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Motivation

N–S

FSI

Multiscale model

Malossi, Blanco, Deparis, Quarteroni. Algorithms for the partitioned solution of weakly-coupled fluid models.
2010. Submitted.

Crosetto, Deparis, Fourestey, Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemo-
dynamics. SIAM J. Sci. Comput., 2011. 4/35
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Mathematical model

The Navier–Stokes equations for an incompressible viscous flow
read:

∂
∂t u + u · ∇u− ν∆u +∇p = f in Ω× (0,T ]

∇ · u = 0 in Ω× (0,T ]
u = ϕ on ΓD × (0,T ]

ν ∂u
∂n − pn = 0 on ΓN × (0,T ]

u = u0 at t = 0

where ΓD and ΓN are the Dirichlet and Neumann parts of the
boundary respectively, u is the fluid velocity, p the pressure, ν the
kinematic viscosity of the fluid, and f the external forces.
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Mathematical model
Discretization

Time discretization using e.g. semi-implicit Euler scheme:

un+1−un

∆t + un · ∇un+1 − ν∆un+1 +∇pn+1 = fn+1 in Ω
∇ · un+1 = 0 in Ω

un+1 = ϕ on ΓD

ν ∂un+1

∂n − pn+1n = 0 on ΓN

FE discretization using P2 − P1 finite elements on tetrahedral
unstructured meshes:(

F (Un) BT

B 0

)(
Un+1

Pn+1

)
=

(
Gn+1(Un)

0

)
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Metrics for parallel preconditioners

First perspective: To solve large scale problems as efficiently as
possible by parallel algorithms.

Definition (Strong scalability)

Let T1 and TP be the computational time needed to execute a
task with fixed amount of computational work using one and P
processes respectively. An application is said to be strongly
scalable if

TP =
T1

P
.

In particular, the preconditioned iterations of the numerical solver
should be strongly scalable.
⇒ The preconditioner plays a key role in the scalability.
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Metrics for parallel preconditioners

Second perspective: solving bigger and bigger problems while
keeping the computational time constant, provided that suitable
resources are available.

Definition (Weak scalability)

Let W1 and W2 be the workload to solve a given problem using P1

and P2 processes respectively, such that

W1

P1
=

W2

P2
.

An application is said to be weakly scalable if, for any couple
(W1,P1) and (W2,P2), the computational time of the application
is the same.
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Metrics for parallel preconditioners

Definition (Preconditioner scalability)

A preconditioner P of A is said to be scalable if the rate of
convergence of the iterative method used to solve the
preconditioned system does not deteriorate when the number of
processes grows.

Definition (Preconditioner optimality)

A preconditioner is said to be optimal if for A ∈ RN×N

1 the number of preconditioned iterations to achieve a given
error tolerance is bounded with respect to the dimension N
of A;

2 the total computational costs to assemble and to use the
preconditioner increase linearly with respect to the dimension
N of A.
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Metrics for parallel preconditioners

Definition (Preconditioner robustness)

A preconditioner is said to be robust if the convergence rate of the
iterative method does not depend on the physical parameters (e.g.
viscosity) that characterize the PDE.

This property ensures that the preconditioner handles a wide range
of Reynolds numbers; for medical simulations the Navier–Stokes
equations have to be solved for a wide range of Reynolds from
<e = 0.003 (capillary) to <e = 4000 (ascending aorta).

David N. Ku. Blood flow in arteries. Annu. Rev. Fluid Mech., 1997.

Formaggia, Quarteroni, Veneziani. Cardiovascular mathematics, volume 1 of MS&A. Modeling, Simulation and
Applications. Springer-Verlag Italia, Milan, 2009.
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Designing a Navier–Stokes preconditioner for HPC

Dream list:

1 The algorithms involved to build and apply the preconditioner
must be weakly and strongly scalable.

2 The preconditioner should be optimal.

3 The preconditioner should be scalable.

4 The preconditioner should be robust with respect to the
viscosity ν.
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Designing a Navier–Stokes preconditioner for HPC

The matrix of the linearized N–S system after discretization can be
factorized as, e.g.

A =

(
F BT

B 0

)
=

(
I 0

BF−1 I

)(
F BT

0 −S

)
where S = BF−1BT is the Schur complement.

Idea: Exploit the block structure of the problem matrix:
We consider the following factor as right preconditioner

P =

(
F BT

0 −S

)
One can prove that GMRES converges in at most 2 iterations!

Murphy, Golub, Wathen. A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput., 2000.

Quarteroni, Saleri, Veneziani. Factorization methods for the numerical approximation of Navier–Stokes equations.
Comput. Methods Appl. Mech. Engrg., 2000.

