A Comparison of Two-Level Preconditioners Multigrid and Deflation

Kees Vuik ¹, Jok Tang ², Scott MacLachlan ³, Reinhard Nabben ⁴

¹ Delft University of Technology Delft Institute of Applied Mathematics

² Vortech Computing

³Tufts University Department of Mathematics

⁴Technische Universität Berlin Institut für Mathematik

Schnelle Löser für Partielle Differentialgleichungen

Oberwolfach, Germany May 22nd - 28th, 2011

Main Problem

Problem

Solve the linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

Properties of Coefficient Matrix A

- Large but sparse
- Real and symmetric
- Nonnegative eigenvalues
- Ill-conditioned (i.e. condition number $\kappa = rac{\lambda_{ ext{max}}}{\lambda_{ ext{min}}}$ is large

Main Problem

Problem

Solve the linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

Comparison of Two-Level PCG Methods

Properties of Coefficient Matrix A

- Large but sparse
- Real and symmetric
- Nonnegative eigenvalues
- Ill-conditioned (i.e. condition number $\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{max}}}$ is large)

Standard Iterative Methods

Preconditioned Conjugate Gradients Method (PCG) ¹

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where M^{-1} is a preconditioner

Bottleneck

The spectrum of $M^{-1}A$ often consists of unfavorable eigenvalues

Consequence

Slow convergence of the iterative process

Standard Iterative Methods

Preconditioned Conjugate Gradients Method (PCG) ¹

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where M^{-1} is a preconditioner

Bottleneck

The spectrum of $M^{-1}A$ often consists of unfavorable eigenvalues

Consequence

Slow convergence of the iterative process

Two-Level PCG Method (Two-Level PCG)

Solve iteratively:

$$\mathcal{P}Ax = \mathcal{P}b$$

where P is a two-level preconditioner

Components of \mathcal{F}

- Traditional preconditioner M⁻¹
- Projection matrix P
- Correction matrix Q

Idea: Eliminate all unfavorable eigenvalues from the spectrum of A

Consequence

Faster convergence of the iterative process

Two-Level PCG Method (Two-Level PCG)

Solve iteratively:

$$\mathcal{P}Ax = \mathcal{P}b$$

where \mathcal{P} is a two-level preconditioner

Components of ${\mathcal P}$

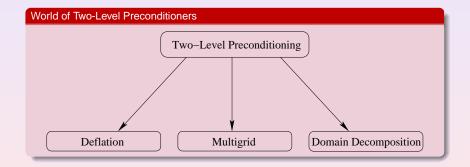
- Traditional preconditioner M⁻¹
- Projection matrix P
- Correction matrix Q

Idea: Eliminate all unfavorable eigenvalues from the spectrum of A

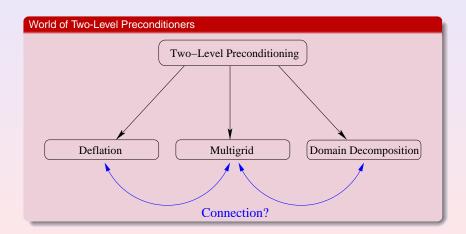
Consequence

Faster convergence of the iterative process

Two-Level Preconditioning



Two-Level Preconditioning



Definition

A two-level PCG method is a PCG method with a two-level preconditioner derived from deflation, multigrid or domain decomposition

Main Questions

- What is the connection between the different two-level preconditioners?
- Can we construct a generalized two-level PCG method?
- How do the two-level PCG methods behave in practice?
- Which two-level PCG method is the best one?

Definition

A two-level PCG method is a PCG method with a two-level preconditioner derived from deflation, multigrid or domain decomposition

Main Questions

- What is the connection between the different two-level preconditioners?
- Can we construct a generalized two-level PCG method?
- How do the two-level PCG methods behave in practice?
- Which two-level PCG method is the best one?

Definition

A two-level PCG method is a PCG method with a two-level preconditioner derived from deflation, multigrid or domain decomposition

Main Questions

- What is the connection between the different two-level preconditioners?
- Can we construct a generalized two-level PCG method?
- How do the two-level PCG methods behave in practice?
- Which two-level PCG method is the best one?

