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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) Yes. Since Q is an orthogonal matrix we know that QQT = QTQ = I. Suppose
λ ∈ σ(A).

Av = λv

QTAv = λQTv

QTAQQTv = λQTv

suppose w = QTv
QTAQw = λw

so λ ∈ σ(QTAQ).

(b) No. Counterexample:

A =

(
4 1
−1 4

)
.

The eigenvalues are λ1 = 4+ i and λ2 = 4− i so the eigenvalues are not elements
of R.

(c) Yes. Note that D is SPD. Check the properties of the innerproduct.

• Symmetry

(x,y)D = xTDy = (DTx)Ty = yT (DTx) = yTDx = (y,x)D

• Linear
(ax + by, z)D = axTz + byTz = a(x, z)D + b(y, z)D

• positivity

(x,x)D = xTDx =
n∑
i=1

i

n
x2i

This implies that (x,x)D > 0 if x is not the zero vector and if (x,x)D = 0
x is the zero vector.

(d) Yes. The Frobenius norm can be viewed as the 2-norm of the vector obtained
from all rows of A (see the line below 2.16 in the lecture notes). It is well known
that the 2-norm is the same after orthogonal transformations (Proposition 2.5.2)
which proves the claim.
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(e) No. From the definition it follows that the spectral radius is the in absolute
value largest eigenvalues, so it can never be negative.

2. (a) We first start by computing the Gershgorin disks. Note that all disks has center
at 2

h2
. The radius is equal to 1

h2
or 2

h2
. This implies that all eigenvalues should be

in the disk with center at 2
h2

and radius 2
h2

. Since the matrix is symmetric that
implies that all eigenvalues are real and 0 ≤ λ ≤ 4

h2
. The eigenvalues are given

by 2
h2

2 sin2(π h k
2

). Since 0 ≤ sin2(π h k
2

) ≤ 1 it easily follows that the eigenvalues
are contained in the Gershgorin disks.

(b) If N = 3 we end up with a 2 × 2 system. There are only two eigenvectors.
Substitute all relevant information in expression (3.52) and check that the in-
nerproduct between both vectors is zero.

(c) There are two correct ways to obtain the result: λ = 4
h4

4 sin4(π h k
2

). One way
is to use the ansatz for the eigenvectors as given in (3.52) and compute the
eigenvalues. An easier way is to prove that the discretization matrix for the
bi-Harmonic equation as given in (3.69) is the square of the Poisson matrix as
given in (3.48). Then the eigenvalues of the bi-Harmonic matrix are the square
of the eigenvalues of the Poisson matrix which leads to the correct expression.

(d) The stencil is given by:

1

h2

 0 −1 0
−1− h

2
4 + 6h2 −1 + h

2

0 −1 0


Central differences are used for all derivatives. To prove that this stencil has
second order accuracy, Taylor polynomials have to be used with a remainder
term of order h4 for the second derivatives and of order h3 for the first derivative.

3. (a) The inverse of Gauss transformation Mk = I − α(k)eTk is given by M−1
k =

I + α(k)eTk . To show this claim, we have to check if the following expression is
correct MkM

−1
k = I. We note that

(I −α(k)eTk )(I + α(k)eTk ) =

I −α(k)eTk + α(k)eTk + α(k)eTkα
(k)eTk =

I + α(k)eTkα
(k)eTk = I

The final equality follows from the fact that the term α(k)eTkα
(k)eTk is equal to

the zero matrix. The easiest way to show this is to first do the multiplication
eTkα

(k). Note that only the k − th component of ek is nonzero. However, it
is known that the first k components of vector α(k) are equal to zero, so the
resulting inner product is also zero.
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(b) After the first step of the Gaussian elimination, element a2,2 is equal to zero.
That means a zero pivot, so the next step can not be done. This problem can be
solved by using partial pivotting. Since the pivot is zero one looks in the second
column to see if there is a non zero element. That is true for the final row, so
one puts that row in the second row and the second row in the third row. Then

the matrix is upper triangular and you can find the solution: u =

0
0
1

 .

