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1. Introduction

The incompressible Navier Stokes equation

—vV2u4+uVu+Vp=f in Q
Vu=0 in Q.

u: fluid velocity; p: pressure
v > 0 is the kinematic viscosity coefficient (1/Re).

Q c R? is a bounded domain with boundary conditions:
ou

u=w on 909p, ya—n—npzo on 0fy.
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Finite element discretization

Discrete weak formulation
Xn C (H3 ()Y, My, c L3(Q)

Find up, € X;, and pp, € My,

V/Vuh:Vvth+/(uh.Vuh).vth—/ ph(V.vh)dQ:/f.vth, YWh € Xp,
Q Q Q Q

/ qh(V.uh)dQ =0 Vgh € M.
Q

Matrix notation
Au+N(u)+BTp=f

Bu = 0.
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Choice of elements

Brezzi-Babuska condition

: V.v
inf sup w 2
a€Qn vev, ||VhHVthh||Qh

© 9 velocity points (bi-quadratic) O 6 velocity points(quadratic)
X 4 pressure points(bi-linear) X 3 pressure points(linear)

2x2 element mesh

Taylor Hood elements (Q2 — Q1), (P2 — P1) and (Q2 — Q1)
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Choice of elements

Brezzi-Babuska condition

. .V
|nf Sup M >
a€Qn vev, ”VhHVthh”Qh

(2 9 valocity points (M-gquadratic} ' & velocity points{quadratic) {F2-P1 } grid

% 1 prassurs peirl X 1 pressura point {
{dizcontinuous) with 2 derhvatives)
Crouzeix Raviart (Q2 — P0), (P2* — P1) and (P21 — P1) §
=
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Choice of elements

Brezzi-Babuska condition

. V.Vp,
inf supwzvzo.
a€Qnvev, lIVhllv, lldnllq,

R

&® &

O 5 velocity points (bi-linear + © 4 velocity points (linear + bubble at centroid)
bubble at centroid)

X 4 pressure points (bi-linear) X 3 pressure points (linear)

Taylor Hood mini elements Q;” — Q; and P;” — Py
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Software packages

IFISS

@ Incompressible Flow Iterative Solution Software
Silvester, EIman, Ramage, Wathen
Matlab, nice for experiments

academic, 2D problems only
modern block triangular preconditioners

(*]
(*]
(*]
(*]
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Software packages

@ Sepran = Segal + Praagman

@ FORTRAN package, industrial and academic problems
@ 1, 2, 3 Dimensional problems

@ Complex geometries

@ Taylor Hood and Raviart Thomas elements are
implemented
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Linearization

Stokes problem

—vAu+Vp=f
Vu=0

Picard’s method

—vAau®t) 4 () wyukd) | ppkrt) g

v.uktd) = o

Newton’s method

VAuk+1 4 uk“.Vuk 4 uk'Vuk+l 4 Vpk+1 —f4 uk.Vuk,

v.uktt = 0.
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2. Solution techniques

Matrix form after linearization

£ ) [s] - 1] or-

@F cR BeR™MN feR"andm <n

@ Sparse linear system, symmetric (Stokes problem),
nonsymmetric (Navier Stokes) and always indefinite.

@ For unique solution u and p, finite elements must satisfy
BB condition.

@ Saddle point problem having large number of zeros on the
main diagonal
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Preconditioner for the Navier Stokes equations

Definition

A linear system Ax = b is transformed into P 1 Ax = P~1b.
@ Eigenvalues of P—1.4 are more clustered than A
@ PrA
@ Pz = is cheap to solve for z

Block triangular preconditioners
F BT ] I 0 F o0 I F-1BT | I 0 F BT
B 0o | [BF* 1 ||[O S]||lo 1 |T[BFY I |]lO s
F BT ]!
p1l= [ . } .S = —BF ~!BT (Schur complement matrix)
Sz, =19, FZ]_:rl—BTZZ

@ GMRES converges in two iterations if exact arithmetic is used [Murphy, Golub,
Wathen -2000]

@ In practice F—1 and S—1 are expensive, so they are approximated N
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Preconditioners for the Navier Stokes equations

Block triangular preconditioners

@ Pressure convection diffusion (PCD) [Kay, Login and Wathen,
2002]

S ~ —ApF, 1Qp

@ Least squares commutator (LSC) [Elman, Howle, Shadid, Silvester
and Tuminaro, 2002]

