DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

TEST SCIENTIFIC COMPUTING (wi4201) Friday January 29 2016, 13:30-16:30

- 1. Below 5 statements are given. If the statement is true give a short proof. If the statement is wrong give a counter example or an explanation.
 - (a) $A \in \mathbb{R}^{n \times n}, A = A^T \Rightarrow ||A||_1 = ||A||_{\infty}.$ (2 pt.)
 - (b) $A \in \mathbb{R}^{n \times n}$, A is SPD \Rightarrow all elements of A are positive. (2 pt.)
 - (c) $A \in \mathbb{R}^{n \times n}$, A is an M-matrix \Rightarrow diag(A) is an M-matrix. (2 pt.)

(d)
$$A = \begin{pmatrix} -4 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow ||A||_2 = 3.$$
 (2 pt.)

- (e) There exists a square real-valued matrix for which the condition number measured in 2-norm is smaller than 1. (2 pt.)
- 2. For a given function f we consider the following boundary value problem:

$$-\frac{d^2 u(x)}{dx^2} + u(x) = f(x) \text{ for } 0 < x < 1,$$
(1)

with boundary conditions

$$u(x=0) = 0$$
 and $u(x=1) = 0$. (2)

A finite difference method is used on a uniform mesh with N intervals and mesh width h = 1/N.

- (a) Give the finite difference stencil for internal grid points. (1 pt.)
- (b) Give the matrix A^h for N = 3 where the boundary conditions are eliminated. In the next questions one can use the fact that for general values of N the eigenvalues are given by: $\lambda_k^h(A^h) = 1 + \frac{2}{h^2} 2\sin^2(\frac{\pi h k}{2})$.
- (c) Prove that A^h is positive definite for every value of the mesh width h using either Gershgorin theorem or the eigenvalues of A^h . (1 pt.)
- (d) Show that for every value of the mesh width h that the inverse of A is elementwise positive. (2 pt.)
- (e) Compute the condition number of the matrix A^h in the 2-norm as a function of the mesh width h. (1 pt.)

- (f) Give the error propagation matrix of the method of Jacobi B_{JAC}^h and weighted Jacobi $B_{JAC(w)}^h$ as a function of the mesh width h. (2 pt.)
- (g) Compute the spectral radius of the Jacobi iteration matrix B_{JAC}^h as a function of the mesh width h. (2 pt.)
- 3. For a given function f we consider the following boundary value problem:

$$-\frac{d^2 u(x)}{dx^2} = f(x) \text{ for } 0 < x < 1,$$
(3)

with boundary conditions

$$u(x = 0) = 0$$
 and $u(x = 1) = 0$. (4)

A finite difference method is used on a uniform mesh with N intervals and mesh width h = 1/N. Let $A^h \mathbf{u}^h = \mathbf{f}^h$ denote the resulting linear system.

- (a) Derive a basic iterative method for the iterand \mathbf{u}^k using the defect-correction principle. (2.5 pt.)
- (b) Consider an even number of intervals N and a red-black ordering of the grid nodes such that the boundary nodes correspond to the red nodes. Describe the 2×2 block structure of the matrix A^h induced by this ordering. (2.5 pt.)
- (c) Show that after one red-black Gauss-Seidel sweep the residual vector \mathbf{r}^k is zero in the components that corresponds to the black nodes. (2.5 pt.)
- (d) Consider both a fine and coarse mesh in which the coarse mesh coincides with the red nodes of the fine mesh. Describe a two-grid iterative method that combines the red-black Gauss-Seidel sweep on the fine mesh and the defect correction scheme using a coarse mesh in a V(1, 0)-cycle. (2.5 pt.)
- 4. In this exercise we have to solve a linear system Au = b, where A is an $n \times n$ non-singular matrix.
 - (a) Take $u_1 = \alpha b$. Derive an expression for α such that $||b Au_1||_2$ is minimal. (2.5 pt.)
 - (b) Give the definition of a Krylov subspace of dimension k, matrix A and starting vector b. (2.5 pt.)
 - (c) Give the optimisation property of the GMRES method. Motivate why $u_n = u$ (without rounding errors). (2.5 pt.)
 - (d) Given the algorithm

GCR algorithm Choose u^0 , compute $r^0 = b - Au^0$ for i = 1, 2, ... do $\mathbf{s}^i = \mathbf{r}^{i-1}$, $\mathbf{v}^i = A\mathbf{s}^i$, for j = 1, ..., i - 1 do $\alpha = (\mathbf{v}^j, \mathbf{v}^i)$, $\mathbf{s}^i := \mathbf{s}^i - \alpha \mathbf{s}^j$, $\mathbf{v}^i := \mathbf{v}^i - \alpha \mathbf{v}^j$, end for $\mathbf{s}^i := \mathbf{s}^i / \|\mathbf{v}^i\|_2$, $\mathbf{v}^i := \mathbf{v}^i / \|\mathbf{v}^i\|_2$ $\beta = (\mathbf{v}^i, \mathbf{r}^{i-1})$; $\mathbf{u}^i := \mathbf{u}^{i-1} + \beta \mathbf{s}^i$; $\mathbf{r}^i := \mathbf{r}^{i-1} - \beta \mathbf{v}^i$; end for

Determine the minimal amount of memory and flops for iteration i (+ motivation). (2.5 pt.)

- 5. (a) Give the outline of the LU-decomposition method (without pivotting) to solve Au = b, where $A \in \mathbb{R}^{n \times n}$ is a non-singular matrix. Give the amount of flops for a full matrix A. (2.5pt.)
 - (b) Show that the inverse of the Gauss transformation $M_k = I \alpha^{(k)} \mathbf{e}_k^T$ is the rankone modification $M_k^{-1} = I + \alpha^{(k)} \mathbf{e}_k^T$. The k-th Gauss-vector $\alpha^{(k)} \in \mathbb{R}^n$ is defined as

$$\alpha^{(k)} = (\underbrace{0, \dots, 0}_{k}, \underbrace{\mathbf{b}_{k}/a_{k,k}^{(k-1)}}_{n-k}).$$
(5)

(2.5 pt.)

- (c) Given the linear system Au = b with $A \in \mathbb{R}^{n \times n}$ and the perturbed system $A(u + \Delta u) = b + \Delta b$. Derive an upperbound for $\frac{\|\Delta u\|}{\|u\|}$ where $\|.\|$ is an arbitrary vector norm, which has the multiplicative property. (2.5pt.)
- (d) Suppose we have a penta-diagonal matrix $A \in \mathbb{R}^{n \times n}$. For a given m, where 1 < m < n, we know that the elements a(i m, i), a(i 1, i), a(i, i), a(i, i + 1), and a(i, i + m), are nonzero. Give the non-zero pattern of the L and U matrix after the LU-decomposition without pivotting. (2.5pt.)