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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) Yes. Since A is an orthogonal matrix we know that ATA = AAT = I. Since
‖A‖2 =

√
λmax(ATA) = 1 and A−1 = AT also ‖A−1‖2 = 1. This implies that

κ2(A) = ‖A‖2‖A−1‖2 = 1.

(b) Yes, the Bi-CGSTAB method is a short-recurrency method. So in every iteration
the same number of vectorupdates, inner products and matrix vector products
are used, so the amount of work per iteration remains constant for all iterations.

(c) Yes. It is not difficult to see from the definition of a permuation matrix that
P TP = I. The reason is as follows. Every row of P has only one non zero
element. In the matrix multiplication we compute the inner product of the i-th
row with the j-th row. This inner product is only non zero if i = j, and then the
product is 1. This means that P−1 = P T so P TAP is a similarity transformation
of A and thus the spectra of A and P TAP are the same.

(d) No. It is easy to see that the matrix A is symmetric. So all eigenvalues are real
valued. From the Gershgorin theorem it follows that 2 ≤ λ ≤ 6, where λ is een
eigenvalue of A. This implies that ‖A‖2 = λmax(A) ≤ 6.

(e) No. There are various ways to show this. One is to compute the determinant of
matrix A which is equal to zero. Another counter example is to multiply matrix
A with vector v, which components are all equal to 1. It follows that Av = 0.
This implies that matrix A has an eigenvalue equal to zero so matrix A is not
invertible.

2. (a)

−∂
2u[kl](x, y)

∂x2
− ∂2u[kl](x, y)

∂y2
+ cu[kl](x, y) = ((kπ)2 + (lπ)2 + c) ∗ u[kl](x, y).

Therefore u[kl](x, y) is the eigenfunction of the operator. The eigenvalues are

((kπ)2 + (lπ)2 + c) for k, l ∈ N, k 6= 0 and l 6= 0.

(b) Denote xi = ih, y = jh, and ()i,j stands for the function value at (xi, yj). At
the internal grid point (xi, yj), we have the problem satisfies:

−
(
∂2u

∂x2

)
i,j

−
(
∂2u

∂y2

)
i,j

+ cuij = fi,j (1)
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We use the discretization
(4+ch2)ui,j−ui−1,j−ui+1,j−ui,j−1−ui,j+1

h2
to approximation the

left-hand term in (1).

By using the Taylor expansion, we have

ui−1,j = ui,j +

(
∂u

∂x

)
i,j

∗ (−h) +

(
∂2u

∂x2

)
i,j

∗ (−h)2

2!
+

(
∂3u

∂x3

)
i,j

∗ (−h)3

3!
+O(h4)

ui+1,j = ui,j +

(
∂u

∂x

)
i,j

∗ (h) +

(
∂2u

∂x2

)
i,j

∗ (h)2

2!
+

(
∂3u

∂x3

)
i,j

∗ (h)3

3!
+O(h4)

ui,j−1 = ui,j +

(
∂u

∂y

)
i,j

∗ (−h) +

(
∂2u

∂y2

)
i,j

∗ (−h)2

2!
+

(
∂3u

∂y3

)
i,j

∗ (−h)3

3!
+O(h4)

ui,j+1 = ui,j +

(
∂u

∂y

)
i,j

∗ (h) +

(
∂2u

∂y2

)
i,j

∗ (h)2

2!
+

(
∂3u

∂y3

)
i,j

∗ (h)3

3!
+O(h4)

After summing the four equations above and (4 + ch2)ui,j, we have

(4 + ch2)ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
= −

(
∂2u

∂x2

)
i,j

−
(
∂2u

∂y2

)
i,j

+cuij+O(h2)

The numerical method has a local truncation error of O(h2).

(c) The stencil located at (x, y) = (1− h, 1− h) is

1

h2

 0 0 0
−1 4 + ch2 0
0 −1 0


and the right-hand side is fN−1,N−1 + 1

h2
uN−1,N + 1

h2
uN,N−1 = fN−1,N−1 + 2

h2
.

(d) Ah is the matrix we got from the discretization with elimination of the boundary
conditions. We need to verify that Ah is symmetric and all its eigenvalues are
real and positive.
1. Ah is symmetric based on the stencil and symmetric matrix has real eigen-
values.
2. For matrix Ah, we have |ai,i| = 4

h2
+ c,

∑n
j=1,j 6=i |ai,j| ≤

4
h2

. Since c > 0, Ah
is strict diagonal diagonal dominant.
3. By using the Gershgorin theorem, we have 0 < λ ≤

∑n
j=1,j 6=i |ai,j|+ ai,i.

