DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

Examiner responsible: C. Vuik
Examination reviewer: M.B. van Gijzen

TEST SCIENTIFIC COMPUTING (wi4201) Wednesday January 22 2020, 13:30-16:30

1. Below 5 statements are given. If the statement is true give a short proof. If the statement is wrong give a counter example or an explanation.
(a) $A \in \mathbb{R}^{n \times n}, \Rightarrow\|A\|_{1}=\|A\|_{\infty}$.
(b) Assume A to be the 3-by-3 matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
4 & 3 & 0 \\
-1 & -2 & 4
\end{array}\right)
$$

Give the three Gershgorin disks that contain the eigenvalues of the matrix A; past eigenlijk niet in de structuur!
(c) $A \in \mathbb{R}^{n \times n}$ and assume \mathbf{u} to be an eigenvector of A with eigenvalue λ. The Krylov subspace $K^{k}(A, \mathbf{u})$ is a subspace in \mathbb{R}^{n}. Give the dimension of this space, and explain your answer.
(d) $A \in \mathbb{R}^{n \times n} \rho(A) \leq\|A\|$ for any multiplicative norm $\|$.$\| .$
(e) $A \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with zero elements on the main diagonal $\Rightarrow A^{n-1}=0$.
2. For a given function f we consider the following boundary value problem:

$$
\begin{equation*}
-\frac{d^{2} u(x)}{d x^{2}}+\lambda u(x)=f(x) \text { for } 0<x<1 \tag{1}
\end{equation*}
$$

where λ is a positive real number, with boundary conditions

$$
\begin{equation*}
u(0)=0 \text { and } u(1)=0 . \tag{2}
\end{equation*}
$$

A finite difference method is used on a uniform mesh with N intervals and mesh width $h=1 / N$.
(a) Give the finite difference stencil for internal grid points and show that it is $O\left(h^{2}\right)$.
(1 pt.)
(b) The eigenvectors \mathbf{v}^{k} of the resulting coefficient matrix A are given and have components:

$$
\begin{equation*}
v_{i}^{k}=\sin \left(k \pi x_{i}\right)=\sin (k \pi(i-1) h) \text { for } 1 \leq i \leq N+1 \tag{3}
\end{equation*}
$$

derive an expression for the corresponding eigenvalues λ_{k} as a function of the meshwidth h by computing the action of A^{h} on these eigenvectors. It suffices here to consider the matrix rows corresponding to the grid nodes not having any connections to the boundary nodes. (Hint: $\sin (\alpha+\beta)+\sin (\alpha-\beta)=$ $2 \sin (\alpha) \cos (\beta))$.
(c) Show that the matrix A is SPD.
(d) The perturbed solution $\mathbf{u}+\Delta \mathbf{u}$ solves the system $A(\mathbf{u}+\Delta \mathbf{u})=\mathbf{f}+\Delta \mathbf{f}$. Show that $\| \frac{\Delta \mathbf{u} \|}{\|\mathbf{u}\|} \leq \kappa(A) \frac{\|\Delta \mathbf{f}\|}{\|\mathbf{f}\|}$ where $\kappa(A)$ denotes the condition number of A measured in the norm $\|\cdot\|$. Give an upperbound for $\kappa_{2}(A)$ as a function of the meshwidth h.
(e) To solve the linear system, one can use a direct or an iterative method. Which method is preferred (motivate your answer)?
3. (a) Show that if $A \in \mathbb{R}^{n \times n}$ has an $L U$ decomposition and is nonsingular, then L and U are unique, where we assume that $l_{i, i}=1$.
(b) The k-th Gauss-vector $\alpha^{(k)} \in \mathbb{R}^{n}$ is defined as

$$
\begin{equation*}
\alpha^{(k)}=(\underbrace{0, \ldots, 0}_{k}, \underbrace{\mathbf{b}_{k} / a_{k, k}^{(k-1)}}_{n-k})^{T} . \tag{4}
\end{equation*}
$$

Give an expression for $\left(M_{n-1} \ldots M_{1}\right)^{-1}$, where $M_{k}^{-1}=I+\alpha^{(k)} \mathbf{e}_{k}^{T}$.
(c) Suppose we have a penta-diagonal matrix $A \in \mathbb{R}^{n \times n}$. For a given m, where $1<m<n$, we know that the elements $a(i-m, i), a(i-1, i), a(i, i), a(i, i+1)$, and $a(i, i+m)$, are nonzero. Give the non-zero pattern of the L and U matrix after the LU-decomposition without pivotting.
(d) Give the outline of the LU-decomposition method (without pivotting) to solve $A \mathbf{u}=\mathbf{f}$, where $A \in \mathbb{R}^{n \times n}$ is a non-singular penta-diagonal matrix and give the amount of flops (you may assume that $n \gg m$).
4. In this exercise we have to solve a linear system $A \mathbf{u}=\mathbf{f}$, where A is an $n \times n$ non-singular matrix.
(a) Take $\mathbf{u}_{1}=\alpha \mathbf{f}$. Derive an expression for α such that $\left\|\mathbf{u}-\mathbf{u}_{1}\right\|_{A^{T} A}$ is minimal. (2 pt.)
(b) The CGNR method is the CG method applied to $A^{T} A \mathbf{u}=A^{T} \mathbf{f}$. Show that the 2 -norm of the residuals is monotone decreasing.
(c) Give a 3×3 non-diagonal matrix such that CGNR converges in one iteration for every right-hand side vector \mathbf{f}.
(d) Given the algorithm