(c) This can be proven by contradiction. Since the matrix is strictly column diagonal
dominant we know that |a1,1| >

∑n
i=2 |ai,1| ≥ 0. This implies that a1,1 6= 0 so

the first pivot is non zero and the first Gaussian elimination step can be done.

(d) Let us consider column j of L−1. Suppose there is a k such that 1 ≤ k < j such
that L−1

k,j 6= 0 and L−1
i,j = 0, for all i < k. Then the result of the multiplication

of row k of L with column j of L−1 is equal to L−1
k,j. However, since LL−1 = I

this element should be equal to zero, so it is impossible to find a k as indicated
above.

4. (a) The Jacobi iteration matrix is defined as B = I −D−1A where D is a diagonal
matrix and Di,i = Ai,i. The relevant stencils are:

A =
1

h2

 0 −1 0
−1 4 −1
0 −1 0

 , D−1 = h2

 0 0 0
0 1/4 0
0 0 0

 , and I =

 0 0 0
0 1 0
0 0 0

 .
Substituting these stencils in the definition of B leads to the correct result.

(b) It is important to note that Symmetric Gauss Seidel is the same method as
SSOR where ω = 1. Using this equivalence MSGS follows from (5.42). So BSGS

is given by:

B = I −M−1
SGSA = I − (D − E)−1D(D − F )−1(D − E − F )

(c) We obtain optimal convergence, if ρ(BJac(ω)) is minimal. Since ai,i = 1 we obtain
BJac(ω) = I − ωA. This implies that the eigenvectors of A and B are identical,
and λ(BJac(ω) = 1− ωλ(A). So

1− ωλn ≤ λ(BJac(ω) ≤ 1− ωλ1

To minimise the spectral radius of BJac(ω) we take ω such that both the smallest
and the largest eigenvalue are the same in absolute value. This implies that
1− ωλ1 = −1 + ωλn solving of this equation for ω gives ωoptimal = 2

λ1+λn
.

(d) From the theory it follows that ‖ek‖2 ≤ (ρ(BJAC))k‖e0‖2. So the stopping
criterion is satisfied if

(1− π2

2
h2)k ≤ 10−4
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k log10(1−
π2

2
h2) ≤ −4

k ≥ 4

log10(1− π2

2
h2)

5. (a) The original question is: given uk = uk−1 + αkp
k compute αk such that ek is

perpendicular to pk in the A inner product.

During the exam it seems that it should be ”uk is perpendicular to pk in the A
inner product”.

Finally it appears that the original question is correct. Both answers will be
given and both answers can lead to all points.

Original question:
(ek)TApk = 0

(u− uk)TApk = 0

(u− uk−1 − αkpk)TApk = 0

(ek−1 − αkpk)TApk = 0

(ek−1)TApk − αk(pk)TApk = 0

Since A = AT we obtain: (ek−1)TA = (Aek−1)T = (rk−1)T . Substituting this
leads to:

αk =
(rk−1)TApk

(pk)TApk

Adapted question:
(uk)TApk = 0

(uk−1 + αkp
k)TApk = 0

(uk−1)TApk + αk(p
k)TApk = 0

This leads to:

αk =
−(uk−1)TApk

(pk)TApk

(b) Note that the vectors {v1,v2, . . . ,vn} form an independent set. To proof this,
suppose the vectors are dependent. Let us assume that v1 = αv2 + βv3. Due
to orthogonality we have (v1)Tv2 = 0. Substituting v1 = αv2 + βv3 shows
that (v1)Tv2 = (αv2 + βv3)Tv2 = α(v2)Tv2 6= 0. This is a contradiction which
shows that {v1,v2, . . . ,vn} is an independent set of vectors, so they span Rn.
This implies that if zTvi = 0 for i = 1, . . . , n then z = 0.
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(c) The matrix has only 2 different eigenvalues: 1 and 10. At the top of page
104 of the lecture notes it is shown that the number of iterations of CG before
convergence is less than the number of different eigenvalues. Since the matrix
has 2 different eigenvalues, CG should converge in 1 or 2 iterations.

(d) See next page.
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