DELFT UNIVERSITY OF TECHNOLOGY FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

Examiner responsible: C. Vuik

Examination reviewer: M.B. van Gijzen

TEST SCIENTIFIC COMPUTING (wi4201) Friday February 1 2019, 13:30-16:30

- 1. Below 5 statements are given. If the statement is true give a short proof. If the statement is wrong give a counter example or an explanation.
 - (a) $A \in \mathbb{R}^{n \times n}$, and $A = A^T \Rightarrow ||A|| = \max_{1 \le i \le n} \lambda_i$ where λ_i is an eigenvalue of A. (2 pt.)
 - (b) $A \in \mathbb{R}^{n \times n}$ is SPD $\Rightarrow a_{ii} > 0.$ (2 pt.)
 - (c) $A \in \mathbb{R}^{n \times n}$ is SPD, and $\mathbf{v}_1, \mathbf{v}_2$ are eigenvectors of A. Take $\mathbf{r} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$. \Rightarrow the dimension of the Krylov subspace $K^{10}(A, \mathbf{r})$ is equal to 3.

(d)
$$\mathbf{u} \in \mathbb{R}^n \Rightarrow \|\mathbf{u}\|_2 \le \sqrt{n} \|\mathbf{u}\|_{\infty}.$$
 (2 pt.)

(e)
$$A \in \mathbb{R}^{n \times n}$$
, $\Rightarrow ||A||_{\infty} = ||A||_1$ (2 pt.)

2. We consider the equation

$$-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + u = f \text{ for } (x, y) \in \Omega = [0, 1] \times [0, 1].$$

and Dirichlet boundary conditions on the boundary u(x, y) = 0, for $(x, y) \in \delta\Omega$. For the discretization we use *m* intervals in both coordinate directions.

- (a) Give a discretization of the equation such that the truncation error is $O(h^2)$ (+ proof). (2 pt.)
- (b) Give the stencil of this discretization in an interior node and in the lower left corner. Note that the boundary conditions are eliminated. (2 pt.)
- (c) We use lexicographic ordering of the unknowns. Give the structure of the matrix A and its bandwidth. (2 pt.)
- (d) Show that the matrix A is SPD. (2 pt.)
- (e) Which Krylov subspace method do you recommend. Include a motivation for your answer. (2 pt.)

3. (a) Given the linear system $A \mathbf{u} = \mathbf{f}$ with an *n*-by-*n* real-valued coefficient matrix A. Assume a splitting of this coefficient matrix of the form A = M - N where M is non-singular and assume that a basic iterative solution method for the linear system is derived from this splitting. Derive a recursion formula for the iterates \mathbf{u}^k . Derive a recursion formula for the residual vector \mathbf{r}^k .

(2 pt.)

(2 pt.)

- (b) Give the relation between the error \mathbf{e}^k and the residual vector \mathbf{r}^k . Use this relation to derive the defect-correction scheme that use the approximation \widehat{A} to A;
- (c) Assume

$$[A] = \frac{1}{h^2} \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$$

to be the stencil of the 1D Laplacian on a uniform mesh. Give the stencil for the Richardson and Gauss-seidel iteration matrix B_{RIC} and B_{GS} ;

(2 pt.)

- (d) Assume A to be SPD and let λ_1 and λ_n denote the smallest and largest eigenvalue of A. Assume $M = \tau^{-1}I$ with τ a real-valued parameter to be the splitting correspond to the Richardson method. Derive optimal value for the parameter τ . (2 pt.)
- (e) Assume A to be SPD. Suppose that $\lambda_1 = 1$ and $\lambda_n = 10$. Take $\tau = \frac{1}{20}$. How many iterations k of the Richardson method are needed such that $\frac{\|\mathbf{r}_k\|_2}{\|\mathbf{r}_0\|_2} \leq 10^{-4}$? (2 pt.)
- 4. In this exercise we have to solve a linear system $A\mathbf{u} = \mathbf{f}$, where A is an $n \times n$ SPD matrix.
 - (a) Take $\mathbf{u}_1 = \alpha \mathbf{f}$. Derive an expression for α such that $\|\mathbf{f} A\mathbf{u}_1\|_A$ is minimal. (2 pt.)
 - (b) Give the optimisality property of the CG method. Motivate why there is a $k \leq n$ such that $\mathbf{u}_k = \mathbf{u}$ (without rounding errors). (2 pt.)
 - (c) We consider two different matrices. The extreme eigenvalues of A_1 are given by $\lambda_1 = 1$ and $\lambda_n = 10$. The extreme eigenvalues of A_2 are given by $\lambda_1 = 0.1$ and $\lambda_n = 20$. For which matrix can you expect the CG method to converge faster (+ motivation)? (2 pt.)
 - (d) Sketch the superlinear convergence of the CG method and give a heuristic explanation of superlinear convergence. (2 pt.)
 - (e) For the preconditioned CG method a preconditioner matrix M is needed. Give three properties that M should satisfy. (2 pt.)

- 5. (a) Give the outline of the LU-decomposition method (without pivotting) to solve $A\mathbf{u} = \mathbf{f}$, where $A \in \mathbb{R}^{n \times n}$ is a non-singular matrix. Give the amount of flops for a full matrix A. (2 pt.)
 - (b) Show that the inverse of the Gauss transformation $M_k = I \alpha^{(k)} \mathbf{e}_k^T$ is the rankone modification $M_k^{-1} = I + \alpha^{(k)} \mathbf{e}_k^T$. The k-th Gauss-vector $\alpha^{(k)} \in \mathbb{R}^n$ is defined as

$$\alpha^{(k)} = (\underbrace{0, \dots, 0}_{k}, \underbrace{\mathbf{b}_{k/a_{k,k}^{(k-1)}}}_{n-k})^{T}.$$
(1)

(2 pt.)

- (c) Given the linear system $A\mathbf{u} = \mathbf{f}$ with $A \in \mathbb{R}^{n \times n}$ and the perturbed system $A(\mathbf{u} + \Delta \mathbf{u}) = \mathbf{f} + \Delta \mathbf{f}$. Derive an upperbound for $\frac{\|\Delta \mathbf{u}\|}{\|\mathbf{u}\|}$ where $\|.\|$ is an arbitrary vector norm, which has the multiplicative property. (2 pt.)
- (d) Suppose we have a penta-diagonal matrix $A \in \mathbb{R}^{n \times n}$. For a given m, where 1 < m < n, we know that the elements a(i m, i), a(i 1, i), a(i, i), a(i, i + 1), and a(i, i + m), are nonzero. Give the non-zero pattern of the L and U matrix after the LU-decomposition without pivotting. (2 pt.)
- (e) Suppose that the matrix A is SPD. Give the definition of the Cholesky decomposition. What are the advantages of the Cholesky decomposition if compared with the LU-decomposition? (2 pt.)