6= 0,

PSy = βSy,y 6= 0,

where 0 < α0 ≤ α ≤ α1, 0 < β0 ≤ β ≤ β1, and 1
2 ≤ α0 ≤ 1, 1 ≤ α1 ≤ β1,

and that
P̃S ≥ B̃(I − P̃A)P̃−1

A (I − P̃A) + α0I ,

where P̃S = S−1/2PSS
−1/2. This holds if

β0 ≥ (1− α0)
2

α0
+ α0 where 1 ≥ β0 ≥ 2

1 +
√
2

for
1

2
≤ α0 ≤ 1 .
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Then for the preconditioner B1 to A it holds.

(i) α0 − 1 ≤ µ0 = Re(µ) ≤ β1 − 1

(ii) | µ1 |= Im(µ) ≤ max{1− α0, α1 − 1} =| µ |max .

If λ = λ0 + iλ1 , λ0, λ1 real, then

min





1

α0 +
|µ|2max

α0

,
1

β1 +
|µ|2max

β1



 ≤ λ0 ≤ 1

α0

| λ1 |≤ 1

α2
0

max {1− α0, α1 − 1} ≤ 4max {1− α0, α1 − 1} .
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Remark:

It is seen that the imaginary part of λ depends only on the accuracy
of the preconditioner PA to A.

The same holds for the upper bound of the real parts of the
eigenvalues.

This is important since it shows that one can control the rate of
convergence of a generalized conjugate gradient method essentially by
solving the pivot block matrix more accurately and, since the lower
eigenvalue bound depends on β1, scaling PS properly if PS is a sufficiently
accurate preconditioner to S.
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B
−1
2 A

Consider now the block triangular preconditioner B2 =

[
PA BT

0 −PS

]
.

Using the same congruence transformations as before, the corresponding
generalized eigenvalue problem takes the form

1

λ

[
I B̃T

B̃ −C̃

][
x̃

ỹ

]
=

[
P̃A 0

B̃ −P̃S

][
x̃

ỹ

]
.
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It follows that:
(
1
λ
− 1

)

x̂
ŷ


 =


 P̃A − I (P̃A − I)B̃T

B̃(I − P̃A) P̃S − I − B̃(P̃A − I)B̃T




 x̂

ŷ


+


 0 B̃T

0 0




 x̂

ŷ


 .

In this case due to the term

[
0 B̃T

0 0

]
= 1

2

[
0 B̃T

B̃ 0

]
+

[
0 B̃T

−B̃ 0

]
,

there is a strong influence on both the real and imaginary parts of the eigenvalues from
the off-diagonal matrix block and cannot be controlled by solving the inner system with A

sufficiently accurately.
Only if also the Schur complement system is solved to full precision we get a nilpotent
preconditioned matrix, resulting in only two iterations.
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Schur complement matrix approximation; outer level

Basic Lemma:
Assume that A and W are nonsingular of order n× n and m×m,
respectively, and B of order n×m has full rank. Then

(
B(A+ γBTW−1B)−1BT

)−1
= γW−1 + (BA−1BT )−1.

Proof. Well-known, but follows easily from

A1(I +A1A2)
−1A2 = I + (A1A2)

−1,

which follows by multiplication with I +A1A2. Take then inverses,

(
A1(I +A1A2)

−1A2

)−1
= I + (A1A2)

−1

and let A1 = L−1
2 BTU−1

1 , A2 = L−1
1 BTU−1

2 , where A = L1U1 and
W = L2U2.
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Application of the lemma:

[
A BT

B 0

][
u

p

]
=

[
f

0

]
=⇒

[
Aγ BT

B 0

][
u

p

]
=

[
f

0

]

where Aγ = A+ γBTW−1B, the Augmented Lagrangian matrix. Then

[
Aγ 0

B −Sγ

][
I1 A−1

γ BT

0 I2

][
u

p

]
=

[
f

0

]

where Sγ = BA−1
γ BT and S−1

γ = γW−1 + (BA−1BT )−1.
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For the two-by-two block matrix application, for small α:

−S−1
A

= γW̃−1 +
(
D̃Ã−1D̃T

)−1

= γ


W

−1 0

0 W−1


+


α


 0 D
D 0




 M −√

αKT

√
αK M



−1 

 0 DT

DT 0






−1

≈ γ


W

−1 0

0 W−1


+


α


DM−1DT 0

0 DM−1DT






−1

≈ γ


W

−1 0

0 W−1


+ 1

α


K

−1
p 0

0 K−1
p


 ,

where we have simply approximated


 M −√

αKT

√
αK M



−1

≈


M

−1 0

0 M−1


 .
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Inner iterations: the pivot block - a two-by-two block ma-

trix, its preconditioner

Let A and B be square matrices. Consider matrices in the form

A =

[
A −aBT

−bB A

]
,

where a, b are real numbers such that ab > 0.
Assume that A and B +BT are positive semidefinite and

ker(A) ∩ ker(B) = {∅} .

It follows readily that under these assumptions, A is nonsingular.
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We let

B =

[
A aBT

−bB A+
√
ab(B +BT )

]
,

be a preconditioner to A. Clearly B is also nonsingular.
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The exact inverse of B has the form

B−1 =

[
H−1

1 +H−1
2 −H−1

2 AH−1
√

a
b (I −H−1

2 A)H−1
1

−
√

b
aH

−1
2 (I −AH−1

1 ) H−1
2 AH−1

1

]
,

Hi = A+
√
abBi , i = 1, 2 and B1 = B,B2 = BT . It follows readily that,

besides some matrix vector multiplications and vector additions, an action
of B−1 involves just a solution of a system with H1 and with H2, namely,

the computation of

[
x

y

]
= B−1

[
f1

f2

]
can take place in the following order:

(i) Solve H1g = f1 +
√

a
b f2.

(ii) Compute Ag and f1 −Ag.

(iii) Solve H2h = f1 −Ag.

(iv) Compute x = g + h and y = −
√

b
ah.
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Proposition: Let A and B +BT be symmetric and positive semi-definite and
assume that ker(A) ∩ ker(B) = {∅}. Then the following holds true.

(i) The eigenvalues λ of B−1A satisfy 1
2 ≤ 1

1+q ≤ λ ≤ 1, where

q = sup
x̃,y

2(x̃∗(B +BT )y)

x̃∗(B +BT )x̃+ y∗(B +BT )y
≤ 1,

where x̃ =

√
b
ax and x,y are eigenvectors of the generalized

eigenvalue problem λB
[
x

y

]
= A

[
x

y

]
. Here λ = 1 if and only if

y ∈ N (B +BT ).

(ii) If A is spd, then max
{

1
1+q ,

1
1+

√
ab σ0

}
≤ λ ≤ 1 , where

σ0 = σ(A−1/2(B +BT )A−1/2) and σ(.) denotes the spectral radius.
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The pivot block matrix in our application

Consider next the solution of systems with Ãγ . To this end, we use the
block-structure of the matrices involved:

Ãγ =

[
M −√

αKT

√
αK M

]
+ γα

[
0 DT

DT 0

][
W−1 0

0 W−1

][
0 D
D 0

]

=

[
M −√

αKT

√
αK M

]
+ γ̃

[
DTW−1D 0

0 DTW−1D

]

=

[
M+ γ̃DTW−1D −√

αKT

√
αK M+ γ̃DTW−1D

]
.

Here γ̃ = γα.
Note: α is a small parameter, while γ is large, so, γ̃ can take more
moderate values.
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The matrix Ãγ is of the form

[
A −B

B A

]
and we can approximate it very

efficiently as already described.
Note: the block M+ γ̃DTW−1D is spd.