The positive definiteness of Ah then follows.

3. (a) Let Au = f , and A = M −N where M is non singular. Derive a formula for uk

and rk.
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i.

uk+1 = M−1Nuk +M−1f

= M−1(M − A)uk +M−1f

= uk +M−1(f − Auk)
= uk +M−1rk

(2)

ii.

rk+1 = f − Auk+1

= f − A(uk +M−1rk)

= f − Auk − AM−1rk

= rk − AM−1rk

= (I − AM−1)rk

(3)

(b) Give the iteration matrix and a sufficient condition for convergence

i. The iteration matrix is given by B = I −M−1A.

ii. There are three possible answers

A. ρ(B) < 1

B. ‖B‖ < 1

C. limk→∞ ‖Bk‖2 = 0

(c) Assume A is lower triangular, show that Gauss-Seidel converges.
Solution: Note that in this case M = A and therefore

B = I −M−1A = I − A−1A = 0matrix. (4)

Then, ‖B‖ < 1 and therefore GS converges.

(d) Assume A is lower triangular, show Jacobi converges.
Now we have M = D, where D is the matrix containing only the diagonal
elements of A.
Then B = I−D−1A = I− (I+L) = L where L is a lower diagonal matrix with
only zeros on the diagonal. So B is a lower diagonal matrix with only zeros on
the diagonal.
It then follows that limk→∞ ‖Bk‖2 = 0 so the Jacobi method converges.

(e) Below follow the 3 different stoping criteria and the properties.

i. ‖rk‖ ≤ ε, this criterion is not scaling invariant.

ii. ‖r
k‖
‖r0‖ ≤ ε, depends on goodness of initial guess.

iii. ‖r
k‖
‖f‖ ≤ ε, this is a good stopping criterion.
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If the student has all three criteria and their properties correct, they are awarded:
2 pt.
If the student has two out of three criteria and their properties correct, they are
awarded: 1 pt..

4. (a) If A is SPD show that < y, z >A= yTAz is an inner product.

i.) < y, z >A=< z,y >A

< y, z >A = yTAz

=
(
yTAz

)T
(transposition of a scalar)

= zTATy

= zTAy (symmetry of A)

=< z,y >A

ii.) < cy, z >A= c < y, z >A

< cy, z >A = (cy)TAz

= cyTAz

= c < y, z >A

iii.) < y + v, z >A=< y, z >A + < v, z >A

< y + v, z >A = (y + v)TAz

= (yT + vT )Az

= yTAz + vTAz

=< y, z >A + < v, z >A

iv.) < y,y >A≥ 0, and < y,y >A= 0⇔ y = 0

< y,y >A= yTAy ≥ 0 ∀y ∈ Rn, since A SPD

(b) We assume that u1 = α0r
0. Determine α0 such that ‖u− u1‖A is minimal.

‖u− u1‖2A = (u− u1)TA(u− u1)

= ‖u‖A − 2α0 < r0,u >A +α2
0‖r0‖A

d

dα0

‖u− u1‖2A = −2 < r0,u >A +2α0‖r0‖A (5)

Then we impose that 5 be equal zero to obtain:

α0 =
< r0,u >A

‖r0‖A
=

r0f

‖r0‖A
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(c) The matrix A corresponds to a shifted discretized Poisson operator. The eigen-
values are given by

λk,l = 6− 2cos
πk

61
− 2cos

πl

61
, 1 ≤ k, l ≤ 60.

Determine the linear rate of convergence for the Conjugate Gradient method.
The matrix A is SPD, hence we can use:

κ2(A) =
λmax(A)

λmin(A)

to obtain:

κ2(A) =
λ60,60(A)

λ1,1(A)
=

9.994

2.005
= 4.9845

So in terms of Theorem 5.5.1 of the lecture notes, the linear rate of convergence
is: √

κ2(A)− 1√
κ2(A) + 1

= 0.3813

(d) Based on the first paragraph of section 7.2 of the lecture notes, a preconditioner
matrix M should satisfy the following:

• M is SPD,

• the eigenvalues of M−1A are clustered around 1,

• M−1y is obtainable at low cost.

The PCG method is obtained, given a suitable preconditioner M = PP T , by
applying the CG method to a preconditioned linear system Ãũ = ỹ, where
Ã = P−1AP−T , u = P H RT ũ and ỹ = P H R1y , and P is a nonsingular matrix.
This can also be rewritten such that CG is applied to the system M−1Au = f .

(e) The eigenvalues of the matrix A are:

λ1 = 1, λ2 = 99, λ3 = 101

A is symmetric and all its eigenvalues are positive, then A is SPD.

