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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) True. Since A is SPD it is known that all the eigenvalues of A are real valued
and positive. This implies that the inverse of A exists. Suppose that λ and v
are an eigenpair, so Av = λv. It easily follows that A−1v = 1

λ
v. Since A−1 is

also SPD we know that ‖A−1‖2 is equal to the largest eigenvalue of A−1, which
is equal to 1

λmin
.

(b) True. Note that all matrices are nonsingular. The condition number is defined
as: cond2(A) = ‖A‖2‖A−1‖2. Since the 2-norm is a multiplicative norm we
have:

‖AB‖2 ≤ ‖A‖2‖B‖2
and

‖(AB)−1‖2 ≤ ‖A−1‖2‖B−1‖2
Combination of these inequalities, together with the definition of cond2(A) shows
that the given inequality is true.

(c) False. A counterexample is choose for R1 a nonzero vector of length n and for
R2 a nonzero vector of length n which is perpendicular to R1. Then the product
RT

1R2 is zero, so the product is not positive definite.

(d) True. Note that ‖u‖∞ = max1≤i≤n |ui|. Since ‖u‖1 = |u1|+ ....+ |un|. It follows
easily that ‖u‖1 ≤ n‖u‖∞. Using the vector, which components are all 1 it
appears that ‖u‖1 = n‖u‖∞, so the bound is sharp.

(e) True. It follows easily from Gershgorin’s law that the minimal real part of the
eigenvalues is larger than aii − aii = 0.

2. (a) The finite difference stencil is given by

1

h2
[−1 2 + 4h2 − 1]

In order to show that the method is second order accurate, a Taylor expansion
in the points xi−1 and xi+1 should be given around the point xi where the
remainder term is O(h4). It then follows that

−u′′i =
−ui−1 + 2ui − ui+1

h2
+O(h2)
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(b) Use the goniometric formula’s to show that

λk = 4 +
4

h2
sin2(

πhk

2
)

(c) If the answer of the previous part is correct, it is easy to see that all the eigen-
values are larger than or equal to 4. Using the stencil notation and the theorem
of Gershgorin it also follows that all the eigenvalues are larger than or equal to
4 independent of h.

(d) The condition number is equal to the ratio of the largest eigenvalue divided by
the smallest eigenvalue. Again using Gershgorin or the answer of part (c) we can
bound the largest eigenvalue by 4 + 4

h2
. This implies that cond2(A) is bounded

by 1 + 1
h2

.

(e) As direct method the Cholesky decomposition for sparse matrices can be used.
This only costs O(n) flops if n is the number of gridpoints. Every iterative
method costs at least the same amount of work per iteration. If bad convergence
occurs (due to a large condition number) the number of iterations can be very
large so an iterative method will cost much more work. So we prefer a direct
method.

3. (a) The LU decomposition determines an upper triangular matrix U and a lower
triangular matrix L, with lii = 1, where A = LU . The procedure to obtain
this decomposition is using Gauss transformations, such that column k is trans-
formed in a such a way that all element k+ 1, ..., n of this column become equal
to zero. This costs 2

3
n3 flops. In order to find solution u from Au = f , we

substitute the decomposition into Au = f , so LUu = f . If we define y = Uu we
can first solve Ly = f and then Uu = y. Since these systems are both triangular
this is easy to solve. The work per solve step is n2 flops.

(b) If we assume that A is not affected by the perturbation, the perturbed solution
u+ ∆u solves the system

A(u+ ∆u) = f + ∆f . (1)

Due to linearity, the perturbation ∆u then solves the system

A∆u = ∆f , (2)

from which ∆u = A−1∆f and therefore ‖∆u‖ ≤ ‖A−1‖ ‖∆f‖. From the equa-
tion it follows that ‖f‖ ≤ ‖A‖ ‖u‖ and therefore

1

‖u‖
≤ ‖A‖ 1

‖f‖
(3)

Combining these inequalities we arrive at the following bound on the norm of
the perturbed solution

‖∆u‖
‖u‖

≤ ‖A−1‖ ‖A‖ ‖∆f‖
‖f‖

= κ(A)
‖∆f‖
‖f‖

(4)
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(c) We have that

(Mn−1 · . . . ·M1)
−1 = M−1

1 . . .M−1
n−1 =

n−1∏
k=1

(
I + α(k)eTk

)
= I +

n−1∑
k=1

α(k)eTk . (5)

The result follows from the fact that for 1 ≤ k ≤ n− 1 we have that

(α(k)eTk ) (α(k+1)eTk+1) = α(k)(eTk α
(k+1))eTk+1 = α(k)(0)eTk+1 = 0 .

(d) If a
(k−1)
kk is equal to zero we consider all elements a

(k−1)
jk for all j = k, ..., n.