Elman, Howle, Shadid, Shuttleworth, Tuminaro. A taxonomy and comparison of parallel block multi-level pre-
conditioners for the incompressible Navier–Stokes equations. J. Comput. Phys., 227(3):1790–1808, 2008.
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Classical preconditioners for N–S

SIMPLE

P−1
SIMPLE =

„
D−1 0

0 I

«„
I −BT

0 I

«„
D 0

0 1
α

I

«„
I 0

0 −S̃−1

«„
I 0
−B I

«„
F−1 0

0 I

«
,

where α ∈ (0, 1] is a damping parameter and S̃ = BD−1BT .

Patankar, Spalding. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic
flows. International J. on Heat and Mass Transfer, 15:1787–1806, 1972.

Yosida

P−1
Yosida =

„
F−1 0

0 I

«„
I −BT

0 I

«„
F 0
0 I

«„
I 0

0 −S−1

«„
I 0
−B I

«„
F−1 0

0 I

«
,

with S = ∆tBM−1
u BT .

Alfio Quarteroni, Fausto Saleri, and Alessandro Veneziani. Analysis of the Yosida method for the incompressible
Navier–Stokes equations. J. Math. Pures Appl., 1999.

PCD

P−1
PCD =

„
F−1 0

0 I

«„
I −BT

0 I

«„
I 0

0 −A−1
p

«„
I 0
0 Fp

«„
I 0

0 M−1
p

«
.

Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized Navier-Stokes equations for incompress-
ible flow. J. Comput. Appl. Math., 2001.

Elman, Tuminaro. Boundary conditions in approximate commutator preconditioners for the Navier–Stokes equa-
tions.Electron. Trans. Numer. Anal., 2009.
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Approximate preconditioners for N–S

Approximate SIMPLE (aSIMPLE)

P−1
aSIMPLE =

„
D−1 0

0 I

«„
I −BT

0 I

«„
D 0

0 1
α

I

« 
I 0

0 −ˆ̃S−1

!„
I 0
−B I

«„
F̂−1 0

0 I

«
,

where α ∈ (0, 1] is a damping parameter and S̃ = BD−1BT .

Approximate Yosida (aYosida)

P−1
aYosida =

„
F̂−1 0

0 I

«„
I −BT

0 I

«„
F 0
0 I

«„
I 0

0 −Ŝ−1

«„
I 0
−B I

«„
F̂−1 0

0 I

«
,

with S = ∆tBM−1
u,`BT .

Approximate PCD (aPCD)

P−1
aPCD =

„
F̂−1 0

0 I

«„
I −BT

0 I

«„
I 0

0 −Â−1
p

«„
I 0
0 Fp

«„
I 0

0 M̂−1
p

«
.

where ˆ denotes the use of a preconditioner to approximate the
inverse

Deparis, Grandperrin, Quarteroni, Approximate preconditioners for the Navier-Stokes equations in hemodynamic
simulations, Submitted, 2013.
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Inverses approximation, our optimal choice
Details on the preconditioners

F̂−1 and (BM−1
u,` BT )−1 are replaced with a 2-level Schwarz

preconditioner; the first level is applied without overlap with a
coarse grid correction. The subdomain problems are solved
using exact factorization.

Â−1
p and (BD−1BT )−1 are replaced using a V-cycle AMG

with 2 sweeps of symmetric Gauss-Seidel as smoother
(presmoothing only), exact factorization for the coarsest
level. The AMG is implemented in the ML package in Trilinos.

Sala, An Object-Oriented Framework for the Development of Scalable Parallel Multilevel Preconditioners”, ACM
Transactions on Mathematical Software, 2006.

M̂−1
p is replaced by the inverse of the diagonal lumped mass

matrix.
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Fluid-Structure Interaction (FSI)
Coupled Problem

Figure: The ALE frame of reference

ALE map At : Ωf
o −→ Ωf

t

Property of the ALE derivative:

∂tuf |xo (x, t) = ∂tuf(x, t) + (w(x, t) · ∇) uf(x, t)

with w(x) = dAt (xo )
dt , x = At(xo), the fluid domain velocity.
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The fluid and structure models

How to obtain w from a given vessel wall displacement ds :
The Harmonic Extension equation for the fluid domain:

−∆df = 0 in Ωf
o

df = ds on Γo

At(xo) = xo + df (xo , t) ∀xo ∈ Ωf
o

The Navier–Stokes equations in ALE form:

ρf ∂tuf |xo + ρf (uf −w) · ∇uf −∇ · σf = ff in Ωf
t

∇ · uf = 0 in Ωf
t

where σs = 1
JσosFT is the Cauchy stress tensor.

