
WI4201 Written Exam
February 3rd, 2017

This examination consists of the following 5 questions. Read the questions carefully before
answering. With each question ten credit points can be gained. This exam is an closed book exam.
You are allowed a sufficiently simple calculator. You are not allowed to use any book or notes.

Question 1 (10 pnts. - 2 pnts. per subquestion)
Answer the following questions

1. assume A to be the 2-by-2 matrix

A =

(
1 2
3 4

)
.

Give the two Gershgorin disks that contain the eigenvalues of the matrix A;

D1 has center 1 and radius 2. D2 has center 4 and radius 3.

2. give an example of a 2-by-2 non-triangular matrix A that is an M-matrix;

one can take for instance four real positive numbers a, b, c, d ∈ R+ such that a d − b c 6= 0,
form

B =

(
a b
c d

)
,

and set

A = B−1 =
1

a d− b c

(
d −b
−c a

)
.

Then A−1 = B ≥ 0 elementwise, and is therefore an M-matrix.

3. assume given an n-by-n real-valued matrix A ∈ Rn×n and assume u to be an eigenvector of
A with eigenvalue λ. Assume k to be a positive integer. Then the Krylov subspace Kk(A,u)
is a subspace in Rn. Give the number of distinct basis requires to span this space, i.e., give
the dimension of this subspace;

The Krylov subspace Kk(A,u) is the subspace defined as

Kk(A,u) = span{u, Au, A2u, . . . , Ak−1u} .

Given that Au = λu, this definition reduces to

Kk(A,u) = span{u, λu, λ2u, . . . , λk−1u} = span{u} .

This Krylov subspace Kk(A,u) is thus one-dimensional.

4. give a distinct advantage of the CGS method over the BiCG method;

In solving the linear system Ax = b, the BiCG method requires matrix-vectors multiplica-
tions with both A and AT . The CGS method requires matrix-vector multiplications with A
only. This can be a big advantage in real live situations in which an efficient matrix-vector
multiplication with both A and AT is hard to realize.

5. show that the smallest eigenvalue of A and the largest eigenvalues of A−1 are equal. This

question intended to ask the following: show that if A is SPD and if λmin(A) is the smallest
eigenvalue of A, then 1/λmin(A) is the largest eigenvalue of A−1;

if A is SPD and has eigenvalues {λ1 = λmin, λ2, . . . , λn−1, λn = λmax}, then A−1 has
eigenvalues {1/λn, 1/λn−1, . . . , 1/λ2, 1/λ1}. Indeed, if Aui = λiui, then A−1ui = (1/λi)ui.
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Question 2 (10 pnts. - 2 pnt. per subquestion)

In this assignment we consider the finite difference discretization of a diffusion equation with a
spatially varying diffusion coefficient on a one-dimensional domain. More specifically, given the
domain x ∈ Ω = (0, 1), given the source function f(x) and given the strictly positive diffusion
coefficient c(x) > 0 ∀x, we consider finding the unknown function u(x) such that u(x) is a solution
of the differential equation

− d

dx

[
c(x)

du

dx

]
= f(x) for 0 < x < 1 with c(x) > 0 (1)

supplied with homogeneous Dirichlet boundary conditions on both end points, i.e., we impose

u(0) = 0 and u(1) = 1 . (2)

As an aid in answering the questions that follow, we rewrite (1) in the following equivalent form

−dΓ(x)

dx
= f(x) for 0 < x < 1 where Γ(x) = c(x)

du

dx
. (3)

For the finite difference discretization we consider on Ω a uniform mesh with N elements and a
meshwidth h = 1/N . We will denote the mesh nodes as xi = (i− 1)h for 1 ≤ i ≤ N + 1. In this
way the nodes x1 = 0 and xN+1 = 1 coincide with the left and right end point of Ω, respectively.
We also consider the midpoints xi+1/2 = [xi + xi+1]/2 for 1 ≤ i ≤ N . The finite difference
discretization can be performed in two steps.

1. In the first step the derivative dΓ/dx in the node x = xi can be discretized using values of
Γ(x) in the nodes xi−1/2 and xi+1/2;

2. In the second step the derivative du/dx in the node x = xi−1/2 (xi+1/2) can be discretized
using values of u(x) in the nodes xi−1 and xi (xi and xi+1).

