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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) True because if symmetric then maximal absolute row sum of A is equal to
maximal absolute column sum of A.

(b) False because the matrices resulting from the discretization of the Poisson equa-
tion are counter examples.

(c) True Since A is an M -matrix, we know that A−1i,j ≥ 0 for all i and j, and Ai,j ≤ 0
for i 6= j. We know

0 < 1 = (AA−1)i,i = Ai,1A
−1
1,i + ....+ Ai,nA

−1
n,i

Using the sign properties of A and A−1 shows that Ai,i > 0. Since the inverse
of diag(A) is given by the diagonal matrix with elements 1

Ai,i
, which are all

positive, so diag(A) is an M -matrix.

(d) False because ‖A‖2 =
√
λmax(ATA) =

√
16 = 4.

(e) False, because the 2-norm is submultiplicative and therefore we have that for
any real-valued squared matrix A we have that 1 = ‖I‖2 = ‖AA−1‖2 ≤
‖A‖2‖A−1‖2 = cond2(A).

2. (a) The stencil [Ah] of the matrix is given by

[Ah] =
1

h2
[
−1 2 −1

]
+
[
0 1 0

]
=

1

h2
[
−1 2 + h2 −1

]
(1)

(b) The matrix denoted by Ah is of size 2× 2 and given by

Ah =
1

h2

(
2 + h2 −1
−1 2 + h2

)
(2)

(c) Given that Ah is symmetric all eigenvalues are real-valued. So, it suffices to
show that the eigenvalues of Ah are positive. The Gershgorin Theorem provides
bounds on the eigenvalues that clearly show that the eigenvalues of Ah are
positive. The expression for the eigenvalues derived in the previous exercise
shows this as well.
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(d) Show that the matrix Ah is an irreducible K-matrix and therefore an M-matrix.
As a result of this the inverse of Ah only has positive entries.

(e) The condition number in 2-norm cond2(A
h) of Ah is given by

cond2(A
h) =

λmax(Ah)

λmin(Ah)
=
λN−1(Ah)

λ1(Ah)

=
2− 2 cos[(N − 1) π h] + h2

2− 2 cos(π h) + h2
(3)

(f) We have that
Bh

JAC(w) = I − w(Dh)−1Ah . (4)

(g) We have that

ρ(Bh
JAC) = ρ[I − (Dh)−1Ah] = 1− h2

2 + h2
λ1(Ah)

= 1− 2− 2 cos(π h) + h2

2 + h2

=
2 cos(π h)

2 + h2
. (5)

3. (a) We have that

uk+1 = uk + ek

= uk + Â−1rk

= uk + IhH [AH ]−1IHh rk (6)

(b) We have that

Ah =

(
ARR ARB

ABR ABB

)
(7)

where ARR and ABB are diagonal matrices and where ARB and ABR are matrices
with two diagonals below and above the main diagonal.

(c) The Gauss-Seidel iteration is such that during the k-th iteration the components
of the residual vector rk are consecutively made zero. In a red-black ordering
this means that the residual vector in first the red nodes and then in the black
nodes is made equal zero. The decoupling between the black nodes is such that
making the residual equal zero in the second black node does not affect the
residual in the first black node. After one red-black Gauss-Seidel sweep the
residual in all the black nodes is equal to zero.

(d) We have that

uk+1/2 = uk +M−1
GSr

k [Gauss-Seidel pre-smoothing step] (8)

and
uk+1 = uk+1/2 + IhH [AH ]−1IHh rk+1/2 [defect-correction step] (9)
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4. (a) Note that ‖b−Au1‖2 is minimal if ‖b−Au1‖22 is minimal. Expanding ‖b−Au1‖22
leads to:

‖b− Au1‖22 = (b− αAb)T (b− αAb) = bT b− 2αbTAb+ α2(Ab)T (Ab)

Take the derivative to α equal to zero:

2α(Ab)T (Ab) = 2bTAb

so the norm is minimized for α = bTAb
(Ab)T (Ab)

.

(b) The Krylov-space of dimension K is Kk(A; b) := span
{
b, Ab, . . . , Ak−1b

}
(c) The minimization property of GMRES is:

‖rk‖2 = ‖b− Auk‖2 = min
z∈Kk(A;r0)

‖r0 − Az‖2. (10)

After n iterations we know that the Krylov subspace is equal to Rn and thus
the exact solution is an element of Kn(A; r0). Due to the minimization property
this implies that un = u.

(d) In the algorithm the following vectors are stored: b, u, r, sk, and vk. This implies
that (2i+ 3)n memory positions are needed. Per iteration one needs to do one
matrix vector multiplication, i + 1 inner products, 2i vector updates, and 2
scalings. In total one matrix vector multiplication and (6i + 4)n flops for the
remaining parts.

5. (a) In order to solve the linear system Au = b with LU-decomposition without
pivotting, we do the following steps:

• Find a lower triangular matrix L and an upper triangular matrix U , such
that LU = A and the diagonal elements of L are equal to 1.

• Solve y from Ly = b.

• Solve u from Uu = y.

Since L and U are triangular matrices, this solution process is easy to implement.
For the derivation of the costs see the lecture notes. The answer for a full matrix
is for the decomposition the cost is 2

3
n3 and for both solution steps together 2n2.

(b) If we do the multiplication:

(I − α(k)eTk )(I + α(k)eTk )

we obtain the following:

I − α(k)eTk + α(k)eTk + α(k)eTkα
(k)eTk =

I + α(k)eTkα
(k)eTk
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Due to the zero structure of ek and α(k) the product eTkα
(k) is equal to zero, so

the last term is equal to zero, so

(I − α(k)eTk )(I + α(k)eTk ) = I

which proves the claim that M−1
k = I + α(k)eTk .

(c) For the perturbation analysis see Section 4.3.1 of the lecture notes.

(d) From the construction of L and U it follows that there are only zeroes outside
the band with bandwidth m. Within the band, elements which are zero in A
become in general non-zero in L and U due to fill in.
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