Lagrangian formulation for the structure

ρs
∂2ds

∂t2
−∇o · σos(ds) = ρofs , in Ωs

o ,

where σos is the first Piola-Kirchhoff stress tensor 17/35
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FSI problem: coupling conditions

Continuity of stresses

σos · no = Jσf F−T ◦ At · no = on Γo

Continuity of velocities

uf ◦ At =
dds

dt
on Γo

Geometry adherence

At(xo) = xo + ds(xo) on Γo , or

df = ds on Γo
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Nonlinearities and discretizations

Nonlinearity due to

convective term in Navier–Stokes equations;

moving fluid integration domain.

Time and space discretizations

fully implicit (FI)

Galerkin Finite Element Method

Fluid Structure ALE (Harmonic Extension)

P1 bubble-P1 P1 P1 bubble
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FSI preconditioner

The fully coupled linearized FSI system Ax = b can be written as a
4x4 block matrix with the blocks fluid, structure and geometry
blocks on the diagonal:

AFSI =

0BB@
F 0 CT

1 D
0 S CT

2 0
C1 C2 0 0
0 C3 0 G

1CCA .

We neglect partially the coupling in AFSI to form a preconditioner:

PFSI =

0BB@
F 0 CT

1 D
0 S 0 0
C1 C2 0 0
0 C3 0 G

1CCA .

Crosetto, Deparis, Fourestey, Quarteroni. Parallel algorithms for fluid-structure interaction problems in haemo-
dynamics. SIAM J. Sci. Comput., 2011.
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FSI preconditioner

To apply P−1
FSI , we use the factorization

PFSI =

0BB@
I 0 0 0
0 S 0 0
0 0 I 0
0 0 0 I

1CCA
| {z }

PS

0BB@
I 0 0 0
0 I 0 0
0 0 I 0
0 C3 0 I

1CCA
0BB@
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 G

1CCA
| {z }

PG0BB@
I 0 0 D
0 I 0 0
0 0 I 0
0 0 0 I

1CCA
0BB@
I 0 0 0
0 I 0 0
0 C2 I 0
0 0 0 I

1CCA
0BB@
F 0 CT

1 0
0 I 0 0
C1 0 0 0
0 0 0 I

1CCA
| {z }

PF

.

The factorization shows that it is possible to tackle the structure and the
geometry subproblem using specific preconditioners while in the case of
the fluid matrix block some coupling block are still to be considered.

We now discuss some strategies to approximate the inverse of the fluid
block PF .
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FSI–SIMPLE preconditioner

The SIMPLE preconditioner for the Navier–Stokes equations reads

PSIMPLE =

(
F 0
B −Bdiag(F )−1BT

)
︸ ︷︷ ︸

PSIMPLE ,1

(
I diag(F )−1BT

0 αI

)
︸ ︷︷ ︸

PSIMPLE ,2

,

where α ∈ (0, 1] is a parameter that damps the pressure update.

We use SIMPLE to approximate the inverse of the fluid block PF . To
make the computation cheaper, the inverse of the matrix block F is
replaced by its diagonal:

0BB@
F 0 CT

1 0
0 I 0 0
C1 0 0 0
0 0 0 I

1CCA ∼=
0BB@

PSIMPLE,1 0 0 0
0 I 0 0

C1 0 −C1diag(F)−1CT
1 0

0 0 0 I

1CCA
0BB@

PSIMPLE,2 0 diag(F)−1CT
1 0

0 I 0 0
0 0 I 0
0 0 0 I

1CCA .
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FSI–PCD preconditioner

The PCD preconditioner for the Navier–Stokes equations reads

PPCD =

(
F BT

0 −MpF−1
p Ap

)
.

We use the PCD preconditioner to approximate the inverse of the
fluid block PF :

0BB@
F 0 CT

1 0
0 I 0 0
C1 0 0 0
0 0 0 I

1CCA ∼=
0BBB@
„

I 0
0 −Mp Fp Ap

«
0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

1CCCA
0BBBB@
„

I BT

0 I

«
0 0 0

0 I 0 0
0 0 I 0
0 0 0 I

1CCCCA
0BBB@
„

F 0
0 I

«
0 CT

1 0

0 I 0 0
C1 0 0 0
0 0 0 I

1CCCA .
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Numerical results
Simulation protocol

Linear problem solved at each timestep with preconditioned
GMRES;

Stopping criteria based on the residual scaled by the right
hand side:

‖b−Axk‖2 ≤ 10−6‖b‖2,

where ‖ · ‖2 denotes the `2 norm of the vector of the nodal
finite element solution.

GMRES is never restarted.
The simulations were carried out using LifeV (www.lifev.org)
on the Monte Rosa Cray XE6 at the CSCS, Lugano,
Switzerland.

