DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST SCIENTIFIC COMPUTING (wi4201)
 Friday January 29 2016, 13:30-16:30

1. Below 5 statements are given. If the statement is true give a short proof. If the statement is wrong give a counter example or an explanation.
(a) $A \in \mathbb{R}^{n \times n}, A=A^{T} \Rightarrow\|A\|_{1}=\|A\|_{\infty}$.
(b) $A \in \mathbb{R}^{n \times n}, A$ is $\mathrm{SPD} \Rightarrow$ all elements of A are positive.
(c) $A \in \mathbb{R}^{n \times n}, A$ is an M-matrix $\Rightarrow \operatorname{diag}(A)$ is an M-matrix.
(d) $A=\left(\begin{array}{cc}-4 & 0 \\ 0 & 1\end{array}\right) \Rightarrow\|A\|_{2}=3$.
(e) There exists a square real-valued matrix for which the condition number measured in 2 -norm is smaller than 1 .
2. For a given function f we consider the following boundary value problem:

$$
\begin{equation*}
-\frac{d^{2} u(x)}{d x^{2}}+u(x)=f(x) \text { for } 0<x<1 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u(x=0)=0 \text { and } u(x=1)=0 \tag{2}
\end{equation*}
$$

A finite difference method is used on a uniform mesh with N intervals and mesh width $h=1 / N$.
(a) Give the finite difference stencil for internal grid points.
(b) Give the matrix A^{h} for $N=3$ where the boundary conditions are eliminated. In the next questions one can use the fact that for general values of N the eigenvalues are given by: $\lambda_{k}^{h}\left(A^{h}\right)=1+\frac{2}{h^{2}} 2 \sin ^{2}\left(\frac{\pi h k}{2}\right)$.
(c) Prove that A^{h} is positive definite for every value of the mesh width h using either Gershgorin theorem or the eigenvalues of A^{h}.
(d) Show that for every value of the mesh width h that the inverse of A is elementwise positive. pt.)
(e) Compute the condition number of the matrix A^{h} in the 2-norm as a function of the mesh width h.
(f) Give the error propagation matrix of the method of Jacobi $B_{J A C}^{h}$ and weighted Jacobi $B_{J A C(w)}^{h}$ as a function of the mesh width h.
(g) Compute the spectral radius of the Jacobi iteration matrix $B_{J A C}^{h}$ as a function of the mesh width h.
3. For a given function f we consider the following boundary value problem:

$$
\begin{equation*}
-\frac{d^{2} u(x)}{d x^{2}}=f(x) \text { for } 0<x<1 \tag{3}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u(x=0)=0 \text { and } u(x=1)=0 \tag{4}
\end{equation*}
$$

A finite difference method is used on a uniform mesh with N intervals and mesh width $h=1 / N$. Let $A^{h} \mathbf{u}^{h}=\mathbf{f}^{h}$ denote the resulting linear system.
(a) Derive a basic iterative method for the iterand \mathbf{u}^{k} using the defect-correction principle.
(b) Consider an even number of intervals N and a red-black ordering of the grid nodes such that the boundary nodes correspond to the red nodes. Describe the 2×2 block structure of the matrix A^{h} induced by this ordering.
(c) Show that after one red-black Gauss-Seidel sweep the residual vector \mathbf{r}^{k} is zero in the components that corresponds to the black nodes.
(d) Consider both a fine and coarse mesh in which the coarse mesh coincides with the red nodes of the fine mesh. Describe a two-grid iterative method that combines the red-black Gauss-Seidel sweep on the fine mesh and the defect correction scheme using a coarse mesh in a $V(1,0)$-cycle.
4. In this exercise we have to solve a linear system $A u=b$, where A is an $n \times n$ non-singular matrix.
(a) Take $u_{1}=\alpha b$. Derive an expression for α such that $\left\|b-A u_{1}\right\|_{2}$ is minimal. (2.5 pt.)
(b) Give the definition of a Krylov subspace of dimension k, matrix A and starting vector b.
(c) Give the optimisation property of the GMRES method. Motivate why $u_{n}=u$ (without rounding errors).
(2.5 pt.)
(d) Given the algorithm

GCR algorithm

Choose u^{0}, compute $r^{0}=b-A u^{0}$

$$
\begin{aligned}
& \text { for } i=1,2, \ldots \text { do } \\
& \begin{array}{c}
s^{i}=r^{i-1} \\
v^{i}
\end{array}=A s^{i}, \\
& \text { for } j=1, \ldots, i-1 \text { do } \\
& \quad \alpha=\left(v^{j}, v^{i}\right), \\
& s^{i}:=s^{i}-\alpha s^{j}, \quad v^{i}:=v^{i}-\alpha v^{j}, \\
& \text { end for } \\
& s^{i}:=s^{i} /\left\|v^{i}\right\|_{2}, \quad v^{i}:=v^{i} /\left\|v^{i}\right\|_{2} \\
& \beta=\left(v^{i}, r^{i-1}\right) ; \\
& u^{i}:=u^{i-1}+\beta s^{i} ; \\
& r^{i}:=r^{i-1}-\beta v^{i} ; \\
& \text { end for }
\end{aligned}
$$

Determine the minimal amount of memory and flops for iteration i (+ motivation).
5. (a) Give the outline of the LU-decomposition method (without pivotting) to solve $A u=b$, where $A \in \mathbb{R}^{n \times n}$ is a non-singular matrix. Give the amount of flops for a full matrix A.
(2.5pt.)
(b) Show that the inverse of the Gauss transformation $M_{k}=I-\alpha^{(k)} \mathbf{e}_{k}^{T}$ is the rankone modification $M_{k}^{-1}=I+\alpha^{(k)} \mathbf{e}_{k}^{T}$. The k-th Gauss-vector $\alpha^{(k)} \in \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
\alpha^{(k)}=(\underbrace{0, \ldots, 0}_{k}, \underbrace{\mathbf{b}_{k} / a_{k, k}^{(k-1)}}_{n-k}) . \tag{5}
\end{equation*}
$$

(c) Given the linear system $A u=b$ with $A \in \mathbb{R}^{n \times n}$ and the perturbed system $A(u+\Delta u)=b+\Delta b$. Derive an upperbound for $\frac{\|\Delta u\|}{\|u\|}$ where $\|\cdot\|$ is an arbitrary vector norm, which has the multiplicative property.
(d) Suppose we have a penta-diagonal matrix $A \in \mathbb{R}^{n \times n}$. For a given m, where $1<m<n$, we know that the elements $a(i-m, i), a(i-1, i), a(i, i), a(i, i+1)$, and $a(i, i+m)$, are nonzero. Give the non-zero pattern of the L and U matrix after the LU-decomposition without pivotting.

