On iterative solvers combined with projected Newton methods for reacting flow problems

C. Vuik¹ S. van Veldhuizen¹ C.R. Kleijn²

¹ Delft University of Technology Delft Institute of Applied Mathematics J.M. Burgerscentrum

²Delft University of Technology Department of Multi Scale Physics J.M. Burgerscentrum

9th IMACS International Symposium on Iterative Methods in Scientific Computing Lille, France

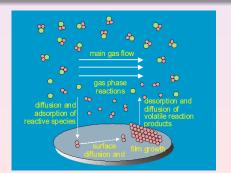
Outline

- Introduction
 - Chemical Vapor Deposition
 - Transport Model
- 2 Numerical Methods
 - Properties
 - Positivity
 - Nonlinear Solvers
 - Linear Solvers
- Numerical Results
 - 2D
 - 3D
- 4 Conclusions

 Transforms gaseous molecules into high purity, high performance solid materials

Conclusions

- Thin film, or powder
- Thermal energy drives (gas phase and surface) reactions

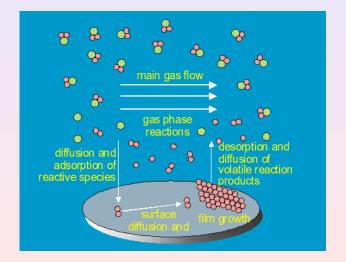


Numerical Results

Conclusions

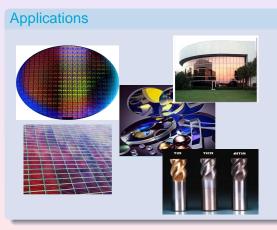
TUDelft

Chemical Vapor Deposition



Conclusions

Chemical Vapor Deposition



- Semiconductors
- Solar cells
- Optical, mechanical and decorative coatings

Transport Model for CVD

Mathematical Model

Conservation of:

- Total mass: Continuity equation
- Momentum: Navier-Stokes equations
- Energy: Transport eqn for thermal energy

Closed by:

- Ideal gas law
- Transport of species i

$$\frac{\partial(\rho\omega)}{\partial t} = \nabla \cdot (\rho v\omega) + \nabla \cdot \mathbf{j}_i + m \sum_{k=1}^{\text{\#reactions}} \nu_k R_k^G$$

Transport Model for CVD

Reaction Rate

Net molar gas phase reaction rate

$$R_i^G = A_i \cdot T^{\beta_i} \cdot e^{-\frac{E_i}{RT}} \cdot F(P, T, \omega_1, \dots, \omega_i, \dots, \omega_N)$$

Surface reaction rate

$$R_i^{S} = \frac{\gamma_i}{1 + \gamma_i/2} \cdot G(P, T, \omega_i)$$

- Time constants of slowest and fastest reactions differ orders of magnitude
- Stiff nonlinear system of species equations

Goal

- Time accurate transient solution
- Start up & shut down cycli

Properties

- Stiff Problem → Stable Time Integration
- Positivity (= preservation of non-negativity):
 Negative Species can blow up of the solution
- Efficiency / Robustness
- Method of Lines approach

Mass fractions

A natural property for mass fractions is their non-negativity

Positivity of mass fractions should hold for ...

- Model equations
- Spatial discretization: Hybrid scheme Introduces locally first order upwinding
- Time integration
- Iterative solvers:
 - (Non)linear solver

Positivity for ODE systems

Euler Backward

- $W_{n+1} W_n = \tau F(t_{n+1}, W_{n+1})$
- Unconditionally stable (A-stable/ stiffly stable)

Theorem (Hundsdorfer, 1996)

Euler Backward is positive for any step size au

Theorem (Bolley and Crouzeix, 1970)

Any unconditionally positive time integration is at most first order accurate

Positivity for ODE systems

With respect to time integration we conclude

- Restrict time integration to EB
- How to deal with huge nonlinear systems?
- How to maintain the unconditional positivity within nonlinear solver?