In the suggested computational procedure we replace Ãγ by its
corresponding approximation, referred to as Pγ , namely,

Pγ =

[
M+ γ̃DTW−1D −√

αKT

√
αK M+ γ̃DTW−1D +

√
α(K+KT )

]
.
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The solution of systems with the matrix Pγ boils down to solutions with the
matrices

H(1)
γ = M+ γ̃DTW−1D +

√
αK = (M+

√
αK) + γ̃DTW−1D

H(2)
γ = M+ γ̃DTW−1D +

√
αKT = (M+

√
αKT ) + γ̃DTW−1D

Both matrices H(1)
γ and H(2)

γ have very similar structure.

Due to lack of time the details will not be discussed now.
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Numerical illustrations: Stokes problem, V2:

Problem Iterations

size It(A) Itav(Q) Itav(M +
√
αK) Itav(S̃Q,1) Itav(Kp)

αopt = 10−4, γ = 104, γ̃ = 1

19078 9 14 6 6 6

75014 9 19 6 6 6

297478 8 26 7 6 7

αopt = 10−6, γ = 106, γ̃ = 1

19078 8 11 5 5 6

75014 8 14 6 6 6

297478 8 19 6 6 7

αopt = 10−8, γ = 108, γ̃ = 1

19078 6 10 4 4 6

75014 7 12 4 5 6

297478 8 14 5 5 6

Full-block factorized outer preconditioner
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Numerical illustrations: Oseen problem, V2

Problem Iterations

size It(A) Itav(Q) Itav(M +
√

αK) Itav(S̃Q,1) Itav(Kp)

αopt = 10−4, γ = 104, γ̃ = 1

19078 11 14 6 6 6

75014 11 19 6 6 7

297478 10 26 7 6 7

αopt = 10−6, γ = 106, γ̃ = 1

19078 10 11 5 5 6

75014 12 15 6 6 7

297478 13 20 6 6 7

αopt = 10−8, γ = 108, γ̃ = 1

19078 10 10 4 5 6

75014 14 12 4 5 6

297478 16 14 5 6 7

Block-triangular outer preconditioner
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Numerical illustrations: Oseen problem, V3

Iterations

Problem It Itav Itav Itav Itav Itav

size (A) (QM ) (S̃QM
) (M +

√
αK) (S

Q̃M+QK
) (Kp)

αopt = 10−4, γ = 104, γ̃ = 1

19078 23 14 5 5 7 6

75014 35 15 5 5 7 6

297478 116 17 5 5 8 7

αopt = 10−6, γ = 106, γ̃ = 1

19078 12 13 5 5 7 6

75014 14 14 5 5 7 6

297478 19 16 5 5 7 7

αopt = 10−8, γ = 108, γ̃ = 1

19078 7 12 5 4 7 6

75014 8 13 5 4 7 6

297478 13 18 5 5 7 6

Block-triangular outer preconditioner
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Conclusions:

Although optimal control problems for PDE’s involve several levels of
iterations, it has been shown that the inner systems can be solved
efficiently using different types of preconditioners on the different levels.

Some improvements are still needed for the preconditioner on the lowest
level to solve the two matrices Hi, i = 1, 2 appearing in the action of the
inverse of the preconditioner from the two-by-two pivot block.
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Thank you for your attention!

Owe Axelsson, Owe.Axelsson@it.uu.se – p. 35/35


	Contents of the talk
	Problem formulation
	Problem formulation, cont.
	2D: $msA _0$ is an $8	imes 8$ block matrix
	General viewpoint - analysis of saddle point matrices
	Spectral properties of $cB _i^{-1}cA $
	$cB _2^{-1}cA $
	Schur complement matrix approximation; outer level
	Application of the lemma:
	Inner iterations: the pivot block - a two-by-two block matrix, its preconditioner
	The pivot block matrix in our application
	Numerical illustrations: Stokes problem, {�f V2:}
	Numerical illustrations: Oseen problem, {�f V2}
	Numerical illustrations: Oseen problem, {�f V3}
	Conclusions:
	Some references:

