Coupled preconditioners for the Incompressible Navier Stokes Equations

Kees Vuik, Xin He, and Chris Klaij

Delft University of Technology
and MARIN, Wageningen, The Netherlands.

International Conference On Preconditioning Techniques For Scientific And Industrial Applications

Eindhoven, The Netherlands
June 18, 2015

Messages

1. Incompressible Navier-Stokes are important

2. Much progress in solvers for academic test problems

3. Transfer methods to industrial problems

Outline

- 1. Introduction
- 2. Problem
- 3. Krylov solvers
- 4. Block preconditioners
 - SIMPLE
 - Augmented Lagrangian
- 5. Maritime Applications
- 6. Conclusions

TUDelft

1. Introduction

Flooding of the Netherlands, 1953

2. Problem

$$-\nu \nabla^2 \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = f \quad \text{in} \quad \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in} \quad \Omega.$$

u is the fluid velocity vector

p is the pressure field

 $\nu > 0$ is the kinematic viscosity coefficient (1/Re).

 $\Omega \subset {f R}^2$ or 3 is a bounded domain with the boundary condition:

$$\mathbf{u} = \mathbf{w} \text{ on } \partial\Omega_D, \quad \nu \frac{\partial \mathbf{u}}{\partial \mathbf{n}} - \mathbf{n}p = 0 \text{ on } \partial\Omega_N.$$

TUDelft

Linear system

Matrix form after linearization and discretization:

$$\begin{bmatrix} F & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

where $F \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times n}$, $f \in \mathbb{R}^n$ and $m \leq n$

- $F = \nu A$ in Stokes problem, A is vector Laplacian matrix
- $F = \nu A + N$ in Picard linearization, N is vector-convection matrix
- $F = \nu A + N + W$ in Newton linearization, W is the Newton derivative matrix
- B is the divergence matrix
- Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric otherwise.
- Saddle point problem having large number of zeros on the main diagonal

TUDelft

3. Krylov Solvers and preconditioners

Direct method:

To solve $\mathcal{A}x=b$, factorize \mathcal{A} into upper U and lower L triangular matrices (LUx=b) First solve Ly=b, then Ux=y

Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations $x_{k+1}=M^{-1}(Nx_k+b)=Qx_k+s$, where $\mathcal{A}=M-N$ Jacobi, Gauss Seidel, SOR, SSOR

Krylov Subspace Methods:

$$x_{k+1} = x_k + \alpha_k p_k$$

Some well known methods are

CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986], FGMRES[1992], GMRESR[1994], GCR[1986], IDR(s)[2007]

4. Block preconditioners

$$\mathcal{A} = \mathcal{L}_b \mathcal{D}_b \mathcal{U}_b = \begin{bmatrix} F & B^T \\ B & 0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ BM_l^{-1} & I \end{bmatrix} \begin{bmatrix} F & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & M_u^{-1}B^T \\ 0 & I \end{bmatrix}$$

 $M_l = M_u = F$ and $S = -BF^{-1}B^T$ is the Schur-complement matrix.

$$\mathcal{U}_{bt} = \mathcal{D}_b \mathcal{U}_b = \begin{bmatrix} F & B^T \\ 0 & \hat{S} \end{bmatrix}, \quad \mathcal{L}_{bt} = \mathcal{L}_b \mathcal{D}_b = \begin{bmatrix} F & 0 \\ B & \hat{S} \end{bmatrix}.$$

Preconditioners based on a combination of these blocks involve the following subsystems:

$$Fz_1 = r_1$$
 The velocity subsystem

$$S \longrightarrow \hat{S}$$

 $\hat{S}z_2=r_2$ The pressure subsystem

TUDelft

Block preconditioners

Block triangular preconditioners

$$P_t = \mathcal{U}_{bt} = \left[\begin{array}{cc} F & B^T \\ 0 & \hat{S} \end{array} \right]$$

- Pressure convection diffusion (PCD) [Kay et al, 2002] $\hat{S} = -A_p F_p^{-1} Q_p$, Q_p is the pressure mass matrix
- Least squares commutator (LSC) [Elman et al, 2002] $\hat{S} = -(BQ_u^{-1}B^T)(BQ_u^{-1}FQ_u^{-1}B^T)^{-1}(BQ_u^{-1}B^T), \, Q_u \text{ is the velocity mass matrix}$
- Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006] F is replaced by $F_{\gamma}=F+\gamma BW^{-1}B^{T}$ $\hat{S}^{-1}=-(\nu\hat{Q}_{p}^{-1}+\gamma W^{-1}),\ W=\hat{Q}_{p}$

Block preconditioners (SIMPLE)

SIMPLE-type preconditioners[Vuik et al-2000]

SIMPLE	SIMPLER
$z = \mathcal{U}_b^{-1} \mathcal{L}_{bt}^{-1} r$	$z = \mathcal{U}_{bt}^{-1} \mathcal{L}_b^{-1} r$
	$z = z + \mathcal{U}_b^{-1} \mathcal{L}_{bt}^{-1} (r - \mathcal{A}z)$
$M_u = D$	$M_l = M_u = D, D = diag(F)$
$\hat{S} = BD^{-1}B^T$	$\hat{S} = BD^{-1}B^T$
One Poisson solve	Two Poisson solves
One velocity solve	Two velocity solves

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one or two velocity solves) are identical.

TUDelft

10

Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:

Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.

LSC:
$$\hat{S} \approx -(B\hat{Q_u}^{-1}B^T)(B\hat{Q_u}^{-1}\underbrace{F\hat{Q_u}^{-1}}B^T)^{-1}(B\hat{Q_u}^{-1}B^T)$$

assuming $F\hat{Q_u}^{-1} \approx I$ (time dependent problems with a small time step)

$$\hat{S} = -B\hat{Q_u}^{-1}B^T$$

MSIMPLER uses this approximation for the Schur complement and updates scaled with $\hat{Q_u}^{-1}$.

- -Convergence better than other variants of SIMPLE
- -Cheaper than SIMPLER (in construction) and LSC (per iteration)

TUDelft

Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with preconditioned GCR(20) with accuracy of 10^{-6} (SEPRAN) using Q2-Q1 hexahedrons

Grid	d SIMPLE LSC		MSIMPLER				
iter. $(t_s) rac{ ext{in-it-} u}{ ext{in-it-} p}$							
$8 \times 8 \times 16$	44(4) $\frac{97}{342}$	16(1.9) $\frac{41}{216}$	14(1.4) $\frac{28}{168}$				
$16 \times 16 \times 32$	84(107) $\frac{315}{1982}$	29(51) $\frac{161}{1263}$	17(21) $\frac{52}{766}$				
$24 \times 24 \times 48$	99(447) $\frac{339}{3392}$	26(233) $\frac{193}{2297}$	17(77) $\frac{46}{1116}$				
$32 \times 32 \times 40$	132(972) $\frac{574}{5559}$	$37(379) \frac{233}{2887}$	20(143) $\frac{66}{1604}$				

Numerical Experiments (comparison)

2D Lid driven cavity problem on 64×64 stretched grid: The Stokes problem is solved with accuracy 10^{-6} . PCG is used as inner solver in block preconditioners (SEPRAN) .

Stretch factor	LSC	MSIMPLER	SILU
	GCR iter.	GCR iter.	Bi-CGSTAB iter.
1	20	17	96
8	49	28	189
16	71	34	317
32	97	45	414
64	145	56	NC
128	NC	81	NC

Augmented Lagrangian [Benzi and Olshanskii, 2006]

$$\begin{bmatrix} F & B^T \\ B & O \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$
transformed to

$$\begin{bmatrix} F + \gamma B^T W^{-1} B & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} \hat{f} \\ g \end{bmatrix} \quad \text{or} \quad \mathcal{A}_{AL} \mathbf{x} = \hat{b},$$

 $\hat{f} = f + \gamma B^T W^{-1} B g$, and W is non-singular.

Ideal AL preconditioner for \mathcal{A}_{AL} is

$$\mathcal{P}_{IAL} = \begin{bmatrix} F + \gamma B^T W^{-1} B & 0 \\ B & -\frac{1}{\gamma} W \end{bmatrix}.$$

The Augmented Lagrangian method

$$\mathcal{A}_{AL} = \begin{bmatrix} F + \gamma B^T W^{-1} B & B^T \\ B & 0 \end{bmatrix} \qquad (S_{AL} = -B(F + \gamma B^T W^{-1} B)^{-1} B^T)$$

$$\mathcal{P}_{IAL} = \begin{bmatrix} F + \gamma B^T W^{-1} B & 0 \\ B & -\frac{1}{\gamma} W \end{bmatrix} \qquad (F_{\gamma} = F + \gamma B^T W^{-1} B)$$

- S_{AL} of \mathcal{A}_{AL} is approximated by $-\frac{1}{\gamma}W$.
- F_{γ} becomes ill-conditioned for $\gamma \to \infty$.
- In practice $\gamma = 1$, or $\gamma = O(1)$, and $W = \hat{Q}_P$.
- Open question: fast solution methods for systems with F_{γ} , which is denser than F and consists of mixed derivatives.
- [1] M. Benzi and M.A. Olshanskii. An augmented Lagrangian-based approach to the Oseen problem. *SIAM J. Sci. Comput.*, 28:2095-2113, 2006.

June 18, 2015

15

The Augmented Lagrangian method

$$\begin{aligned} \mathcal{A}_{AL} &= [\begin{smallmatrix} F + \gamma B^T W^{-1} B & B^T \\ B & 0 \end{smallmatrix}] \text{ and the ideal AL precondition} \\ \mathcal{P}_{IAL} &= [\begin{smallmatrix} F + \gamma B^T W^{-1} B & 0 \\ B & -\frac{1}{\gamma} W \end{smallmatrix}] \text{ includes (in 2D)} \end{aligned}$$

- the convection-diffusion block: $F = \begin{bmatrix} F_{11} & O \\ O & F_{11} \end{bmatrix}$,
- the (negative) divergence matrix: $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$,
- the modified pivot block $F_{\gamma} = \begin{bmatrix} F_{11} + \gamma B_1^T W^{-1} B_1 & \gamma B_1^T W^{-1} B_2 \\ \gamma B_2^T W^{-1} B_1 & F_{11} + \gamma B_2^T W^{-1} B_2 \end{bmatrix}$.

One approximation of F_{γ} is $\widetilde{F}_{\gamma} = [\begin{smallmatrix} F_{11} + \gamma B_1^T W^{-1} B_1 & O \\ \gamma B_2^T W^{-1} B_1 & F_{11} + \gamma B_2^T W^{-1} B_2 \end{smallmatrix}]$, which leads to the modified AL preconditioner \mathcal{P}_{MAL} for \mathcal{A}_{AL} .

The Augmented Lagrangian method (summary)

$$\mathcal{P}_{IAL} = \begin{bmatrix} F_{\gamma} & 0 \\ B & -\frac{1}{\gamma}W \end{bmatrix} \qquad (F_{\gamma} = \begin{bmatrix} F_{11} + \gamma B_{1}^{T} W^{-1} B_{1} & \gamma B_{1}^{T} W^{-1} B_{2} \\ \gamma B_{2}^{T} W^{-1} B_{1} & F_{11} + \gamma B_{2}^{T} W^{-1} B_{2} \end{bmatrix})$$

$$\mathcal{P}_{MAL} = \begin{bmatrix} \tilde{F}_{\gamma} & 0 \\ B & -\frac{1}{\gamma}W \end{bmatrix} \qquad (\tilde{F}_{\gamma} = \begin{bmatrix} F_{11} + \gamma B_{1}^{T} W^{-1} B_{1} & 0 \\ \gamma B_{2}^{T} W^{-1} B_{1} & F_{11} + \gamma B_{2}^{T} W^{-1} B_{2} \end{bmatrix})$$