TUDelft

Nonlinear Solvers

Globalized Inexact Newton to solve F(x) = 0

Let x_0 be given.

FOR $k = 1, 2, \dots$ until 'convergence'

Find some $\eta_k \in [0, 1)$ and s_k that satisfy

$$||F(\mathbf{x}_k)+F'(\mathbf{x}_k)\mathbf{s}_k||\leq \eta_k||F(\mathbf{x}_k)||.$$

WHILE
$$||F(x_k + s_k)|| > (1 - \alpha(1 - \eta_k))||F(x_k)||$$
 DO

Choose $\lambda \in [\lambda_{\min}, \lambda_{\max}]$

Set $s_k \leftarrow \lambda s_k$ and $\eta_k \leftarrow 1 - \lambda (1 - \eta_k)$

ENDWHILE

Set $x_{k+1} = x_k + s_k$.

ENDFOR

Globalized Inexact Projected Newton to solve F(x) = 0

Let x_0 be given.

FOR $k = 1, 2, \dots$ until 'convergence'

Find some $\eta_k \in [0, 1)$ and s_k that satisfy

$$||F(x_k)+F'(x_k)s_k||\leq \eta_k||F(x_k)||.$$

WHILE
$$||F(P(x_k + s_k))|| > (1 - \alpha(1 - \eta_k))||F(x_k)||$$
 DO

Choose $\lambda \in [\lambda_{\min}, \lambda_{\max}]$

Set $s_k \leftarrow \lambda s_k$ and $\eta_k \leftarrow 1 - \lambda (1 - \eta_k)$

ENDWHILE

Set $x_{k+1} = \mathcal{P}(x_k + s_k)$.

ENDFOR

Note that

• Forcing term η_k in

$$||F(\mathbf{x}_k)+F'(\mathbf{x}_k)\mathbf{s}_k||\leq \eta_k||F(\mathbf{x}_k)||.$$

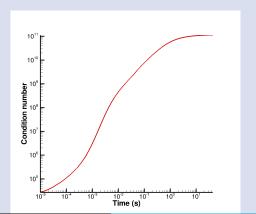
is a certain accuracy in solving $F'(x_k)s_k = -F(x_k)$

- How to choose η_k ?
- η_k too small \Rightarrow oversolving
- Ideal: Based on residual norms as

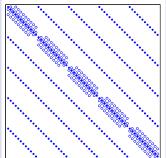
$$\eta_k = \gamma \frac{\|F(x_k)\|^2}{\|F(x_{k-1})\|^2}$$

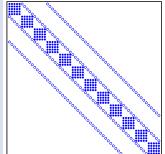
Properties

Huge condition numbers due to chemistry terms



Lexicographic ordering (left) and Alternate blocking per grid point(right)





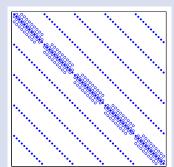
Iterative Linear Solver

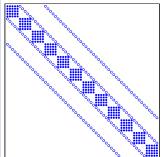
- Right preconditioned BiCGStab
- 'Heavy' chemistry terms → diagonal blocks
- Incomplete Factorization: ILU(0)

		. ,
	lexico	alternate blocking
Number of	graphic	per gridpoint
F	220	197
Newton iters	124	111
Linesearch	12	7
Rej. time steps	0	0
Acc. time steps	36	36
CPU Time	400	300
linear iters	444	346

Preconditioners: Lumping

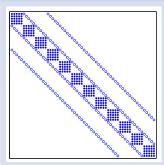
Important: Lumping per species





Preconditioned Krylov solvers

Preconditioners: Block Diagonal



- 'natural' blocking over species
- series of uncoupled systems → LU factorization per subsystem

