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This are short answers, which indicate how the exercises can be answered. In most of the
cases more details are needed to give a sufficiently clear answer.

1. (a) The matrix norm ‖A‖max is defined as ‖A‖max = max1≤i,j≤n |ai,j|. This norm
does not have the multiplicative property. The multiplicative property holds if
for any R1 ∈ Rm×q and R2 ∈ Rq×n ‖R1R2‖p ≤ ‖R1‖p ‖R2‖p A counterexample

is R1 =

(
1 1
1 1

)
and R2 =

(
2 2
2 2

)
.

(b) This is not true. ‖R‖1 = max1≤j≤n
∑m

i=1 |rij| (maximum absolute column sum).

A counterexample is: R =

(
2 1
2 5

)
. Note that to find ‖R‖1 we are looking for

vector (x1, x2)
T such that |x1|+ |x2| = 1 and |2x1 +x2|+ |2x1 + 5x2| is maximal.

This leads to x1 = 0 and x2 = 1, so ‖R‖1 = 6, which is the maximum absolute
column sum of R.

(c) We know that all p-norms have the multiplicative property. This implies that
the following inequalities are valid:

1 = ‖I‖p = ‖AA−1‖p ≤ ‖A‖p‖A−1‖p = κp(A)

(d) This is not true. Since the matrix is symmetric, all eigenvalues are real valued.
From Gershgorin’s theorem it is easy to see that all eigenvalues are less than or
equal to 4.

(e) If ρ(A) < 1, then I−A has eigenvalues bounded away from zero, and is therefore
non-singular. We furthermore have the equality

(I − Ak+1) = (I − A)(I + A+ A2 + . . .+ Ak) , (1)

or equivalently

(I − A)−1(I − Ak+1) = (I + A+ A2 + . . .+ Ak) . (2)

Taking the limit as k → ∞ and taking into account that since ρ(A) < 1 it
follows that limk→∞ ‖Ak‖2 = 0 yields the desired result.

2. (a) The finite difference stencil is given by

1

h2
[−1− xi 2(1 + xi) + 4h2 − 1− xi]
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In order to show that the method is second order accurate, a Taylor expansion
of u in the points xi−1 and xi+1 should be given around the point xi where the
remainder term is O(h4). It then follows that

−(1 + xi)ui−1 + (2(1 + xi) + 4h2)ui − (1 + xi)ui+1

h2
+ 4ui − x2i =

−(1 + xi)
d2u(xi)

dx2
+O(h2) + 4u(xi)− x2i = O(h2)

The final equality holds because u is the solution of the given differential equa-
tion.

(b) Note that for N = 4, we have h = 0.25 and there are 3 internal grid point, so
the lenght of vector u is equal to 3. The general formula in an internal grid
point is

−(1 + xi)ui−1 + (2(1 + xi) + 4h2)ui − (1 + xi)ui+1

h2
+ 4ui = x2i

Using the values for N and h the following equations should hold:

(
2

0.252
(1 + 0.25) + 4)u1 −

1

0.252
(1 + 0.25)u2 = 0.252

− 1

0.252
(1 + 0.5)u1(

2

0.252
(1 + 0.5) + 4)u2 −

1

0.252
(1 + 0.5)u3 = 0.52

− 1

0.252
(1 + 0.75)u2 + (

2

0.252
(1 + 0.75) + 4)u3 = 0.752

This leads to A =

 44 −20 0
−24 52 −24

0 −28 60

. and f =

0.0625
0.25

0.5625

.

(c) Since matrix A is non-symmetric it is possible that the eigenvalues are complex
valued. To bound eigenvalues we can use Gershgorin’s theorem:
If λ ∈ σ(A), then λ is located in one of the n closed disks in the complex plane
that has center aii and radius

ρi =
n∑

j=1,j 6=i

|aij|

For i = 1 we have

a1,1 =
2(1 + x1) + 4h2)

h2
and ρ1 =

1 + x1
h2

,

for i = 2, ...., N − 1 we have

ai,i =
2(1 + xi) + 4h2)

h2
and ρi =

2(1 + xi)

h2
,
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and finally for i = N we have

aN,N =
2(1 + xN) + 4h2)

h2
and ρN =

1 + xN
h2

.