- ullet systems with \widetilde{F}_γ are easier to be solved, compared to F_γ .
- the number of iterations by using the ideal and modified AL preconditioners are both independent of the mesh refinement, and nearly independent of the Reynolds (viscosity) number.
- by using the modified AL preconditioner, there exists an optimal value of γ , which minimises the number of Krylov subspace iterations. The optimal γ is problem dependent, but mesh size independent.

Numerical experiments (Lid driven cavity)

2D lid driven cavity problem. the domain is $[0,1] \times [0,1]$. The Reynolds number is $Re = UL/\nu$, and here U=1 and L=1. The stretched grids are generated based on the uniform Cartesian grids with $n \times n$ cells. The stretching function is applied in both directions with parameters a=1/2 and b=1.1

$$x = \frac{(b+2a)c - b + 2a}{(2a+1)(1+c)}, \quad c = (\frac{b+1}{b-1})^{\frac{\bar{x}-a}{1-a}}, \quad \bar{x} = 0, 1/n, 2/n, ..., 1.$$

June 18, 2015

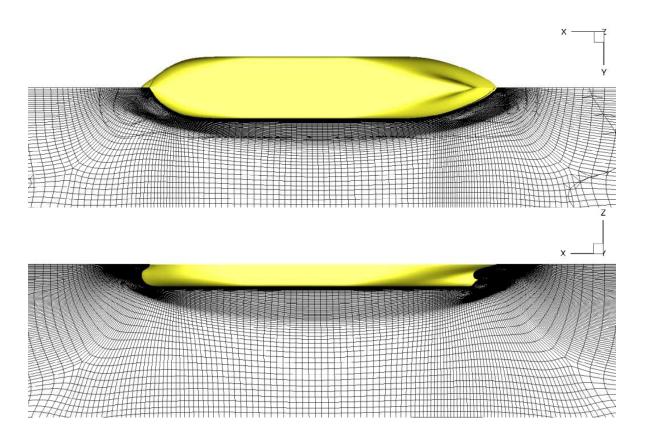
18

Numerical experiments (Lid driven cavity)

	400	400	1000	07004	Z 0004			
Re	100	400	1000	2500*	5000*			
m	modified AL preconditioner							
Newton iterations:	6	7	7	8	9			
GCR iterations:	8	14	21	33	50			
total time:	14.8	26.2	74.6	194.2	277.1			
modified 'grad-div' preconditioner								
Newton iterations:	6	7	8	9	9			
GCR iterations:	10	17	28	53	77			
total time:	8.5	15.7	32.7	119.1	167.9			
modified SIMPLER preconditioner								
Newton iterations:	10	8*	8*	11	15			
GCR iterations:	43	82	84	80	90			
total time:	68.3	102.9	232.8	203.2	561.6			

5. Maritime Applications

Tanker (block-structured grid)



Model-scale:

 $Re = 4.6 \cdot 10^6$

2.0m cells

 $\max \text{ aspect ratio } 1:7000$

Full-scale:

 $Re = 2.0 \cdot 10^9$

2.7m cells

 $\max \, \text{aspect ratio} \, 1:930\,000$

Discretization

Co-located, cell-centered finite volume discretization of the steady Navier-Stokes equations with Picard linearization leads to linear system:

$$\begin{bmatrix} Q_1 & 0 & 0 & G_1 \\ 0 & Q_2 & 0 & G_2 \\ 0 & 0 & Q_3 & G_3 \\ D_1 & D_2 & D_3 & C \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ p \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ g \end{bmatrix}$$
 for brevity:
$$\begin{bmatrix} Q & G \\ D & C \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix}$$

with
$$Q_1 = Q_2 = Q_3$$
.