Outline

- 1 Introduction
- Two-Level PCG Methods
- 3 Comparison of Two-Level PCG Methods
- Conclusions

- Introduction
- Two-Level PCG Methods
- Comparison of Two-Level PCG Methods
- Conclusions

Definition of Projection Matrix P and Correction Matrix Q

$$P := I - AQ$$
, $Q := ZE^{-1}Z^T$, $E := Z^TAZ$, $Z \in \mathbb{R}^{n \times k}$,

Comparison of Two-Level PCG Methods

where Z is the projection-subspace matrix consisting of projection vectors

Remarks

- Space spanned by the columns of Z is the space to be projected out \rightarrow Effectiveness of P depends on the choice of Z

Projection Matrix

Definition of Projection Matrix P and Correction Matrix Q

$$P := I - AQ$$
, $Q := ZE^{-1}Z^T$, $E := Z^TAZ$, $Z \in \mathbb{R}^{n \times k}$,

Comparison of Two-Level PCG Methods

where Z is the projection-subspace matrix consisting of projection vectors

Remarks

- Space spanned by the columns of Z is the space to be projected out \rightarrow Effectiveness of P depends on the choice of Z
- E has dimensions $k \times k \rightarrow E^{-1}$ might be easy to compute
- Q is an approximation of A⁻¹ based on a coarse grid

Choices of Projection Vectors

- Approximated eigenvectors (deflation)
- Subdomain vectors (domain decomposition)
- Interpolation / restriction vectors (multigrid)

Traditional and Projection Preconditioners

Difference between traditional and projection preconditioners

- M⁻¹ is usually an approximation of A
- P is a projection matrix

 M^{-1} and P should be complementary to each other

Ultimate Goal

Find M^{-1} and Z such that the resulting two-level preconditioner gets rid of all unfavorable eigenvalues of A

Traditional and Projection Preconditioners

Difference between traditional and projection preconditioners

- M⁻¹ is usually an approximation of A
- P is a projection matrix

 M^{-1} and P should be complementary to each other

Ultimate Goal

Find M^{-1} and Z such that the resulting two-level preconditioner gets rid of all unfavorable eigenvalues of A

Background of Two-Level PCG Methods

Parameters of Two-Level Preconditioners

Parameters can be derived from the theory of

- deflation
- multigrid
- domain decomposition

nterpretation and Choices of Parameters

Background of Two-Level PCG Methods

Parameters of Two-Level Preconditioners

Parameters can be derived from the theory of

- deflation
- multigrid
- domain decomposition

Interpretation and Choices of Parameters

	Deflation	Multigrid	DDM
M ⁻¹ P	good preconditioner deflation matrix	smoother coarse-grid correction	subdomain solves coarse-grid correction
$\begin{bmatrix} Z \\ Z^T \\ k \\ Ex = y \end{bmatrix}$	deflation-subspace deflation-subspace $k \ll n$ direct	interpolation restriction $1 \ll k$ recursive	interpolation restriction $1 \ll k \ll n$ direct / iterative

Standard Two-Level PCG Methods

Deflated PCG Method 1 2 3

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where P = I - AQ

Additive Coarse-Grid Correction Method

Solve iteratively:

$$(M^{-1} + Q)Ax = (M^{-1} + Q)b$$

(Abstract) Balancing Neumann-Neumann Method

Solve iteratively

$$(P^{T}M^{-1}P + Q)Ax = (P^{T}M^{-1}P + Q)b$$

¹ R.A. NICOLAIDES, SIAM J. Matrix Anal. Appl., 24, 355–365, 1987.

²Z. DOSTAL, Int. J. Computer Math., 23, 315-323, 1988.

³C. Vuik, A. Segal and J.A. Meijerink, J. Comp. Phys., **152**, 385–403, 1999.

Standard Two-Level PCG Methods

Deflated PCG Method 1 2 3

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where P = I - AQ

Additive Coarse-Grid Correction Method ⁴

Solve iteratively:

$$(M^{-1} + Q)Ax = (M^{-1} + Q)b$$

Abstract) Balancing Neumann-Neumann Method

Solve iteratively

$$(P^{T}M^{-1}P + Q)Ax = (P^{T}M^{-1}P + Q)k$$

¹ R.A. NICOLAIDES, SIAM J. Matrix Anal. Appl., 24, 355-365, 1987.