Let Ahuh = fh denote the resulting linear system. Answer the following questions

1. give the finite difference stencil of the matrix Ah corresponding to a grid point that is neither
a boundary point nor a point connected to the left or right boundary point. The element of
this stencil are functions of the meshwidth h and the function c(x);

given that

−dΓ(x)

dx
|x=xi ≈ −

Γ(xi+1/2)− Γ(xi−1/2)

h
(central approx. of Γ(x))

≈ −
c(xi+1/2)u′(xi+1/2)− c(xi−1/2)u′(xi+1/2)

h
(definition of Γ(x))

= −
c(xi+1/2)u(xi+1)−u(xi)

h − c(xi−1/2) u(xi)−u(xi−1)
h

h
(central approx. of u’(x)

=
−c(xi−1/2)u(xi−1) + [c(xi−1/2) + c(xi+1/2)]u(xi)− c(xi+1/2)u(xi+1)

h2
(rearranging)

the stencil is given by

[A] =
1

h2
[
−c(xi−1/2) [c(xi−1/2) + c(xi+1/2)] −c(xi+1/2)

]
.

This stencil is a short-hand notation for the i-th row of the matrix. Observe that this stencil
reduces to the more commonly used stencil [A] = 1

h2

[
−1 2 −1

]
in case that c(x) = 1

∀x ∈ Ω = (0, 1).
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2. assume that the boundary conditions are eliminated from the linear system and give the
matrix Ah for N = 3 (and thus h = 1/3);

with N = 3, the mesh contains 4 grid points, of which 2 are boundary (left and right) points
and 2 are interior points. After elimination of the boundary conditions, the matrix Ah is
thus a 2-by-2 matrix with entries given by

Ah =
1

h2

(
c(x1/2) + c(x3/2) −c(x3/2)
−c(x3/2) c(x3/2) + c(x5/2)

)
.

This matrix is symmetric. Given that c(x) > 0 ∀x ∈ Ω, the diagonal elements are positive.
The matrix A is diagonally dominant. By the Gershgorin theorem, the diagonal dominance
combined with the positive diagonal entries imply that A is positive definite.

3. use the fact that c(x) > 0 ∀x to show that the matrix Ah is symmetric and positive definite;

The symmetry of Ah follows from its stencil. Indeed, the stencil implies that A is tridiagonal.
To show that A is symmetric, it suffices to show that A(i, i+ 1) = A(i+ 1, i) for all 1 ≤ i ≤
n− 1. The value of A(i, i+ 1) is the weight of the connection that node i has with its right
neighbour i+1 and is by the stencil equal to −c(xi+1/2). The value of A(i+1, i) is the weight
of the connection that node i + 1 has with its left neighbour i. This weight is given by the
stencil for the (i+ 1)st row and is given by −c(xi+1/2). Thus clearly A(i, i+ 1) = A(i+ 1, i).

The positive definiteness of Ah follows from the fact that Ah has positive diagonal entries
and that Ah is diagonally dominant. The diagonal dominance can be seen from the stencil.
Gershgorin theorem then constraints the eigenvalues of Ah to lie in the right half of the
complex plane. The symmetry of Ah constraints the eigenvalues to be real-valued. The
positive definiteness of Ah then follows.

4. show that the method of Jacobi converges for this linear system;

One of the following three proofs can be given.
A first proof consists in observing that Ah is an irreducible K-matrix and therefore an M-
matrix. Given that c(x) > 0 ∀x ∈ Ω, the method of Jacobi defines a splitting Ah = M −N
such that M−1 ≥ 0 (element wise) and N ≥ 0 (element wise). This splitting is therefore
regular. A regular splitting of an M-matrix necessarily converges. The method of Jacobi
applied to the Ah thus converges.
A second proof consists in observing that Ah is diagonally dominant. Ah is actually strictly
diagonal dominant due to the handling of the boundary conditions in its first and last row.
The Jacobi iteration matrix BJAC = I −M−1Ah is therefore bounded in norm (1-norm or
∞-norm) by one. The strict diagonal dominance leads to a bound strictly lower than one.
The method of Jacobi applied to the Ah thus converges.
A third proof consists in observing that the stencil of the Jacobi iteration matrix BJAC =
I −M−1Ah is given by

[BJAC ] =
[

c(xi−1/2)

c(xi−1/2)+c(xi+1/2)
0

c(xi+1/2)

c(xi−1/2)+c(xi+1/2)

]
.

