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Matrix norms (1)

The analysis of matrix algorithms frequently requires use of
matrix norms.

For example, the quality of a linear system solver may be poor
if the matrix of coefficients is ”nearly singular”.

To quantify the notion of near-singularity we need a measure of
distance on the space of matrices. Matrix norms provide that
measure.
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Matrix norms (2)

A matrix norm on Rm×n is a function ‖.‖ : Rm×n → R that
satisfies the following properties:

i) ‖A‖ ≥ 0 A ∈ Rm×n ,
and ‖A‖ = 0⇐⇒ A = 0,

ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ A,B ∈ Rm×n ,

iii) ‖αA‖ = |α| ‖A‖ α ∈ R , x ∈ Rm×n.

The most commonly used matrix norms are the p-norms
induced by the vector p-norms.

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p p ≥ 1.
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Matrix norms (3)

Below we list some properties of vector and matrix p-norms

- ‖AB‖p ≤ ‖A‖p‖B‖p A ∈ Rm×n , B ∈ Rn×q

- ‖A‖1 = max
1≤j≤n

m∑
i=1
|aij | A ∈ Rm×n

- ‖A‖∞ = max
1≤i≤m

n∑
j=1
|aij | A ∈ Rm×n

- ‖A‖2 is equal to the square root of the largest eigenvalue
of ATA.

- All norms are equivalent, meaning that there are
m,M > 0 such that m‖A‖p ≤ ‖A‖q ≤M‖A‖p.
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Matrix norms (4)

Matrix norms that are not induced by a vector norm also exist.
One of the best known is the Frobenius norm. The Frobenius
norm of an m× n matrix A is given by

‖A‖F =

√√√√ m∑
i=1

n∑
i=1

|aij |2

This is equal to

‖A‖F =
√
Tr(AAT )

In which Tr(A) is the trace of A, which is the sum of the main
diagonal elements.
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Condition number (1)

The condition number plays an important role in numerical
linear algebra since it gives a measure of how perturbations in
A and b affect the solution x.

The condition number Kp(A), for a nonsingular matrix A, is
defined by

Kp(A) = ‖A‖p‖A−1‖p.

A small condition number means that small perturbations in
the matrix or right-hand side give small changes in the solution.
A large condition number means that a small perturbation in
the problem may give a large change in the solution.
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Condition number (2)
Suppose Ax = b, A ∈ Rn×n and A is nonsingular, 0 6= b ∈ Rn,
and A(x+ ∆x) = b+ ∆b, then

‖∆x‖p
‖x‖p

≤ Kp(A)
‖∆b‖p
‖b‖p

.

Proof: From the properties of the norms it follows that

‖b‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p, so
1

‖x‖p
≤ ‖A‖p

1

‖b‖p
.

We know that A∆x = ∆b, so ∆x = A−1∆b. Furthermore

‖∆x‖p = ‖A−1∆b‖p ≤ ‖A−1‖p‖∆b‖p.
Combination of these inequalities proves the theorem.
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Condition number (3)

Suppose you want the solution x of

Ax = b, A ∈ Rn×nnonsingular, 0 6= b ∈ Rn

You actually solve the perturbed system

(A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈ Rn×n, ∆b ∈ Rn

with ‖∆A‖p ≤ δ‖A‖p and ‖∆b‖p ≤ δ‖b‖p.

When has this system a (unique) solution?

If Kp(A)δ = r < 1 then A+ ∆A is nonsingular and

‖∆x‖p
‖x‖p

≤ 2δ

1− r
Kp(A).

Proof: Lecture notes, p.44.
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Gaussian elimination

Consider the system

Ax =

 2 1 1
4 1 0
−2 2 1

 x1
x2
x3

 =

 1
−2
7


Then we can reduce this system to upper triangular form

I (i) Subtract two times equation one from equation two

I (ii) Subtract -1 times equation one from equation three

I (iii) Subtract -3 times the second equation from the third
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Gaussian elimination (2)

The resulting equivalent system is

Ux =

 2 1 1
0 −1 −2
0 0 −4

 x1
x2
x3

 =

 1
−4
−4


This system can be solved by back substitution.