²Z. Dostal, Int. J. Computer Math., 23, 315-323, 1988.

³C. Vuik, A. Segal and J.A. Meijerink, J. Comp. Phys., 152, 385–403, 1999.

⁴J.H. BRAMBLE, J.E. PASCIAK AND A.H. SCHATZ, I. Math. Comp., 47, 103–134, 1986.

Standard Two-Level PCG Methods

Deflated PCG Method 1 2 3

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where P = I - AQ

Additive Coarse-Grid Correction Method ⁴

Solve iteratively:

$$(M^{-1} + Q)Ax = (M^{-1} + Q)b$$

(Abstract) Balancing Neumann-Neumann Method ⁵

Solve iteratively:

$$(P^{T}M^{-1}P + Q)Ax = (P^{T}M^{-1}P + Q)b$$

⁵ J. MANDEL, Commun. Appl. Numer. Meth., 9, 233-241, 1993.

¹ R.A. NICOLAIDES, SIAM J. Matrix Anal. Appl., 24, 355-365, 1987.

²Z. DOSTAL, Int. J. Computer Math., 23, 315-323, 1988.

³C. Vuik, A. Segal and J.A. Meijerink, J. Comp. Phys., 152, 385-403, 1999.

⁴J.H. BRAMBLE, J.E. PASCIAK AND A.H. SCHATZ, I. Math. Comp., 47, 103–134, 1986.

Standard Two-Level PCG Methods

Theorem

Solving iteratively:

$$(P^{T}M^{-1}P + Q)Ax = (P^{T}M^{-1}P + Q)b$$

is equivalent with solving iteratively:

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

using starting vector $x_0 = P^T \bar{x} + Qb$ with arbitrary \bar{x}

Reduced Balancing / Deflated PCG Method $^{1/2}$

Solve iteratively

$$P^{T}M^{-1}Ax = P^{T}M^{-1}B$$

with starting vector $x_0 = P^T \bar{x} + Qb$

A. TOSELLI AND O.B. WIDLUND, Comp. Math.., 34, Springer, Berlin, 2005

Standard Two-Level PCG Methods

Theorem

Solving iteratively:

$$(P^{T}M^{-1}P + Q)Ax = (P^{T}M^{-1}P + Q)b$$

is equivalent with solving iteratively:

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

using starting vector $x_0 = P^T \bar{x} + Qb$ with arbitrary \bar{x}

Reduced Balancing / Deflated PCG Method 1 2

Solve iteratively:

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

with starting vector $x_0 = P^T \bar{x} + Qb$

Standard Two-Level PCG Methods

Adapted Deflation Method

Instead of the reduced balancing / deflated PCG method with

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

Comparison of Two-Level PCG Methods

$$(P^{T}M^{-1} + Q)Ax = (P^{T}M^{-1} + Q)b$$

$$(I - PA) = (I - M^{-1}A)P^{7}$$

Adapted Deflation Method

Instead of the reduced balancing / deflated PCG method with

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

Comparison of Two-Level PCG Methods

we can also solve its stabilized version

$$(P^{T}M^{-1} + Q)Ax = (P^{T}M^{-1} + Q)b$$

Remarks

- Adapted deflation method can be derived from both deflation and domain decomposition

$$(I - PA) = (I - M^{-1}A)P^{T}$$

Adapted Deflation Method

Instead of the reduced balancing / deflated PCG method with

$$P^{T}M^{-1}Ax = P^{T}M^{-1}b$$

Comparison of Two-Level PCG Methods

we can also solve its stabilized version

$$(P^{T}M^{-1} + \mathbf{Q})Ax = (P^{T}M^{-1} + \mathbf{Q})b$$

Remarks

- Adapted deflation method can be derived from both deflation and domain decomposition
- Adapted deflation method is also a multigrid method!
- P follows from

$$(I - \mathcal{P}A) = (I - M^{-1}A)P^{T}$$

so that $\mathcal{P} = P^T M^{-1} + Q$ is also a multigrid V(1,0)-cycle preconditioner

Standard Two-Level PCG Methods

Multigrid V(1,1)-Cycle Method

Solve P from

$$(I - PA) = (I - M^{-1}A)P^{T}(I - M^{-1}A)$$

where M^{-1} is a preconditioner that can even be nonsymmetric

The resulting multigrid V(1,1)-cycle preconditioner is

$$\mathcal{D} = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

Standard Two-Level PCG Methods

Multigrid V(1,1)-Cycle Method

Solve P from

$$(I - PA) = (I - M^{-1}A)P^{T}(I - M^{-1}A)$$

where M^{-1} is a preconditioner that can even be nonsymmetric

• The resulting multigrid V(1,1)-cycle preconditioner is

$$P = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

General Two-Level PCG Methods

General Two-Level PCG

Solve iteratively:

$$PAx = Pb$$

Comparison of Two-Level PCG Methods

where \mathcal{P} is a two-level preconditioner based on M^{-1} , P and Q

Idea of Two-Level Preconditioner

 \mathcal{P} gets rid of both small and large eigenvalues of A

General Two-Level PCG Methods

Possible Choices for ${\mathcal P}$

Name	Method	Operator \mathcal{P}
PCG	Traditional PCG	M^{-1}
AD	Additive CGC	$M^{-1} + Q$
DEF1	Deflated PCG 1	$M^{-1}P$
DEF2	Deflated PCG 2	$P^T M^{-1}$
BNN	Abstract Balancing	$P^T M^{-1} P + Q$
R-BNN1	Reduced Balancing 1	$P^T M^{-1} P$
R-BNN2	Reduced Balancing 2	$P^T M^{-1}$
A-DEF1	Adapted Deflated PCG 1	$M^{-1}P+Q$
A-DEF2	Adapted Deflated PCG 2	$P^T M^{-1} + Q$
MG	Multigrid V(1,1)-Cycle	$M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$

Generalized Two-Level PCG Method

Algorithm

```
1: x_0 := V_{\text{start}}, r_0 := b - Ax_0, y_0 := M_1 r_0, p_0 := M_2 y_0
```

2: **for** $j := 0, 1, \ldots$, until convergence **do**

3:
$$W_j := \mathcal{M}_3 A p_j$$

4:
$$\alpha_j := \frac{(r_j, y_j)}{(p_j, w_j)}$$

$$5: \quad \mathbf{x}_{j+1} := \mathbf{x}_j + \alpha_j \mathbf{p}_j$$

6:
$$r_{j+1} := r_j - \alpha_j w_j$$

7:
$$y_{i+1} := \mathcal{M}_1 r_{i+1}$$

7:
$$y_{j+1} := \mathcal{M}_1 r_{j+1}$$

8: $\beta_j := \frac{(r_{j+1}, y_{j+1})}{(r_j, y_j)}$

9:
$$p_{j+1} := M_2 y_{j+1} + \beta_j p_j$$

10: end for

11:
$$x_{it} := \mathcal{V}_{end}$$

Generalized Two-Level PCG Method

Parameters in Algorithm

Method	\mathcal{V}_{start}	\mathcal{M}_1	\mathcal{M}_2	\mathcal{M}_3	\mathcal{V}_{end}
PREC	X	M^{-1}	1	1	x_{i+1}
AD	\bar{x}	$M^{-1} + Q$	1	1	x_{j+1}
DEF1	X	M^{-1}	1	Р	$Qb + P^T x_{j+1}$
DEF2	$Qb + P^T \bar{x}$	M^{-1}	P^T	1	x_{j+1}
BNN	x	$P^T M^{-1} P + Q$	1	1	x_{j+1}
R-BNN1		$P^T M^{-1} P$	1	1	x_{j+1}
R-BNN2	$Qb + P^T \bar{x}$	$P^T M^{-1}$	1	1	x_{j+1}
A-DEF1	X	$M^{-1}P + Q$	1	1	x_{j+1}
A-DEF2	$Qb + P^T \bar{x}$	$P^T M^{-1} + Q$	1	1	x_{j+1}
MG	\bar{x}	$M^{-1}P + P^{T}M^{-1} +$	1	1	x_{i+1}
		$Q - M^{-1} PAM^{-1}$			3 .

Comparison of Two-Level PCG Methods

Comparisons

Different comparisons possible:

- Typical parameters in the two-level preconditioners ¹
- Arbitrary (but fixed) parameters in the two-level preconditioners

Example

Comparison: For each method its optimized set of parameters can be taken

- DFF1
 - annroximated eigenvectors as columns of Z
 - a incomplete Cholesky preconditioner for M^{-1}
 - \bullet direct solution of Fx = v
 - MG
 - standard interpolation operator for Z
 - Gauss-Seidel smoother for M⁻
 - \circ recursive solution of $E_X V$

Comparison of Two-Level PCG Methods

Comparisons

Different comparisons possible:

- Typical parameters in the two-level preconditioners ¹
- Arbitrary (but fixed) parameters in the two-level preconditioners

Example

Comparison: For each method its optimized set of parameters can be taken

- DEF1:
 - approximated eigenvectors as columns of Z
 - incomplete Cholesky preconditioner for M⁻¹
 - \bullet direct solution of Ex = y
- MG:
 - standard interpolation operator for Z
 - Gauss-Seidel smoother for M⁻¹
 - \bullet recursive solution of Ex = y

Comparison of Two-Level PCG Methods

Comparisons

Different comparisons possible:

- Typical parameters in the two-level preconditioners
- Arbitrary (but fixed) parameters in the two-level preconditioners

Example

Comparison: For each method it is allowed to take

- a block-Jacobi preconditioner M^{-1} (domain decomposition
- approximated eigenvectors as columns of Z (deflation)
- recursive solution of Ex = v (multigrid)

Comparison of Two-Level PCG Methods

Comparisons

Different comparisons possible:

- Typical parameters in the two-level preconditioners
- Arbitrary (but fixed) parameters in the two-level preconditioners

Example

Comparison: For each method it is allowed to take

- a block-Jacobi preconditioner M^{-1} (domain decomposition)
- approximated eigenvectors as columns of Z (deflation)
- recursive solution of Ex = y (multigrid)

- Two-Level PCG Methods
- Comparison of Two-Level PCG Methods
- Conclusions

Previous Comparisons

Previous Works

Comparisons of DEF1, AD and BNN have already been performed 1 2 3

Main Result

In exact arithmetic, DEF1 performs better than both BNN and AD

¹ R. NABBEN AND C. VUIK, SIAM J. Numer. Anal., 42, 1631-1647, 2004.

²R. NABBEN AND C. VUIK, SIAM J. Sci. Comput., **27**, 1742–1759, 2006.

³R. NABBEN AND C. VUIK, Num. Lin. Alg. Appl., **15**, 355-372, 2008

Spectral Analysis

Theorem

AD has a worse condition number compared to the other two-level PCG methods

Theoren

Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2)

$$\sigma\left(M^{-1}PA\right) = \sigma\left(P^{T}M^{-1}A\right) = \sigma\left(P^{T}M^{-1}PA\right) = \{0, 0, \dots, 0, \lambda_{k+1}, \dots, \lambda_{n}\}$$

Theorem

Class 2 (BNN, A-DEF1, A-DEF2)

$$\sigma\left((P^T M^{-1} P + Q)A\right) = \sigma\left((M^{-1} P + Q)A\right) = \sigma\left((P^T M^{-1} + Q)A\right)$$
$$= \{1, 1, \dots, 1, \mu_{k+1}, \dots, \mu_{k}\}$$

Spectral Analysis

Theorem

AD has a worse condition number compared to the other two-level PCG methods

Theorem

Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2):

$$\sigma\left(M^{-1}PA\right) = \sigma\left(P^{T}M^{-1}A\right) = \sigma\left(P^{T}M^{-1}PA\right) = \{0, 0, \dots, 0, \lambda_{k+1}, \dots, \lambda_{n}\}$$

Theorem

Class 2 (BNN, A-DEF1, A-DEF2):

$$\sigma\left((P^TM^{-1}P+Q)A\right) = \sigma\left((M^{-1}P+Q)A\right) = \sigma\left((P^TM^{-1}+Q)A\right)$$
$$= \{1, 1, \dots, 1, \mu_{k+1}, \dots, \mu_n\}$$