 \Rightarrow Solve system with FGMRES and SIMPLE-type preconditioner Turbulence equations (k- ω model) remain segregated

TUDelft

Tanker

Model-scale $Re = 4.6 \cdot 10^6$, max cell aspect ratio 1:7000

grid	CPU cores	SIMPLE	SIMPLE		KRYLOV-SIMPLER		
		its	Wall clock	its	Wall clock		
0.25m	8	1379	25mn	316	29mn		
0.5m	16	1690	37mn	271	25mn		
1m	32	2442	57mn	303	35mn		
2m	64	3534	1h 29mn	519	51mn		

Full-scale $\mathrm{Re} = 2.0 \cdot 10^9$, max cell aspect ratio $1:930\,000$

grid	CPU cores	PU cores SIMPLE KRYLOV-SIMPLER			SIMPLER
		its	Wall clock	its	Wall clock
2.7m	64	29 578	16h 37mn	1330	3h 05mn

Augmented Lagrangian for finite volumes

Stabilised coupled velocity-pressure system:

$$\mathcal{A} = \begin{bmatrix} Q & G \\ D & C \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ g \end{bmatrix},$$

Stabilization matrix C, is given by

$$C = D\operatorname{diag}(Q)^{-1}G + \operatorname{diag}(Q)^{-1}L,$$

where L is the Laplacian matrix.

Preconditioners used

$$\mathcal{P}_{USER} = \begin{bmatrix} Q & G \\ O & \widetilde{S} \end{bmatrix}$$

$$\mathcal{A}_{AL1} = \begin{bmatrix} Q_{\gamma} & G_{\gamma} \\ D & C \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\gamma} \\ g \end{bmatrix}, \mathcal{P}_{MAL1} = \begin{bmatrix} \widetilde{Q}_{\gamma} & G_{\gamma} \\ O & C + \frac{1}{\gamma}W \end{bmatrix},$$

with $Q_{\gamma} = Q - \gamma G W^{-1} D$, $G_{\gamma} = G - \gamma G W^{-1} C$ and $\mathbf{f}_{\gamma} = \mathbf{f} - \gamma G W^{-1} g$.

$$\mathcal{A}_{AL2} = \begin{bmatrix} Q_{\gamma} & G_{\gamma} \\ D_{\gamma} & C_{\gamma} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ p \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{\gamma} \\ g_{\gamma} \end{bmatrix}, \mathcal{P}_{MAL2} = \begin{bmatrix} \widetilde{Q}_{\gamma} & G_{\gamma} \\ O & C_{\gamma} + \frac{1}{\gamma}W \end{bmatrix}$$

with $D_{\gamma}=D+\gamma CW^{-1}D$, $C_{\gamma}=C+\gamma CW^{-1}C$ and $g_{\gamma}=g+\gamma CW^{-1}g$

TUDelft

Numerical experiments

Flate plate (academic test problem) in ReFRESCO

PETSc solver

- For the velocity-pressure coupled system: FGMRES with tolerance 0.001.
- For the 3 sub-momentum systems in \widetilde{Q}_{γ} : GMRES+BJACOBI with tolerance 0.01.
- For the 1 sub-system with the approximation of Schur: GMRES+BJACOBI with tolerance 0.01.

For the nonlinear iterations, tolerance is 10^{-10} .