These expressions combined with Gershgorin’s theorem shows that the real part
of all eigenvalues of A is larger than or equal to 4.

(d) From the product rule for differentiation it follows that d
dx

((1+x)du(x)
dx

) = du(x)
dx

+

(1 + x)d
2u(x)
dx2 . Taylor expansion shows:

ui−1 = ui − hu′i + h2

2
u′′i − h3

6
u′′′i +O(h4)

ui = ui
ui+1 = ui + hu′i + h2

2
u′′i + h3

6
u′′′i +O(h4)

Note that 1
h2 (aui−1 + bui + cui+1) should approximate du(x)

dx
+ (1 + x)d

2u(x)
dx2 .

From the constant term it follows that 1
h2 (a+ b+ c) = 0

From the first derivative term it follows that 1
h
(−a+ c) = 1

And from the second derivative term it follows that 1
2
(a+ c) = 1 + x

Solving these equations leads to a = 1 + x − h
2
, b = −2(1 + x), c = 1 + x + h

2
.

Finally, we have to check if the terms with u′′′ are of order O(h2). For this we
substitute the values for a and c in the formula and obtain

−h
3

6

a

h2
+
h3

6

c

h2
=
h

6
(−(1 + x) +

h

2
+ (1 + x) +

h

2
) =

h

6
h = O(h2).

3. (a) Given that a non-singular matrix M exists we can split A as follows: A = M−N .
The residual is defined by rk = f − Auk. For the iteration formula we have:

Muk+1 = Nuk + f

This can be rewritten as:

Muk+1 = Muk −Muk +Nuk + f = Muk − Auk + f .

Multiplication with M−1 and using the definition of the residual gives: uk+1 =
uk +M−1rk.

(b) The error is defined as ek = u− uk. Since Au = (M −N)u = f we have that:

Mu = Nu + f

For the iteration formula we have:

Muk+1 = Nuk + f
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combination gives:
M(uk+1 − u) = N(uk − u)

Since N = M − A, this can also be written as: Mek+1 = (M − A)ek. Multipli-
cation with M−1 shows that

ek+1 = (I −M−1A)ek.

This holds for all splitting, so also for the Jacobi iteration matrix. In this case
M = D = diag(A), so BJac = I −D−1A.

(c) For the 2D Poisson equation the stencil is

A :
1

h2

 0 −1 0
−1 4 −1
0 −1 0

 and D :
1

h2

 0 0 0
0 4 0
0 0 0


So the Jacobi iteration matrix: BJac = I −D−1A has the following stencil 0 0 0

0 1 0
0 0 0

−
 0 −1

4
0

−1
4

1 −1
4

0 −1
4

0

 =

 0 1
4

0
1
4

0 1
4

0 1
4

0


(d) In the damped Jacobi method a weighted average of the current iterant uk and

the full Jacobi step ūk+1,JAC is computed. We denote the damping parameter
by ω, and define the iterant resulting from the damped Jacobi method as

uk+1 = (1− ω)uk + ω ūk+1,JAC . (3)

Substituting the expression as give in part (a) with M = D for ūk+1, we obtain
that

uk+1 = (1− ω)uk + ω uk + ωD−1rk (4)

= uk + ωD−1rk

showing that the ω-damped Jacobi method is defined by

MJAC(ω) =
1

ω
D and BJAC(ω) = I − ωD−1A . (5)

(e) When one starts with the zero vector the first iteration follows from Mu(1) = f .
So we have to solve: 2 −1 0

0 2 −1
0 0 2


u

(1)
1

u
(1)
2

u
(1)
3

 =

0
0
4


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After solving the lower triangular system the first iteration is equal to:u
(1)
1

u
(1)
2

u
(1)
3

 =

1
2

1
2


4. (a) The iterate u1 is written as u1 = αf where α is a constant which has to be chosen

such that ‖u− u1‖ATA is minimal. This leads to ‖u− u1‖2ATA = ‖f − Au1‖22 =
(f − αAf)T (f − αAf) = fT f − 2α(Af)T f + α2(Af)TAf . The norm is minimized

if α = (Af)T f
(Af)TAf

.