Main Results

Theorem

Spectrum of DEF1, DEF2, R-BNN1 or R-BNN2:

$$\sigma = \{0, \ldots, 0, \lambda_{k+1}, \ldots, \lambda_n\}$$

Comparison of Two-Level PCG Methods

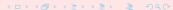
00000000000

Spectrum of BNN, A-DEF1 or A-DEF2:

$$\sigma = \{1, \ldots, 1, \mu_{k+1}, \ldots, \mu_n\}$$

Then:

$$\lambda_{k+1} = \mu_{k+1}, \ldots, \lambda_n = \mu_n$$



Main Results

Introduction

Theorem

Spectrum of DEF1, DEF2, R-BNN1 or R-BNN2:

$$\sigma = \{0, \ldots, 0, \lambda_{k+1}, \ldots, \lambda_n\}$$

Spectrum of BNN, A-DEF1 or A-DEF2:

$$\sigma = \{1, \ldots, 1, \mu_{k+1}, \ldots, \mu_n\}$$

Then:

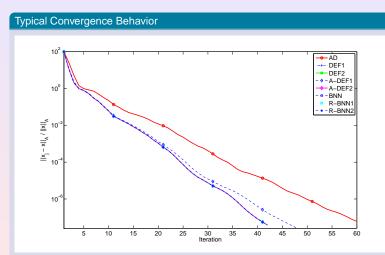
$$\lambda_{k+1} = \mu_{k+1}, \ldots, \lambda_n = \mu_n$$

Theorem

Let $\bar{x} \in \mathbb{R}^n$ be arbitrary. The following methods produce exactly the same iterates:

- BNN with $V_{\text{start}} = Qb + P^T \bar{x}$
- DEF2, A-DEF2, R-BNN1 and R-BNN2 (with $V_{\text{start}} = Qb + P^T \bar{x}$)
- DEF1 (with $V_{\text{start}} = \bar{x}$) based on $x_{i+1} = Qb + P^T x_{i+1}$

Numerical Experiment



2D bubbly flow problem; Poisson equation with a discontinuous coefficient; contrast $\epsilon=10^3$, finite differences on a uniform grid, Ax=b with $n=62^2$ and $k=64^2$

elft

Consequences

Best Method

- All methods (except AD and A-DEF1) have approximately the same convergence behavior
- DEF1 ($\mathcal{P} = M^{-1}P$), DEF2 ($\mathcal{P} = P^TM^{-1}$) and R-BNN2 ($\mathcal{P} = P^TM^{-1}$) have the lowest cost per iteration

Consequences

Best Method

- All methods (except AD and A-DEF1) have approximately the same convergence behavior
- DEF1 $(\mathcal{P}=M^{-1}P)$, DEF2 $(\mathcal{P}=P^TM^{-1})$ and R-BNN2 $(\mathcal{P}=P^TM^{-1})$ have the lowest cost per iteration

Most Robust Method?

Compare methods with respect to

- perturbed starting vector
- severe termination criterion
- inaccurate E⁻¹

Theoretical Comparison

Perturbating E^{-1} by a Small Parameter ϵ

Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2):

$$\sigma \approx \{\mathcal{O}(\epsilon), \ldots, \mathcal{O}(\epsilon), \lambda_{k+1}, \ldots, \lambda_n\}$$

Class 2 (BNN, A-DEF1, A-DEF2):

$$\sigma \approx \{1, 1, \dots, 1, \mu_{k+1}, \dots, \mu_n\}$$

Consequence

- Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2) is not robust
- Class 2 (BNN, A-DFF1, A-DFF2) is robust

Theoretical Comparison

Perturbating E^{-1} by a Small Parameter ϵ

Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2):

$$\sigma \approx \{\mathcal{O}(\epsilon), \ldots, \mathcal{O}(\epsilon), \lambda_{k+1}, \ldots, \lambda_n\}$$