Suppose that ĵ is such that a
(k−1)
ĵk

is in absolute value the largest element in this

column. Then a
(k−1)
ĵk

should be nonzero, otherwise the determinant of A(k−1) is

zero which implies that the determinant of A is zero. This contradicts the fact
that A is nonsingular. Now change the ĵ and the kth row, such that the pivot
is nonzero, and continue the process.

(e) After 1 step of the Gaussian elimination process we obtain the following matrix:
4 −1 0 0 −1
0 33

4
−1 0 −1

4

0 −1 4 −1 0
0 0 −1 4 −1
0 −1

4
0 −1 33

4


Note that the fill in less than 1

4
in absolute value.

4. (a) Given that a non-singular matrix M exists we can split A as follows: A = M−N .
The residual is defined by rk = f − Auk. For the iteration formula we have:

Muk+1 = Nuk + f

This can be rewritten as:

Muk+1 = Muk −Muk +Nuk + f = Muk − Auk + f.

Multiplication with M−1 and using the definition of the residual gives: uk+1 =
uk +M−1rk.

(b) The error is defined as ek = u− uk. Since Au = (M −N)u = f we have that:

Mu = Nu+ f

For the iteration formula we have:

Muk+1 = Nuk + f
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combination gives:
M(uk+1 − u) = N(uk − u)

Since N = M − A, this can also be written as: Mek+1 = (M − A)ek. Multipli-
cation with M−1 shows that

ek+1 = (I −M−1A)ek.

This holds for all splitting, so also for the Jacobi iteration matrix. In this case
M = D = diag(A), so BJac = I −D−1A.

(c) For the 2D Poisson equation the stencil is

A =
1

h2

 0 −1 0
−1 4 −1
0 −1 0

 and D =
1

h2

 0 0 0
0 4 0
0 0 0


So the Jacobi iteration matrix: BJac = I −D−1A has the following stencil 0 0 0

0 1 0
0 0 0

−
 0 −1

4
0

−1
4

1 −1
4

0 −1
4

0

 =

 0 1
4

0
1
4

0 1
4

0 1
4

0


(d) In the damped Jacobi method a weighted average of the current iterant uk and

the full Jacobi step ūk+1,JAC is computed. We denote the damping parameter
by ω, and define the iterant resulting from the damped Jacobi method as

uk+1 = (1− ω)uk + ω ūk+1,JAC . (6)

Substituting the expression as give in part (a) with M = D for ūk+1, we obtain
that

uk+1 = (1− ω)uk + ω uk + ωD−1rk (7)

= uk + ωD−1rk

showing that the ω-damped Jacobi method is defined by

MJAC(ω) =
1

ω
D and BJAC(ω) = I − ωD−1A . (8)

(e) When one starts with the zero vector the first iteration follows from Mu(1) = f .
So we have to solve:  2 0 0

−1 2 0
0 −1 2


u

(1)
1

u
(1)
2

u
(1)
3

 =

4
0
0


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After solving the lower triangular system the first iteration is equal to:u
(1)
1

u
(1)
2

u
(1)
3

 =

2
1
1
2


5. (a) The iterate u1 is written as u1 = α0r

0 where α0 is a constant which has to be
chosen such that ‖u−u1‖2 is minimal. This leads to ‖u−u1‖22 = (u−α0r

0)T (u−
α0r

0) = uTu− 2α0(r
0)Tu+ α2

0(r
0)T r0 . The norm is minimized if α0 = (r0)Tu

(r0)T r0
.

(b) We check the three properties:

< u, v >A= uTAv = (uTAv)T = vTATu = vTAu =< v, u >A

It easily follows that

< cu, v >A= cuTAv = c < u, v >A .

< u+ v, w >A= (u+ v)TAw = uTAw + vTAw =< u,w >A + < v,w >A

The final property: < u, u >A≥ 0 with equality only for
u = 0 follows from the fact that A is SPD.

(c) The rate of convergence of CG is given by

√
κ2(A)−1√
κ2(A)+1

. The largest eigenvalue is

equal to 4 and the smallest eigenvalue is given by 4 − 4cos π
31

= 0.0205227 so
κ2(A) = 195 so the rate is equal to: 0.8666.

(d) This is due to the superlinear behaviour of CG. Initially the rate of convergence
is determined by the ratio of the largest and the smallest eigenvalue. After some
iterations the convergence is determined by the ratio of the largest and the one
but smallest eigenvalue. This leads to a faster and faster rate of convergence.
Graphically this means that in a double log scale the convergence is faster than
a straight line.

(e) i. CGNR: CG applied to ATAu = AT , short recurrences, optimal but not
based on the Krylov subspace.

ii. BiCG: short recurrences, not optimal and based on the Krylov subspace.

iii. GMRES, long recurrences, optimal and based on the Krylov subspace.
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