S~ —(BQ~'BT)(BQ'FQ~'B")~(BQ'BT)

@ one of the best approximations available in the literature

@ Convergence independent of the mesh size and mildly dependent on Reynolds
number

@ Require extra operators

@ Require iterative solvers (Geometric multigrid, algebraic multigrid) for the (1,1)
and (2,2) blocks
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Preconditioners for the Navier Stokes equations

Augmented Lagrangian Approach (AL) [Benzi, Olshanski, 2007]
Adapted system

F+9B™W-IB BT] [u] [f
B 0| |p| |O

STt =—(Qpt+ W

*) Qp approximation of the pressure mass matrix
O W= Qp, ~ Lagrange multiplier, v viscosity

@ Convergence independent of the mesh size and mildly dependent on Reynolds
number

@ Require iterative solvers (Geometric multigrid, algebraic multigrid) for the
(2,1) block
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Preconditioners for the Navier Stokes equations

Incomplete LU preconditioners

A= LU — R, where R consist of dropped entries that are

absent in the index set S(i, ).
S ={(i,j)| aj # 0} [Classical ILU by Meijerink and van der Vorst, 1977].

In our case, S(i,j) = {(i,j)| i.j are connected in the finite element grid}. So zeros in
the matrix, due to the coefficients are considered to be non-zero in the structure.

@ if |R|| is large, give poor convergence (reordering)
@ |Instability due to large ||L~%| and ||[U—2]|
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Preconditioners for the Navier Stokes equations

ILUPACK

@ Bollhofer and Saad

Static reordering schemes
Inverse-based ILU with diagonal pivoting
Multilevel framework

Iterative solver
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3. Advanced ILU preconditioner

Effect of reordering

@ |In direct solver, reordering improves the profile and bandwidth of the matrix.
@ Improve the convergence of the ILU preconditioned Krylov subspace method
@ Minimizes dropped entries in ILU (||.A — LU||¢)
@ May give stable factorization (||l — A(LU)~1|¢)

[Dutto-1993, Benzi-1997, Duff and Meurant-1989, Wille-2004, Chow and Saad - 1997]

Well-known renumbering schemes
@ Cuthill McKee renumbering (RCM)  [Cuthill McKee - 1969]
@ Sloan renumbering  [Sloan - 1986]
@ Minimum degree renumbering (MD)  [Tinney and Walker - 1967]
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Preconditioners for the Navier Stokes equations

New renumbering scheme

@ Renumbering of grid points: Grid points are renumbered with Sloan or Cuthill
McKee algorithms

@ The unknowns are reordered by p-last or p-last per level methods

In p-last reordering, first all the velocity unknowns are ordered
followed by pressure unknowns. Usually, this produces a large
profile but avoids breakdown of the LU decomposition.

p-last per level reordering, smaller profile

p-last per element reordering, smallest profile
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Preconditioners for the Navier Stokes equations

p-last per level reordering

Q2-Q1 finite element subdivision

S —Or o — R
Third level
08+ ~ A ~ A ~ A ~ ES
@ O [ O [ O [ O ()]
06
( o o o & o
Second level 1
O [ O [ O ) O )
o o o & o
First level
O ) O O O ) O D
A b, A A A A
o 5 o Q o o
e 0) e 0) @) 0) o) D
O ) O ) O ) O )
B S & % & o
-4 S ) © > S <
-08~ -0.6 -0.4 =02 02~ 04 06 08
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Preconditioners for the Navier Stokes equations

Special features of Advanced ILU
@ lumping of positive off-diagonal elements
@ extra fill in (global, or pressure only)
@ ¢ stabilization parameter
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4. Numerical Experiments

Flow domains

@ Channel flow The Poiseuille channel flow in a square domain (—1, 1) with a
parabolic inflow boundary condition and the natural outflow condition having the

analytic solution: ux = 1 —y?; uy =0; p = 2vx
@ Backward facing step

=o0.v=0
1.1 ()
-
-
-1y
v=0 - u—p=0
o
- v,=
-
>

u=0,v=0

@ Q2-Q1 finite element discretization [Taylor, Hood - 1973]
@ Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]
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Comparison of p-last and p-last per level