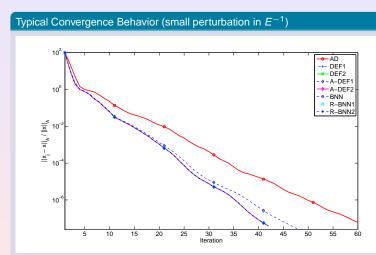
Class 2 (BNN, A-DEF1, A-DEF2):

$$\sigma \approx \{1, 1, \dots, 1, \mu_{k+1}, \dots, \mu_n\}$$

Consequence

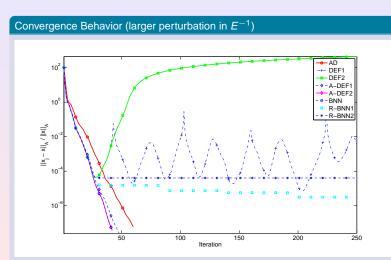
- Olass 1 (DEF1, DEF2, R-BNN1 and R-BNN2) is not robust
- Olass 2 (BNN, A-DEF1, A-DEF2) is robust

Robustness Experiments



2D bubbly flow problem; Poisson equation with a discontinuous coefficient; contrast $\epsilon = 10^3$, finite differences on a uniform grid, Ax = b with $n = 62^2$ and $k = 64^2$

Typical Robustness Experiments



2D bubbly flow problem; Poisson equation with a discontinuous coefficient; contrast $\epsilon = 10^3$, finite differences on a uniform grid, Ax = b with $n = 62^2$ and $k = 64^2$

Theoretical Comparison

Consequence

- Class 1 (DEF1, DEF2, R-BNN1 and R-BNN2) is not robust
- Olass 2 (BNN, A-DEF1, A-DEF2) is robust

Recall

• Multigrid V(1,1)-cycle (MG) preconditioner:

$$P = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

Deflation (DEF1) preconditioner:

$$\mathcal{P} = M^{-1}P$$

Main Question

Is MG more effective than DEF1?

Answei

MG is often more effective than DEF But not always!

Recall

• Multigrid V(1,1)-cycle (MG) preconditioner:

$$P = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

Deflation (DEF1) preconditioner:

$$P = M^{-1}P$$

Main Question

Is MG more effective than DEF1?

Answei

MG is often more effective than DEF But not always!

Recall

• Multigrid V(1,1)-cycle (MG) preconditioner:

$$P = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

Deflation (DEF1) preconditioner:

$$\mathcal{P} = M^{-1}P$$

Main Question

Is MG more effective than DEF1?

Answer

MG is often more effective than DEF1

Recall

• Multigrid V(1,1)-cycle (MG) preconditioner:

$$P = M^{-1}P + P^{T}M^{-1} + Q - M^{-1}PAM^{-1}$$

Deflation (DEF1) preconditioner:

$$\mathcal{P} = M^{-1}P$$

Main Question

Is MG more effective than DEF1?

Answer

MG is often more effective than DEF1 But not always!

Example

- $M^{-1}A = diag(1, 1.25, 1.5, 1.75)$
- $Z = [v_1 \ v_2]$ with v_1 and v_2 to be eigenvectors corresponding to the two smallest eigenvalues of $M^{-1}A$

Then, the spectra are given by

$$\sigma_{MG} = \{0.4375, 0.75, 1, 1\}, \quad \sigma_{DEF1} = \{0, 0, 1.5, 1.75\}$$

resulting ir

$$\kappa_{\rm MG} = 2.2857 > 1.1667 = \kappa_{\rm DEF1}$$

Conclusions

Example

- $M^{-1}A = diag(1, 1.25, 1.5, 1.75)$
- $Z = [v_1 \ v_2]$ with v_1 and v_2 to be eigenvectors corresponding to the two smallest eigenvalues of $M^{-1}A$

Then, the spectra are given by

$$\sigma_{MG} = \{0.4375, 0.75, 1, 1\}, \quad \sigma_{DEF1} = \{0, 0, 1.5, 1.75\}$$

resulting in

$$\kappa_{\rm MG} = 2.2857 > 1.1667 = \kappa_{\rm DEE1}!$$

Comparison of MG and DEF1

Comparison of κ_{MG} and κ_{DEF1}

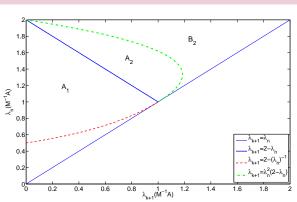


Figure: Z consists of eigenvectors corresponding to the smallest eigenvalues of $M^{-1}A$ where M^{-1} is arbitrary. $\kappa_{MG} < \kappa_{DEF1}$ holds in Regions A_1 and A_2 , while $\kappa_{DEF1} < \kappa_{MG}$ holds in Regions B_1 and B_2 .