This stencil needs to be adapted in the first and last row to handle the boundary conditions.
The Gershgorin theorem then bounds the eigenvalues of the iteration BJAC by one. This
argument can be refined by involving the treatment of the boundary conditions to obtain a
bound strictly lower than one. The method of Jacobi applied to the Ah thus converges.
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5. suppose that the discretization scheme is given to be of order p. Describe a numerical test
to verify that the implementation does indeed yields a discretization error of this order;

The implementation can be ran on a sequences of finer meshes and the computed solution
obtained can be compared with an a-priori constructed exact analytical solution. The scaling
of this error with the mesh width can then be studied. For a second order discretization
scheme for instance, the error should decrease by a factor of four each time the mesh width
is decreased by a factor of two.

Question 3 (10 pnts. - 2 pnt. per subquestion)
Answer the following questions

1. given the linear system Au = f with an n-by-n real-valued coefficient matrix A. Assume
a splitting of this coefficient matrix of the form A = M − N where M is non-singular and
assume that a basic iterative solution method for the linear system is derived from this
splitting. Derive a recursion formula for the iterands uk. Derive a recursion formula for the
residual vector rk.
The linear system Au = f can then be written as Mu = Nu + f . By multiplying to the left
and right by M−1 we can define an iterative scheme

uk+1 = M−1Nuk +M−1f

= M−1(M −A)uk +M−1f

= uk +M−1(f −Auk)

= uk +M−1rk .

The recursion for the residual vector is given by

rk+1 = f −Auk+1

= f −Auk −AM−1rk

= rk −AM−1 rk

= (I −AM−1)rk .

2. given the linear system Au = f with an n-by-n real-valued coefficient matrix A. Assume the
recursion formula for the error vector ek+1 =

(
I −M−1A

)
ek to be valid. Give a sufficient

condition on the matrix n-by-n B = I −M−1A for the iterative scheme to converge.
A sufficient condition for convergence is that

ρ(B) = ρ(I −M−1A) < 1 .

3. give the residual equations that give the relation between the error ek and the residual vector
rk. Use this relation to derive the defect-correction scheme that use the approximation Â to
A;
The error ek and the residual vector rk are related by A ek = rk. We can use this relation
to define an iterative scheme by the following sequence of three steps

• compute the residual or defect: rk = f −Auk;

• compute the approximate correction by solving the approximate residual equations: Â êk =
rk;

• add the correction to the previous iterand uk+1 = uk + êk.
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4. assume that

[A] =
1

h2
[
−1 2− 1

]
to be the stencil of the 1D Laplacian on a uniform mesh. Give stencil for the Jacobi and
weighted Jacobi iteration matrix BJAC ;
The stencil for the Jacobi iteration matrix is given by

[BJAC ] =
[
1/2 0 1/2

]
.

The stencil for the ω-weighted Jacobi iteration matrix is given by

[BJAC(ω)] =
[
ω/2 1− ω ω/2

]
.

5. assume A to be SPD and let λ1 and λn denote the smallest and largest eigenvalue of A.
Assume M = τ−1I with τ a real-valued parameter to be the splitting correspond to the
Richardson method. Derive optimal value for the parameter τ .
The value of τ should be chosen such that the spectral radius ρ(I − τA) is minimized. Then

ρ(I − τA) = min{|1− τλmin|, |1− τλmax|}

. The optimal value of τ is τ = (λmin + λmax)/2.

Question 4 (10 pnts. - 2 pnt. per subquestion)

In this exercise we consider a linear system Au = b, where matrix A is real-valued and SPD. As
an iterative method we use the (Preconditioned) Conjugate Gradient method.

1. What properties should be satisfied in order that a matrix A is SPD? Give a definition of
the matrix A-norm;

A is symmetric iff A = AT . A is positive definite iff ∀u 6= 0 holds that uTAu > 0. A is
SPD in case that A is both symmetric and positive definite.

2. Assume that our first iterate is given by u1 = αb. Determine an expression for the param-
eter α such that the error u− u1 has a minimal length in the 2-norm;

‖u− u1‖22 = (u− αb)T (u− αb) = uTu− 2αbTu + α2bTb . (4)

This norm is minimized if α = bTu
bTb

.