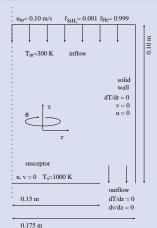
Preconditioned Krylov solvers

Preconditioners: Block D-ILU

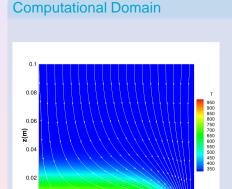
Put
$$D_{ii} = A_{ii}$$
 for all $i = 1, ..., n$
FOR $i = 2, ..., n$
IF $mod(i, nr) \neq 0$ THEN
 $D_{i+1,i+1} = D_{i+1,i+1} - A_{i+1,i}D_{ii}^{-1}A_{i,i+1}$
ENDIF
IF $i + nr \leq s \cdot n$ THEN
 $D_{i+nr,i+nr} = D_{i+nr,i+nr} - A_{i+nr,i}D_{ii}^{-1}A_{i,i+nr}$
ENDIF
ENDFOR

- Computation of $D_{ii}^{-1}A_{i,i+1}$
- Gauss-Jordan decomposition of D_{ii}

Computational Domain



- Axisymmetric
- 0.1 mole% SiH₄ at the inflow
 - Rest is carrier gas helium He
 - Susceptor does not rotate



0.05

- Grid sizes: 35×32 up to 70×82 grid points
- Temperature: Inflow 300 K Susceptor 1000 K
- Uniform velocity at inflow

0.15

0.1

r(m)

Chemistry Model: 16 species, 26 reactions [1]

- Above heated wafer SiH₄ decomposes into SiH₂ and H₂
- Chain of 25 homogeneous gas phase reactions
- Including the carrier gas the gas mixture contains 17 species, of which 14 contain silicon atoms
- Irreversible surface reactions at the susceptor leads to deposition of solid silicon

[1] M.E. Coltrin, R.J. Kee and G.H. Evans, A Mathematical Model of the Fluid Mechanics and Gas-Phase Chemistry

in a Rotating Chemical Vapor Deposition Reactor, J. Electrochem. Soc., 136, (1989)

Integration statistics: 35×32 grid

	ILU(0)	Lumped	block	block	direct
		Jac	DILU	diag	solver
Newton	108 (101)	149 (<mark>127</mark>)	104 (<mark>93</mark>)	1,379 (<mark>125</mark>)	94
linesearch	9 (6)	16	6 (4)	7 (<mark>16</mark>)	11
Negative	1 (<mark>0</mark>)	3 (<mark>0</mark>)	2 (<mark>0</mark>)	403 (<mark>0</mark>)	1
Acc. steps	38 (<mark>36</mark>)	41 (<mark>36</mark>)	39 (<mark>36</mark>)	724 (<mark>36</mark>)	38
lin iters	848 (<mark>825</mark>)	7,927 (<mark>5,819</mark>)	838 (718)	13,371 (<mark>6,275</mark>)	
CPU	300 (<mark>270</mark>)	530 (<mark>410</mark>)	320 (<mark>270</mark>)	3,610 (<mark>450</mark>)	6,500

- Black: Globalized Inexact Newton
- Red: Globalized Inexact Projected Newton

Numerical Results

Integration statistics: 70×82 grid

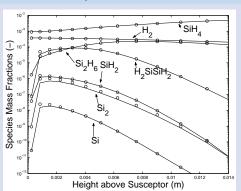
Preconditioner	ILU(0)	block D-ILU
Newton iter	395 (<mark>351</mark>)	299 (<mark>306</mark>)
Negative	3(<mark>0</mark>)	0
Acc time step	41 (<mark>37</mark>)	37
line search	136 (<mark>128</mark>)	101 (<mark>96</mark>)
lin iters	11,100 (<mark>8,895</mark>)	2,144 (2,290)
CPU time (sec)	5,420 (<mark>6,000</mark>)	4,175 (<mark>4,350</mark>)

- Black: Globalized Inexact Newton
- Red: Globalized Inexact Projected Newton
- Direct solver is not feasable