Number of nodes 1496
Number of processors per node 2x16-core AMD Interlagos
Processors frequency 2.1 GHz
Processors shared memory 32 GB DDR3
Peak performance 402 Teraflop/s.
Network Gemini 3D torus
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Blood-flow in rigid geometry (N–S)

All our preconditioners are tested and tuned on a benchmark
relevant for medical applications (<e = 400).

Mesh Velocity DoFs Pressure DoFs hmin hav hmax

Coarse 597,093 27,242 0.015 0.035 0.059
Medium 4,557,963 199,031 0.005 0.018 0.051
Fine 35,604,675 1,519,321 0.0026 0.0097 0.0277

Baek, Jayaraman, Richardson, Karniadakis. Flow instability and wall shear stress variation in intracranial
aneurysms.J R Soc Interface, 2010.
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Blood-flow in rigid geometry (N–S)

u = 0 on Γwall ,
u = ϕflux n on Γin,

ν
∂u

∂n
− pn = 0 on Γout ,
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Blood-flow in rigid geometry (N–S)
Preconditioner build

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

The curves are superlinear due to the computation of the local
LU factorizations.
When the assembly time goes below a given threshold, the
communication time overcomes the computation time for
aPCD, aSIMPLE, and aYosida.
The AS preconditioner is clearly longer to build.
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Blood-flow in rigid geometry (N–S)
GMRES iterations

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

aSIMPLE is scalable (flat curves).
With aPCD, the iterations count is moderately increasing
Problems of convergence are encounter with coarse mesh and
aYosida.
GMRES converges slower when the AS preconditioner is used.
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Blood-flow in rigid geometry (N–S)
Time to solve the linear system

Coarse Medium Fine
max. 1024 CPU max. 2048 CPU max. 8192 CPU

For the coarse mesh, the AS prec. is not strongly scalable.
Under ∼ 1 s. the communication time overcomes the
computation time for aPCD, aSIMPLE, and aYosida (coarse
mesh)
For the medium and fine meshes, the preconditioners are
strongly scalable.
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Greenshields-Weller benchmark (FSI)
Established 3D FSI benchmark for hemodynamic

Wave	propagation

100	mm

20	mm

2	mm

Figure: Domain Figure: Displacement
distribution after 10 ms.

3 discretizations of a 10x2 cm cylinder (∼300k-7M DoF).
Boundary conditions:

pressure step function on the fluid inlet
zero normal displacement on the inlet-outlet for both fluid and
structure
Neumann homogeneous everywhere else

Greenshields, Weller. A unified formulation for continuum mechanics applied to fluid-structure interaction in
flexible tubes. Internat. J. Numer. Methods Engrg., 2005.
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Greenshields-Weller benchmark (FSI)
Parameters of the simulation

Comparison in terms of GMRES iterations, time to perform
one GMRES iteration, and time spent to build the
preconditioner.

time discretization: second order discretization in time (BDF).
∆t = 10−3 s.

space discretization: finite element P1Bubble − P1 for the
fluid, P1 for the structure, and P1Bubble for the harmonic
extension equations.
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Greenshields-Weller benchmark (FSI)
Preconditioner build

Coarse Medium Fine
max. 1024 CPU max. 1024 CPU max. 1024 CPU

No strong scalability is obtained using the coarse mesh.
When the accuracy of the mesh is increased, the
preconditioners tends to be strongly scalable.
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Greenshields-Weller benchmark (FSI)
GMRES iterations

Coarse Medium Fine
max. 1024 CPU max. 1024 CPU max. 1024 CPU

None of the preconditioners makes GMRES converge in a
constant number of iterations.
Between the two finer meshes, the number of iterations is of
the same order.
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Greenshields-Weller benchmark (FSI)
Time to solve the linear system

Coarse Medium Fine
max. 1024 CPU max. 1024 CPU max. 1024 CPU

No strong scalability is obtained using the coarse mesh.
When the accuracy of the mesh is increased, the
preconditioners tends to be strongly scalable.
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Conclusion and work in progress

Navier-Stokes preconditioners:

We developed preconditioners for solving Hemodynamic simulations.

We tested the weak and strong scalability of our algorithms.

The proposed preconditioners are scalable (i.e. number of iterations
remains constant wrt the number of processors).

FSI preconditioners:

We tested of the Dirichlet–Neumann, FSI–SIMPLE, and FSI–PCD
preconditioners on the Greenshields–Weller test case.

Future investigations:

Investigate and optimize preconditioners for the structure and
harmonic extension part of the FSI linear system.

Consider test cases using a more realistic geometry, e.g. a
femoropopliteal bypass geometry or an aorta geometry.
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