If we have a different right-hand side, do we have to do the
same operations? Or can we save what we did?
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Gaussian elimination (3)

The first reduction step was ’Subtract two times equation one
from equation two’. The so-called elementary matrix E2,1 that
performs this operations is

E2,1 =

 1 0 0
−2 1 0
0 0 1

 .
Multiplying with this matrix yields

E2,1A =

 2 1 1
0 −1 −2
−2 2 1

 .
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Gaussian elimination (4)
The second reduction step ’Subtract -1 times equation one
from equation three’ is equivalent with multiplying with the
matrix

E3,1 =

 1 0 0
0 1 0
1 0 1


and ’Subtract -3 times the second equation from the third’ is
equivalent with multiplying with the matrix

E3,2 =

 1 0 0
0 1 0
0 3 1


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Gaussian elimination (5)

Hence we can write

E3,2E3,1E2,1A = U

Notice that the matrix E3,2E3,1E2,1 is a product of lower
triangular matrices and therefore lower triangular.
The above equation can also be written as

A = E−12,1E
−1
3,1E

−1
3,2U

Since the inverse of a lower triangular matrix is lower
triangular, the matrix E−12,1E

−1
3,1E

−1
3,2 must be lower triangular:

L = E−12,1E
−1
3,1E

−1
3,2 A = LU
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Gaussian elimination (6)

It is easy to check that

E−12,1 =

 1 0 0
2 1 0
0 0 1

 E−13,1 =

 1 0 0
0 1 0
−1 0 1

E−13,2 =

 1 0 0
0 1 0
0 −3 1


and that

L = E−12,1E
−1
3,1E

−1
3,2 =

 1 0 0
2 1 0
−1 −3 1


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Gaussian elimination (7)

Clearly L is lower triangular, with 1’s on the main diagonal.
The special thing is that the entries below the diagonal are
exactly the multipliers 2, -1, -3 used in the elimination steps.

The example shows that an LU -decomposition can be made by

I Reducing A to upper triangular form by elementary row
operations, this gives U ,

I Storing all the multipliers in a lower triangular matrix L
that has ones on the main diagonal.
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Gaussian elimination algorithm

Given A ∈ Rn×n the following algorithm computes the
factorization A = LU .

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do
η := aik/akk
aik = η
for j = k + 1, . . . , n
aij := aij − η akj

end for
end for

end for
The element akk is called pivot
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Some remarks (1)

I The algorithm overwrites the matrix A with the matrix U
(upper triangular part) and the matrix L (strictly lower
triangular part). The main diagonal of L is not stored.

I The value akk is called the pivot. The numerical stability
of the algorithm depends on the size of the pivots. If a
pivot is zero the algorithm breaks down. If a pivot is close
to zero large numerical errors may occur.

I The number of floating point operations to compute the
LU -decomposition is 2n3/3.
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Some remarks (2)

I A more ’symmetrical’ variant of the LU -decomposition is
the LDU -decomposition. Here D is a diagonal that scales
the main diagonal elements of U to one.

I A system of the form Ax = LUx = b can be solved by a
forward substitution Ux = L−1b, and a back substitution
x = U−1L−1b. Once the LU -decomposition of A is
known, a system with A can simply be solved by forward
and back substitution with the LU factors.

I Both the back and forward substitution (algorithms given
in the next two slides) require n2 flops.
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Forward substitution

Given an n× n nonsingular lower triangular matrix L and
b ∈ Rn, the following algorithm finds y ∈ Rn such that Ly = b.

Forward substitution algorithm
for i = 1, . . . , n do

yi := bi
for j = 1, . . . , i− 1 do
yi := yi − `ij yj

end for
yi := yi/`ii

end for
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Backward substitution

Given an n× n nonsingular upper triangular matrix U and
y ∈ Rn, the following algorithm finds x ∈ Rn such that
Ux = y.

Back substitution algorithm
for i = n, . . . , 1 do

xi := yi
for j = i+ 1, . . . , n do
xi := xi − uij xj

end for
xi := xi/uii.

end for
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Round off errors, a bound

We use the following conventions, if A and B are in Rm×n

then

I B = |A| means
bij = |aij | , i = 1, . . . ,m , j = 1, . . . , n.

I B ≤ A means bij ≤ aij , i = 1, . . . ,m , j = 1, . . . , n.

Theorem Let L̂ and Û be the computed LU factors of the
n× n floating point matrix A. Suppose that ŷ is the computed
solution of L̂y = b and x̂ is the computed solution of Ûx = ŷ.
Then (A+4A)x̂ = b with

|∆A| ≤ n(3|A|+ 5|L̂||Û |)u+O(u2).

Proof: see Golub and van Loan p.107.
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Round off errors, discussion

The term |L̂||Û | can be large if a small pivot is encountered
during the elimination process.
Small pivots do not necessarily indicate an ill-conditioned
problem. Consider for example

A =

[
ε 1
1 0

]
Gaussian elimination (without further precautions) can give
arbitrarily poor results, even for well-conditioned problems. The
method may be unstable, depending on the matrix.
Assignment: Compute the LU factorisation of A and bound
|∆A|.
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Permutations
The problem in the previous example can of course be solved
by interchanging the rows (or columns). This is a row
permutation.

Suppose that the i-th column of the identity matrix I is
denoted by ei. A row permuted version of A is given by PA,

where P =

 eTs1
...
eTsn

.

The matrix AP T is a column permuted version of A.

Exchanging rows (and/or columns) for selecting large pivots is
called pivoting.
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Partial pivoting

A simple strategy to avoid small pivots is partial pivoting:

I Determine the in absolute value largest element below the
pivot,

I Interchange the corresponding row with the pivot row.

I Eliminate all nonzeros elements below the pivot.

Remark: partial pivoting only works well if the elements of the
matrix are scaled in some way.

Scientific Computing October 3, 2018

26



Partial pivoting (2)

Partial pivoting leads to the decomposition

PA = LU.

The permutation matrix P corresponds to all the row
exchanges.

Using partial pivoting we can show that no multiplier is greater
than one in absolute value.
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Symmetric positive definite systems

In many applications the matrix A, used in the linear system
Ax = b, is symmetric and positive definite. So matrix A
satisfies the following rules:

- A = AT ,

- xTAx > 0 , x ∈ Rn , x 6= 0.

For this type of matrices, memory and CPU time can be saved.
Since A is symmetric only the elements
aij , i = j, . . . , n ; j = 1, . . . , n should be stored in memory.
Moreover, a cheap LU -like decomposition exists.
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The Choleski decomposition

Algorithm
Given a symmetric positive definite A ∈ Rn×n, the following
algorithm computes A = CCT , with C lower triangular. The
entry aij is overwritten by cij(i ≥ j).

for k = 1, 2, . . . , n do

akk := (akk −
k−1∑
p=1

a2kp)
1/2

for i = k + 1, . . . , n do

aik := (aik −
k−1∑
p=1

aipakp)/akk

end for
end for
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The Choleski decomposition (2)

The Choleski decomposition has many favourable properties:

I The number of flops for the algorithm is n3/3; both
memory and operations are half that of the LU
decomposition for general matrices.

I The inequality

c2ij ≤
i∑

p=1

c2ip = aii ,

shows that the elements in C are bounded: pivoting is not
necessary.
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Banded systems

In many applications the matrix is banded. This is the case
whenever the equations can be ordered so that each unknown
xi appears in only a few equations in a ’neighborhood’ of the
ith equation.

The matrix A has upper bandwidth q where q ≥ 0 is the
smallest number such that aij = 0 whenever j > i+ q and
lower bandwidth p where p ≥ 0 is the smallest number such
that aij = 0 whenever i > j + p.

Typical examples are obtained after finite element or finite
difference discretizations.
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Banded systems (2)

Substantial reduction of work and memory can be realized for
these systems, since L and U inherit the lower and upper
bandwidth of A.

This is easily checked by writing down some elimination steps
for a banded system of equations.

The LU decomposition can now be obtained using 2npq flops
if n� p and n� q.

However, the band structure is to a large extend destroyed if
partial pivoting is applied.
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General sparse systems (1)

Large matrices with general sparsity patterns arise for example
in unstructured finite element calculation.

In order to limit the amount of fill in the matrix is usually
reordered before it is decomposed.
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Example: ocean circulation

Numerical model: discretisation with FEM
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Example: Nonzero pattern

0 0.5 1 1.5 2 2.5 3 3.5 4
x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

x 104

nz = 294785

The nonzero pattern of the resulting matrix A

Scientific Computing October 3, 2018

35



General sparse systems (2)

Solving a sparse system Ax = b with a direct method normally
consists of three phases:

I An analysis phase: a symbolic decomposition is made
during which a suitable ordering is determined.

I A decomposition phase: the permuted matrix is
decomposed.

I A solution phase: the solutions for one or more right-hand
sides are determined using back and forward substitution,
and back permutation to the original ordering.
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Ordering algorithms

Quite sophisticated ordering algorithms exist to minimise the
fill in. They are based on graph theory.
Some general principles that are used are:

I Try to minimise the bandwidth in every elimination step.
An example is the Reverse Cuthill-McKee algorithm.

I Select rows with the fewest nonzeros. An example is the
minimum degree ordering.
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Concluding remarks

I Direct solution methods are the preferred choice for dense
systems.

I Also for sparse methods they are widely used, in particular
for positive definite banded systems.

I A few of the state-of-the-art solvers are: MUMPS,
Super-LU, Pardiso, UMFpack (matlab \)

I For very large sparse systems iterative methods are usually
preferred. However, most of the time a combination of the
two is used. Iterative methods can be used to improve the
solution computed with the direct method, or an
approximate factorisation is used to accelerate the
convergence of an iterative method. These issues will be
discussed in the next lessons.
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