Bi-CGSTAB method

\mathbf{u}^{0} is an initial guess; $\mathbf{r}^{0}=\mathbf{f}-A \mathbf{u}^{0}$;
$\overline{\mathbf{r}}^{0}$ is an arbitrary vector, such that $\left(\overline{\mathbf{r}}^{0}\right)^{T} \mathbf{r}^{0} \neq 0$, e.g., $\overline{\mathbf{r}}^{0}=\mathbf{r}^{0}$;
$\rho_{-1}=\alpha_{-1}=\omega_{-1}=1$;
$\mathbf{v}^{-1}=\mathbf{p}^{-1}=0$;
for $i=0,1,2, \ldots$ do
$\rho_{\mathrm{i}}=\left(\overline{\mathbf{r}}^{0}\right)^{\top} \mathbf{r}^{\mathrm{i}} ; \beta_{\mathrm{i}-1}=\left(\rho_{\mathrm{i}} / \rho_{\mathrm{i}-1}\right)\left(\alpha_{\mathrm{i}-1} / \omega_{\mathrm{i}-1}\right) ;$
$\mathbf{p}^{\mathbf{i}}=\mathbf{r}^{\mathbf{i}}+\beta_{\mathbf{i}-1}\left(\mathbf{p}^{\mathbf{i}-1}-\omega_{\mathrm{i}-1} \mathbf{v}^{\mathbf{i}-1}\right) ;$
$\hat{\mathbf{p}}=\mathrm{M}^{-1} \mathbf{p}^{\mathrm{i}}$;
$\mathbf{v}^{\mathrm{i}}=\mathrm{A} \hat{\mathbf{p}} ;$
$\alpha_{\mathrm{i}}=\rho_{\mathrm{i}} /\left(\overline{\mathbf{r}}^{0}\right)^{\mathrm{T}} \mathbf{v}^{\mathrm{i}}$;
$\mathbf{s}=\mathbf{r}^{\mathbf{i}}-\alpha_{\mathbf{i}} \mathbf{v}^{\mathbf{i}}$;
if $\|\mathbf{s}\|$ small enough then
$\mathbf{u}^{\mathbf{i}+1}=\mathbf{u}^{\mathrm{i}}+\alpha_{\mathrm{i}} \hat{\mathbf{p}} ;$ quit;
$\mathrm{z}=\mathrm{M}^{-1} \mathrm{~s}$;
$\mathbf{t}=\mathrm{A} \mathbf{z}$;
$\omega_{\mathrm{i}}=\mathbf{t}^{\top} \mathbf{s} / \mathbf{t}^{\top} \mathbf{t}$;
$\mathbf{u}^{i+1}=\mathbf{u}^{\mathbf{i}}+\alpha_{i} \hat{\mathbf{p}}+\omega_{\mathrm{i}} \mathbf{z} ;$
if \mathbf{u}^{i+1} is accurate enough then quit;
$\mathbf{r}^{\mathbf{i}+1}=\mathbf{s}-\omega_{\mathrm{i}} \mathbf{t} ;$
end for
The matrix M in this scheme represents the preconditioning matrix. Determine the minimal amount of memory and flops per iteration.
(e) Give a comparison of the mathematical properties of the CGNR and Bi-CGSTAB method (both without preconditioning).
5. In this exercise we consider variants of the Power method to approximate the eigenvalues of a matrix A. The Power method is given by:
$\mathbf{q}_{0} \in \mathbb{R}^{n}$ is given
for $k=1,2, \ldots$

$$
\begin{aligned}
& \mathbf{z}_{k}=A \mathbf{q}_{k-1} \\
& \mathbf{q}_{k}=\mathbf{z}_{k} /\left\|\mathbf{z}_{k}\right\|_{2} \\
& \lambda^{(k)}=\overline{\mathbf{q}}_{k-1}^{T} \mathbf{z}_{k}
\end{aligned}
$$

endfor
The eigenvalues are ordered such that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. The corresponding eigenvectors are denoted by $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(a) We assume that \mathbf{q}_{k} can be written as $\mathbf{q}_{k}=\mathbf{v}_{1}+\mathbf{w}$ with $\|\mathbf{w}\|_{2}=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)$. Show that

$$
\left|\lambda_{1}-\lambda^{(k)}\right|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)
$$

(2.5 pt.)
(b) Given a matrix $A \in \mathbb{R}^{n \times n}$, where

$$
\lambda_{1}=1000, \quad \lambda_{2}=999 \text { and } \lambda_{n}=900
$$

Explain how the shifted Power method can be used to approximate λ_{1} and give an optimal value for the shift.
(c) Note that the Power method is a linearly converging method. Give a good stopping criterion for the Power method.
(d) Given a matrix $A \in \mathbb{R}^{n \times n}$, where

$$
\begin{equation*}
\lambda_{1}=1000, \quad \lambda_{n-1}=1.1 \text { and } \lambda_{n}=1 \tag{2.5pt.}
\end{equation*}
$$

Give a fast converging method to approximate λ_{n}.