κ2(A) =
λmax(A)

λmin(A)
= 101

√
κ2(A)− 1√
κ2(A) + 1

= 0.819

We give an estimate of convergence in terms of the number of iterations k needed
to obtain:

‖u− uk‖A
‖u− u0‖A

≤ 2(0.819)k = 10−12 (6)
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thus k is at most:

k =
log
(

10−12

2

)
log(0.819)

= 141.85 (7)

We consider a preconditioner where P is a diagonal matrix whose diagonal
elements pi,i =

√
ai,i:

P =

10 0 0
0 10 0
0 0 1


in order to estimate the convergence of the CG method we look at the eigenvalues
of the matrix:

Ã = P−1AP−T =

 1 − 1
100

0
− 1

100
1 0

0 0 1

 (8)

these eigenvalues are λ1 = 1, λ2 = 99
100
, λ3 = 101

100

κ2(Ã) =
λmax(Ã)

λmin(Ã)
=

101

99√
κ2(Ã)− 1√
κ2(Ã) + 1

= 0.005

‖u− uk‖Ã
‖u− u0‖Ã

≤ 2(0.005)k = 10−12

thus k is at most:

k =
log
(

10−12

2

)
log(0.005)

= 5.36

5. (a) We assume that the eigenvectors are given by vj with the property that ‖vj‖2 =
1. From the assumption we know

q0 =
n∑
j=1

ajvj with a1 6= 0. (9)

This implies that

Akq0 = a1λ
k
1(v1 +

n∑
j=2

aj
a1

(
λj
λ1

)kvj) (10)

Since |λ2| ≥ ... ≥ |λn|, and ‖vj‖2 = 1 equation (10) implies:

‖A
kq0

a1λk1
− v1||2 ≤

n∑
j=2

|aj|
|a1|

(
|λj|
|λ1|

)k‖vj‖2 ≤ C(
|λ2|
|λ1|

)k = O(|λ2
λ1
|k) (11)
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To simplify notation we write (10) as

1

‖qk‖2
qk =

1

‖Akq0‖2
Akq0 = γ(v1 + w) (12)

where γ =
a1λk1
‖Akq0‖2 and vector w contains the remaining part and we know that

‖w‖2 = O(|λ2
λ1
|k). Since λ(k) =

qT
kAqk

‖qk‖22
we obtain

λ(k) = γ(v1 + w)TAγ(v1 + w) = (γv1 + γw)Tγ(λ1v1 + Aw) (13)

Due to (11) we obtain

λ(k) = λ1(γv1)
T (γv1) +O(|λ2

λ1
|k) (14)

This leads to

λ(k) = λ1‖γv1‖22 +O(|λ2
λ1
|k) (15)

From (12) it follows that

γv1 =
1

‖qk‖2
qk −w

Thus

‖γv1‖2 = ‖ 1

‖qk‖2
qk −w‖2 =

1

‖qk‖2
‖qk‖2 +O(|λ2

λ1
|k) = 1 +O(|λ2

λ1
|k)

Combining this with (15) shows that

λ(k) = λ1 +O(|λ2
λ1
|k)

which implies:

|λ(k) − λ1| = O(|λ2
λ1
|k)

(b) Assume that qk−1 = γv1 + w where ‖w‖2 = ε << 1. From ‖qk−1‖2 = 1,
‖v1‖2 = 1 and ‖w‖2 = ε it follows that γ = 1 + O(ε). Putting this in the
algorithm shows that

λ(k) = qTk−1Aqk−1 = (γv1+w)TA(γv1+w) == (γv1+w)T (γλ1v1+Aw) = γ2λ1+O(ε)

using the fact that γ = 1 +O(ε) shows that λ(k) = λ1 +O(ε).

(c) Two options are possible or based on the linear converging result, or based on
the residual. For the first stopping criterion we can use:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)|

,
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and stop if r̃
1−r̃

|λ(k+1)−λ(k)|
|λ(k+1)| ≤ ε . Or the residual is small

‖λ(k)qk − Aqk‖2
|λ(k)|

< ε

(d) The shift and invert power method is defined as follows: given a shift σ apply
the powermethod to the matrix (A − σI)−1. The result converges to the in
absolute value largest eigenvalue of λmin of (A − σI)−1. The relation between
the eigenvalues λj of A and the eigenvalues λ̂j of (A − σI)−1 is as follows:

λ̂j = 1
λj−σ . The rate of convergence of the shift and invert power method is

given by 2−σ
2.1−σ . If σ = 2 the matrix (A−σI)−1 is singular so the method breaks

down. A value of σ close to 2 will lead to fast convergence and there is no
problem to compute the inverse of (A− σI).
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