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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) No.
If the matrix is nonsymmetric in general the maximal absolute row sum of A is
not equal to maximal absolute column sum of A. Counter example

A =

[
2 1
2 5

]
(b) Give the definition of the Gershgorin disk.

The Gershgorin disk for the first row has center 2 and radius 2.
The Gershgorin disk for the second row has center 3 and radius 4.
The Gershgorin disk for the third row has center 4 and radius 3.

(c) First give the definition of the Krylov subspace. Note that the space is spanned
by u, Au, A2u, ..., Ak−1u and since all these vectors are multiplies of u, the
dimension of the Krylov subspace is equal to 1.

(d) True. For the proof we use the definition of the spectral radius: ρ(A) is the
in absolute value largest eigenvalue of A. We know that |λ|‖u‖ = ‖Au‖ for
any eigenpair λ,u . From the definition of a multiplicative norm ‖.‖ it follows
that |λ|‖u‖ = ‖Au‖ ≤ ‖A‖‖u‖. Division by ‖u‖ shows that |λ| ≤ ‖A‖ for any
eigenvalue λ of A. So it also holds for the in absolute value largest eigenvalue
of A which proves the result.

(e) True. Every multiplication with A leads to an extra zero diagonal. After n− 1
multiplications the resulting product is equal to the zero matrix.

2. (a) The finite difference stencil is given by

1

h2
[−1 2 + λh2 − 1]

In order to show that the method is second order accurate, a Taylor expansion
in the points xi−1 and xi+1 should be given around the point xi where the
remainder term is O(h4). It then follows that

−u′′i =
−ui−1 + 2ui − ui+1

h2
+O(h2)
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(b) Use the goniometric formula’s to show that

λk = λ+
2

h2
[1− cos(πhk)] = λ+

4

h2
sin2(

πhk

2
)

(c) Since the boundary conditions are not eliminated, the standard matrix is non
symmetric. However after the connections to the boundary nodes are shifted
to the right-hand side the matrix is symmetric. Since λ > 0 it follows from
Gerschgorin’s theorem, or from the explicit expression from the eigenvalues that
all eigenvalues are positive. This is sufficient to conclude that the matrix is SPD.

(d) From
A(u + ∆u) = f + ∆f . (1)

we can conclude that
A∆u = ∆f , (2)

from which ∆u = A−1∆f and therefore ‖∆u‖ ≤ ‖A−1‖ ‖∆f‖. From Au = f it
follows that ‖f‖ ≤ ‖A‖ ‖u‖ and therefore

1

‖u‖
≤ ‖A‖ 1

‖f‖
(3)

Combining these inequalities we arrive at the following bound on the norm of
the perturbed solution

‖∆u‖
‖u‖

≤ ‖A−1‖ ‖A‖ ‖∆f‖
‖f‖

= κ(A)
‖∆f‖
‖f‖

≤ δ κ(A) , (4)

where κ(A) denotes the condition number of A measured in the norm ‖ · ‖.

For an SPD matrix the 2-norm condition number is equal to the ratio of the
largest eigenvalue divided by the smallest eigenvalue. Again using Gershgorin
or the answer of part (c) we can bound the largest eigenvalue by λ + 4

h2
. This

implies that cond2(A) is bounded by 1 + 4
λh2

.

(e) As direct method the Cholesky decomposition for sparse matrices can be used.
This only costs O(n) flops if n is the number of gridpoints. Every iterative
method costs at least the same amount of work per iteration. If bad convergence
occurs (due to a large condition number) the number of iterations can be very
large so an iterative method will cost much more work. So we prefer a direct
method.

3. (a) No answer, since this exercise can also be asked as homework exercise.

(b) We have that

(Mn−1 · . . . ·M1)
−1 = M−1

1 . . .M−1
n−1 =

n−1∏
k=1

(
I + α(k)eTk

)
= I +

n−1∑
k=1

α(k)eTk .
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The result follows from the fact that for 1 ≤ k ≤ n− 1 we have that(
α(k)eTk

) (
α(k+1)eTk+1

)
= α(k)

(
eTk α

(k+1)
)
eTk+1 = α(k)

(
0
)
eTk+1 = 0 .

(c) From the construction of L and U it follows that there are only zeroes outside
the band with bandwidth m. Within the band, elements which are zero in A
become in general non-zero in L and U due to fill in.