TUDelft

MAL1 preconditioner (choice of γ)

Grid	32^{2}	44^{2}	64^{2}	88 ²	128^{2}
$\gamma = 0.3$					
nonlinear iter.	112	96	90	88	85
Linear iter.	25	30	35	42	49
$\gamma = 0.4$					_
nonlinear iter.	125	121	116	112	117
Linear iter.	16	18	20	22	23
$\gamma = 0.5$					_
nonlinear iter.	300	300	281	279	270
Linear iter.	7	9	10	10	10
$\gamma = 0.8$					
nonlinear iter.	> 300	> 300	> 300	> 300	> 300
Linear iter.	4	5	5	5	6

TUDelft

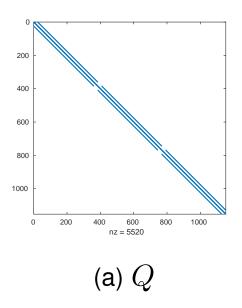
Comparison of preconditioners

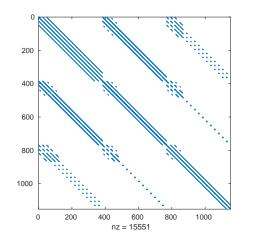
Grid	32^{2}	44^{2}	64^{2}	88^{2}	128^{2}
\mathcal{P}_{MAL1} for \mathcal{A}_{AL1} with $\gamma=0.4$					
nonlinear iter.	125	121	116	112	117
Linear iter.	16	18	20	22	23
\mathcal{P}_{MAL2} for \mathcal{A}_{AL2} with $\gamma=0.4$					
nonlinear iter.	118	113	107	108	106
Linear iter.	18	19	21	22	24
\mathcal{P}_{USER} for \mathcal{A}					
nonlinear iter.	123	99	110	95	92
Linear iter.	20	25	30	50	80

Number of sub-systems iterations

Grid	32^{2}	44^{2}	64^{2}	88 ²	128^{2}
\mathcal{P}_{MAL1} for \mathcal{A}_{AL1} with $\gamma=0.4$					
velocity sub-system iter.	6	9	12	15	20
pressure sub-system iter.	2	2	2	2	2
\mathcal{P}_{MAL2} for \mathcal{A}_{AL2} with $\gamma=0.4$					
velocity sub-system iter.	6	9	12	15	20
pressure sub-system iter.	2	2	2	2	3

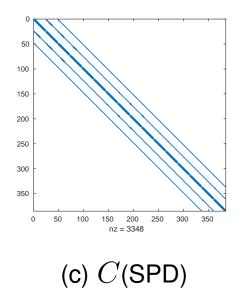
Sparsity of the blocks

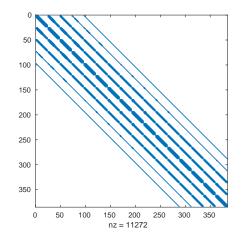




(b)
$$Q_{\gamma} = Q - \gamma G W^{-1} D$$

Sparsity of the blocks





(d)
$$C + \gamma C W^{-1} C (\mathrm{SPD})$$

6. Conclusions

- MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.
- MSIMPLER shows better performance than LSC. Both have similar convergence characteristics.
- For academic problems (FEM), Modified Augmented Lagrangian (MAL) and grad-div are nearly independent of the grid size and Reynolds number
- MAL/grad-div are faster than (M)SIMPLER
- Future research: MAL/grad-div for industrial (Maritime) applications (FVM)

References

- * Website: http://ta.twi.tudelft.nl/users/vuik/pub_it_navstok.html
- * C. Vuik and A. Saghir and G.P. Boerstoel, "The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces," *International Journal for Numerical methods in fluids*, 33 pp. 1027-1040, 2000.
- * M. ur Rehman and C. Vuik and G. Segal, "SIMPLE-type preconditioners for the Oseen problem," *International Journal for Numerical methods in fluids*, 61, pp. 432-452, 2009 *International Journal for Numerical methods in fluids*, 65, pp. 1180-1200, 2011
- C.M. Klaij and C. Vuik "SIMPLE-type preconditioners for cell-centered, colocated finite volume discretization of incompressible Reynolds-averaged Navier-Stokes equations," *International Journal for Numerical methods in fluids*, 71, pp. 830-849, 2013
- * X. He and C. Vuik Comparison of some preconditioners for incompressible Navier-Stokes equations, to appear NUMERICAL MATHEMATICS: Theory, Methods and Applications