Square channel, Stokes, Q2-P1

250 8
— p-last — p-last
p-last-level 7 p-last-level
200
6
¢ ¢
S =
s o5
E 150 E')
o o4
® 100 o
? 03
@ @
2
50
1
Ciﬁ 32 64 Glﬁ 32 64
gridsize gridsize

GMRES(20) costs more CPU time

GMRESR is comparable with Bi-CGSTAB, wrt CPU time
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Dependence on the Reynoldsnumber

Backward Facing Step, Navier Stokes, 16 x 48 with Q2-Q1
discretization

250 1.
1.6
200 14
o @
g £12
8 =
S 150 2
2 O 1
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2 2
I 5 08
100 3
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50 0.4
0.2
%0 150 250 %O 150 250
Reynolds number Reynolds number

Sloan reordering is faster than RCM reordering
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Advanced ILU compared with PCD and LSC

Comparison of ILU preconditioner with block triangular preconditioners using GMRES
(accuracy = 10—*) and Newton linearization for the backward facing step Navier

Stokes problem, Q2-Q1 element

Direct solver for (1,1),(2,2) blocks of the block triangluar preconditioners

Re=100 PCD p-last-level(Sloan) LSC
- Iter | sec | lIter sec Iter | sec
8x24 32 | 0.50 | 16 0.03 15 | 0.33
16x24 33 | 121 | 21 0.08 15 | 0.76
32x24 37 | 3.16 | 68 0.67 18 | 2.10
64x24 45 | 8.30 | 61 1.13 25 | 9.10
Re =200
8x24 45 | 7.26 | 60 0.10 23 | 0.50
16x24 50 | 1.90 | 37 0.15 22 | 1.14
32x24 52 | 4.30 | 83 0.75 24 | 2.73
64x24 60 | 11.0 | 41 0.80 29 | 7.00 -
=
=
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Advanced ILU compared with AL and LSC

Comparison of ILU preconditioner with block triangular preconditioners using GCR(30)
and Newton linearization for the backward facing step Navier Stokes problem

Iterative solver for (1,1),(2,2) blocks of the block triangluar preconditioners

Q2-Q1 AL LSC p-last-level(Sloan)
- Iter | sec | Iter | sec Iter sec
8x24 9 | 010 | 17 | 0.11 | 17 0.02
16x24 9 | 044 | 18 | 0.20 | 23 0.06
32x24 9 | 272 | 23 | 0.48 | 58 0.25
64x24 9 | 930 | 27 | 1.20 | 59 0.56
128x24 | 9 | 445 | 42 | 3.90 | 488 11.0
Q2-P1 AL LSC p-last-level(Sloan)
8x24 8 | 012 | 14 | 0.14 | 84 0.11
16x24 8 | 028 | 11 | 0.24 | 118 0.32
32x24 8 | 064 | 20 | 1.00 | 220 1.20
64x24 8 1.50 | NC 308 3.50
128x24 | 8 | 3.43 | NC NC %
[a]
=

Vuik, Rehman, and Segal Preconditioners for the Navier Stokes problem



ILUPACK

ILUPACK with GMRES(20)

Grid Iterations | nnz(A) | nnz(ILU) | Growth factor

8x24 4 7040 15020 2.13
16x48 4 33122 96227 2.90
32x96 4 143548 | 797598 5.56
64x192 5 598832 | 3951127 6.60

Backward facing step, Stokes problem, Q2-Q1
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ILUPACK and Advanced ILU

ILUPACK with GMRES(20)

ILUPACK ILU p-last-level(Sloan)

Grid Iter. (time(s)) Total time(s) | Iter. (time(s)) Total time(s))
8x24 4 (0.01) 0.04 14(0.008) 0.03
16x48 4(0.04) 0.23 20(0.012) 0.07
32x96 4 (0.19) 2.42 87(0.30) 0.41
64x192 5(1.0) 21.00 276(3.35) 3.92

Backward facing step, Stokes problem, Q2-Q1
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5. Conclusions

@ IFISS is a nice tool to investigate the incompressible
Navier Stokes equations
@ Advanced ILU:
@ renumbering of grid points and reordering of unknowns
@ no break down and fast convergence
@ iterations increase with increase in Reynolds number and
grid points
@ Block preconditioners are better for large grid sizes and
large Reynolds numbers

@ ILUPACK needs small number of iterations, but memory
and CPU time can be large

@ Stretched grids?
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