3. We consider two 10-by-10 diagonal matrices A and C. For the first matrix we have ai,i =
i, i = 1 . . . 10 and for the second ci,i = 1, i = 1 . . . 9 and c10,10 = 1000. For the vector b
we have bi = 1, i = 1 . . . 10 and we take the zero vector as starting solution. For which of
both systems is CG faster to converge (motivate your answer)? What is for both systems
the maximum number of iterations before a solution with a sufficient small residual norm,
say ‖rk‖/b‖ ≤ 10−15, is obtained?

For the matrix A 10 distinct eigenvalues and therefore 10 iterations. For the matrix C 2
distinct eigenvalues and therefore 2 iterations. See Figure 1.

4. We now combine the CG method with a preconditioner M . Give the three properties of M
in order to have a good preconditioner;

M should be SPD. A linear system with M as coefficient matrix should be easy to solve. M
should ressemble A−1 in such a way that κ2(M−1A) < κ2(A).
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Figure 1: CG convergence history for matrix A and matrix C.

5. Explain how a preconditioner can be combined with CG? Give three possible classes of
preconditioners. Compare the properties of these preconditioners in the three classes.

In case that no preconditioner is applied, the CG method is applied to the linear system Au =
b. In case that a preconditioner is applied, the CG method is applied to the linear system
M−1Au = M−1b. Three possible classes of preconditioners are diagonal scaling, basic
iterative methods and incomplete factorisation. Diagonal scaling leads to faster convergence
if max(Aii) � min(Aii). The combination of a BIM and CG is always faster to converge
than the BIM used as a stand alone solver. The incomplete factorization is the most optimal
of the three, but is hard to paralize.
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Question 5 (10 pnts. - 2.5 pnt. per subquestion)

In this exercise we consider the Power method to approximate the eigenvalues of an n-by-n real-
valued matrix A ∈ Rn×n.

1. The basic Power method is given by: qk = Aqk−1. The eigenvalues are ordered such that
|λ1| > |λ2| ≥ ... ≥ |λn|. We assume that q0 can be written as a linear combination of
the eigenvectors, with a non-zero component in the eigenvector corresponding to λ1. Define

λ(k) =
qT
k Aqk

‖qk‖22
and show that

|λ1 − λ(k)| = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)

;

See lecture notes Eqns (8.1) and (8.2).

2. Next we consider the advanced Power method:
q0 ∈ Rn is given
for k = 1, 2, ...

zk = Aqk−1
qk = zk/‖zk‖2
λ(k) = qTk−1zk

endfor
Show that if qk is close to the eigenvector corresponding to λ1 then λ(k) is a good approxi-
mation of λ1;
See lecture notes Eqns (8.1) and (8.2).

3. Note that from part (1) it follows that the Power method is a linearly converging method.
Give a good stopping criterion for the Power method;
the Power method is a linearly converging method. This implies that the following stopping
criterion can be used:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)|

,

and stop if r̃
1−r̃

|λ(k+1)−λ(k)|
|λ(k+1)| ≤ ε . This stopping criterion leads to |λ1 − λ(k+1)| ≤ ε.

4. Given an n-by-n real-valued matrix A ∈ Rn×n, where

λ1 = 1000 , λn−1 = 1.1 and λn = 1 .

Give a fast converging variant of the Power Method to approximate λn.
Various possibilities to approximate λn using the Power Method exist. The Shifted Power
Method applies the Power Method to the matrix A − cI such that |λn − c| > |λ1 − c|. This
inequality holds for instance in case that c = 501. In this the rate of convergence is given by

|λ2(A− cI)|
|λ1(A− cI)|

=
|λ2(A)− c|
|λ1(A)− c|

=
501− 1.1

501− 1
≈ 0.9998 .

The inverse Power Method consists of applying the Power Method to A−1 without computing
this inverse explicitly. The largest and second largest eigenvalue of A−1 are equal to 1/λ1
and 1/λ2, respectively. In this case the rate of convergence is given by

|λ2(A−1)|
|λ1(A−1)|

=
1/λ2(A)

1/λ1(A)
=
λ1(A)

λ2(A)
=

1

1.1
≈ 0.9091 .
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