(b) Due to the definition of CGNR we know that the method computes an ap-
proximation uk in the Krylov subspace Kk(ATA,AT r0) such that the norm
‖u− uk‖ATA is minimal. It appears that

‖u− uk‖ATA = ‖Au− Auk‖2 = ‖f − Auk‖2 = ‖rk‖2

Since in every iteration the dimension of the Krylov subspace will increase (ex-
cept if ’lucky’ breakdown occurs) one can conclude that the sequence ‖rk‖2 is
monotone decreasing.

(c) We know that CG converges in one iteration if the 2-norm condition number of
the iteration matrix is 1. For CGNR the iteration matrix is ATA. If we choose
the matrix such that ATA = I, we know that the 2-norm condition number of
ATA is equal to 1 (this is called an orthogonal matrix). A 4× 4 example is:

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

(d) The following vectors should be stored in memory: r,u, r̃,w,p, v̂,q, ŵ. Fur-
thermore the matrices A and M should be stored in memory.

Per iteration two matrix vector products with A and two preconditioning vec-
tor products have to be computed. Next to that 2 inner products/norms, and
7 vector updates have to be computed. This is equal to 9× 2n flops.

(e) Per method at least 3 properties should be mentioned and / or compared. For
the two methods the following properties are known:
CGNR: robust (only lucky breakdown), short recurrences, optimisation prop-
erty, not based on the Krylov subspace Kk(A, r0), in general slow convergence
since the condition number of ATA is equal to the square of the condition num-
ber A.
CGS: not robust, short recurrences, no optimisation property, based on the
Krylov subspace Kk(A, r0), in general fast convergence, rounding errors can
become very large.
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5. (a) The definition of the Galerkin Coarse Correction matrix is

AH = IHh AhI
h
H

Since Ah is symmetric and IhH = (IHh )T it easily follows that AH is symmetric.
To check that AH is positive definite we consider a non-zero vector xH . Using
the definition of AH it follows that

xT
HAHxH = xT

HI
H
h AhI

h
HxH = yTAhy,

where y = IhHxH is a non zero vector. Since Ah is SPD it follows that yTAhy > 0
which implies that AH is an SPD matrix.

(b) Combining the definition ofAH = IHh AhI
h
H withAh = 1

h2


2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2


and IhH =

(
0 1 0 0 0
0 0 0 1 0

)
leads to AH =

(
72 0
0 72

)
.

(c) Using the definition of the iteration matrix for a Basic Iterative Method (BIM)
it follows that BCGC = I − IhH(AH)−1IHh Ah.

(d) In the two grid method the convergence is a combination of the reduction of the
error due to the smoothing operator and the Coarse Grid Correction operator.
The eigenvalues 1 till 16 are reduced in size by the Coarse Grid Correction op-
erator. The eigenvalues 17 till 32 are reduced in size by the smoothing operator.
Comparing the eigenvalues in absolute value for the eigenvalues 17 till 32 shows
that the choice ω = 2

3
gives the largest reduction, therefore ω = 2

3
gives the best

smoother.

(e) To store solution vector uh we need n memory positions, for u2h we need n
2

memory positions, for u4h we need n
4

memory positions, etc. In total we need

(1 +
1

2
+

1

4
+

1

8
+ ....)n =

1

1− 1
2

n = 2n

memory positions.
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