(d) The LU decomposition determines an upper triangular matrix U and a lower
triangular matrix L, with lii = 1, where A = LU . The procedure to obtain
this decomposition is using Gauss transformations, such that column k is trans-
formed in a such a way that all element k+ 1, ..., n of this column become equal
to zero. Assume that n >> m for each column one needs 2m2 flops, because
all elements outside the band are equal to zero. Since there are n columns the
total costs is n2m2 flops. In order to find solution u from Au = f , we substitute
the decomposition into Au = f , so LUu = f . If we define y = Uu we can first
solve Ly = f and then Uu = y. Since these systems are both triangular this is
easy to solve. The work per solve step is n2m flops.

4. (a) The iterate u1 is written as u1 = α0f where α0 is a constant which has to
be chosen such that ‖u − u1‖ATA is minimal. This leads to ‖u − u1‖2ATA =
‖f − Au1‖22 = (f − α0Af)

T (f − α0Af) = fT f − 2α0(Af)
T f + α2

0(Af)
TAf . The

norm is minimized if α0 = (Af)T f
(Af)TAf

.

(b) Due to the definition of CGNR we know that the method computes an ap-
proximation uk in the Krylov subspace Kk(ATA,AT r0) such that the norm
‖u− uk‖ATA is minimal. It appears that

‖u− uk‖ATA = ‖Au− Auk‖2 = ‖f − Auk‖2 = ‖rk‖2

Since in every iteration the dimension of the Krylov subspace will increase (ex-
cept if ’lucky’ breakdown occurs) one can conclude that the sequence ‖rk‖2 is
monotone decreasing.

(c) We know that CG converges in one iteration if the 2-norm condition number of
the iteration matrix is 1. For CGNR the iteration matrix is ATA. If we choose
the matrix such that ATA = I, we know that the 2-norm condition number of
ATA is equal to 1. (this is called an orthogonal matrix) A 3× 3 example is:

A =

0 1 1
0 0 0
1 0 0

 .

(d) The following vectors should be stored in memory: r,p,v, s,u, z, t, û. Further-
more the matrices A and M should be stored in memory.
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Per iteration two matrix vector products with A and two preconditioning vec-
tor products have to be computed. Next to that 5 inner products/norms, and
6 vector updates have to be computed. This is equal to 11× 2n flops.

(e) Per iteration method at least 3 properties should be mentioned and / or com-
pared. For the two methods the following properties are known:
CGNR: robust (only lucky breakdown), short recurrences, optimisation prop-
erty, not based on the Krylov subspace Kk(A, r0), in general slow convergence
since the condition number of ATA is equal to the square of the condition num-
ber A.
Bi-CGSTAB: not robust, short recurrences, no optimisation property, based on
the Krylov subspace Kk(A, r0), in general fast convergence

5. (a) It is easier to assume that qk−1 = v1 + w with ‖w‖2 = O

(∣∣∣λ2λ1 ∣∣∣k). From the

algorithm we know that λ(k) = q̄Tk−1zk, which is equal to λ(k) = q̄Tk−1Aq
T
k−1 =

(v1 + w)T (v1 + w) = λ1v
T
1 v1 + O

(∣∣∣λ2λ1 ∣∣∣k) In order to prove the result we

have to show that vT1 v1 is close to 1. This can be shown as follows: vT1 v1 =

(qk−1 −w)T (qk−1 −w) = 1 +O

(∣∣∣λ2λ1 ∣∣∣k) This proves the result.

(b) For the shifted power method we apply the power method to the matrix A− cI.
To obtain the original eigenvalue the result of this power method approximation
should be shifted back by adding the value c. We know that for the shifted

power method the convergence is determined by the ratio
∣∣∣λ2−cλ1−c

∣∣∣ if we assume

that |λ1 − c| > |λ2 − c| ≥ |λn − c|. We obtain fast convergence if the ratio∣∣∣λ2−cλ1−c

∣∣∣ is as small as possible. This implies that |λ2 − c| = |λn − c|. This leads

to c = λ2+λn
2

.

(c) Two options are possible or based on the linear converging result, or based on
the residual. For the first stopping criterion we can use:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)|

,

and stop if r̃
1−r̃

|λ(k+1)−λ(k)|
|λ(k+1)| ≤ ε . Or the residual is small

‖λ(k)qk − Aqk‖2
|λ(k)|

< ε

(d) To approximate the smallest eigenvalue where λn−1 = 1.1 and λn = 1 the
inverse power method is the method of choice. This means that the power
method is applied to A−1. If the shifted power method is used the convergence
will be very slow 1001

1001.1
= 0.9999, whereas if the inverse power method is used

the convergence is given by 1
1.1

= 0.9091. This is much faster.
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