ŤUDelft

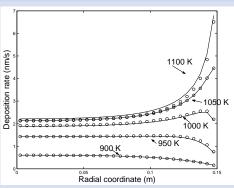
Kleijn's Benchmark Problem

Validation: Species mass fraction along the symmetry axis



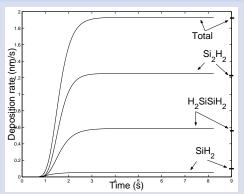
- solid: Kleijn's solutions
- circles: our solutions

Validation: Radial profiles of total steady state deposition rate

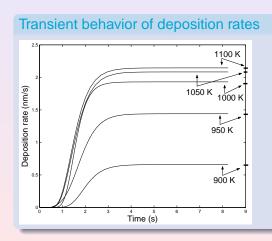


- wafer temperature from 900 K up to 1100 K
- solid: Kleijn's solutions
- circles: our solutions

Transient behavior of deposition rates



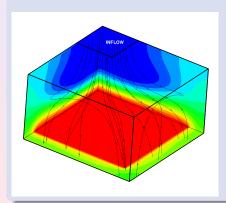
- along symmetry axis
- wafer 1000 K



- along symmetry axis
- wafer temperatures from 900 up to 1100 K

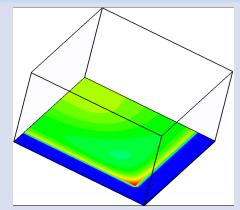
3D Results on Kleijn's Benchmark Problem

Computational Domain

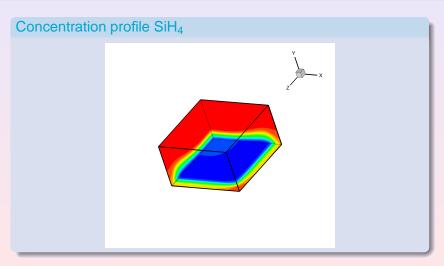


- Grid sizes: 35 × 32 × 35
- Temperature: Inflow 300 K
 Susceptor 1000 K
 - Uniform velocity at inflow

Total deposition rate



- On centerline: total deposition rate of 2.41 nm/s
- Compare with 2D results: 2.43 nm/s along symmetry axis



Integration statistics: $35 \times 32 \times 35$ grid

	ILU(0)	Lumped	block	block
		Jac	DILU	diag
Newton	239	332	156	327
linesearch	51	31	20	29
Newt Diver	3	0	0	0
Acc. time step	44	43	43	43
lin iters	3,196	17,472	2,481	18,392
CPU	20,100	28,000	17,500	29,000

Without Projected Newton not feasible

Conclusions and Future Research

Conclusions

- Globalized Inexact Projected Newton maintains the unconditional positivity of Euler Backward
- Alternate blocking per grid point is more effective
- Easy preconditioners are effective for 2D and 3D problems
- Chemistry source terms should be in the preconditioner

Future Research

- More realistic chemistry/surface chemistry models
- Steady state solver

Van Veldhuizen, Vuik and Kleijn

References and Contact Information

References

- S. VAN VELDHUIZEN, C. VUIK AND C.R. KLEIJN, A Class of Projected Newton Methods to Solve Laminar Reacting Gas Flow Problems, J. Sci. Comput., submitted, preprint available as Technical Report 08-03 @ TU Delft, (2008)
- "—", Comparison of ODE Methods for Laminar Reacting Gas Flow Simulations, Num. Meth. Part. Diff. Eq., to appear, (2008)
- "—", Comparison of Numerical Methods for Transient CVD Simulations, Surf. and Coat. Technol., pp. 8859-8862, (2007)
- "—", Numerical Methods for Reacting Gas Flow Simulations, Internat. J. Multiscale Eng., 5, pp. 1-10, (2007)

References and Contact Information

Contact Information

- Email: c.vuik@tudelft.nl
- URL: http://ta.twi.tudelft.nl/users/vuik/