Comparison of MG and DEF1

Observations ¹

- DEF1 can be more effective than MG in some cases
- \bullet For 'effective' M^{-1} , MG is usually faster and more robust but also more expensive
- It is possible to make each iteration of DEF1 as expensive as MG, while DEF1 is factor than MG.

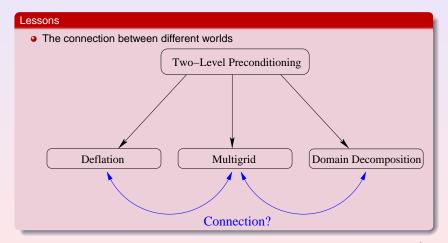
Comparison of MG and DEF1

Observations ¹

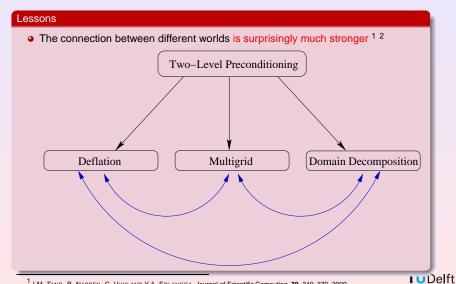
- DEF1 can be more effective than MG in some cases
- For 'effective' M^{-1} , MG is usually faster and more robust but also more expensive
- It is possible to make each iteration of DEF1 as expensive as MG, while DEF1 is faster than MG

- Two-Level PCG Methods
- Comparison of Two-Level PCG Methods
- Conclusions

Conclusions



Conclusions



¹ J.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Journal of Scientific Computing, **39**, 340–370, 2009

²J.M. TANG, S.P. MACLACHLAN, R. NABBEN, C. VUIK, SIAM. J. Matrix Anal. and Appl., **31**, 1715–1739, 2010 📑 🕟 🔻 🗐

Main Conclusions

Lessons

- Some reduced forms of two-level PCG methods are not robust a b

- ^aA. Toselli and O.B. Widlund, Comp. Math., 34, Springer, Berlin, 2005.
- ^bJ. MANDEL, Commun. Appl. Numer. Meth., 9, 233–241, 1993.

Main Conclusions

Lessons

- Some reduced forms of two-level PCG methods are not robust a b
- Some equivalent methods have different robustness properties c d

^aA. Toselli and O.B. Widlund, Comp. Math., 34, Springer, Berlin, 2005.

^bJ. MANDEL, Commun. Appl. Numer. Meth., 9, 233–241, 1993.

CY. SAAD, M. YEUNG, J. ERHEL AND F. GUYOMARC'H, SIAM J. Sci. Comput., 21, 1909-1926, 2000.

^dC. Vuik, A. Segal and J.A. Meijerink, J. Comp. Phys., **152**, 385–403, 1999.

Main Conclusions

Lessons

Some reduced forms of two-level PCG methods are not robust a b

Comparison of Two-Level PCG Methods

- Some equivalent methods have different robustness properties c d
- The optimal two-level PCG method depends on many aspects e f g h

^aA. Toselli and O.B. Widlund, Comp. Math., 34, Springer, Berlin, 2005.

^bJ. MANDEL, Commun. Appl. Numer. Meth., 9, 233–241, 1993.

CY. SAAD, M. YEUNG, J. ERHEL AND F. GUYOMARC'H, SIAM J. Sci. Comput., 21, 1909-1926, 2000.

^dC. Vuik, A. Segal and J.A. Meijerink, J. Comp. Phys., 152, 385-403, 1999.

^eS.P. MacLachlan, J.M. Tang and C. Vuik, Journal of Computational Physics, 227, 9742–9761, 2008.

^fJ.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Journal of Scientific Computing, **39**, 340–370, 2009

g.J.M. TANG, S.P. MACLACHLAN, R. NABBEN, C. VUIK, SIAM. J. Matrix Anal. and Appl., 31, 1715–1739, 2010

hY.A. ERLANGGA, R. NABBEN, SIAM Journal on Scientific Computing, 30, 1572–1595, 2008.