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Program October 18

I Choleski decomposition

I Sparse matrices and reorderings

I The Power method
I Basic iterative methods for linear systems

I Richardson’s method
I Jacobi, Gauss-Seidel and SOR
I Iterative refinement
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Symmetric positive definite systems

In many applications the matrix A, used in the linear system
Ax = b, is symmetric and positive definite. So matrix A
satisfies the following rules:

- A = AT ,

- xTAx > 0 , x ∈ Rn , x 6= 0.

For this type of matrices, memory and CPU time can be saved.
Since A is symmetric only the elements
aij , i = j, . . . , n ; j = 1, . . . , n should be stored in memory.
Moreover, a cheap LU -like decomposition exists.
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The Choleski decomposition

Algorithm
Given a symmetric positive definite A ∈ Rn×n, the following
algorithm computes A = CCT , with C lower triangular. The
entry aij is overwritten by cij(i ≥ j).

for k = 1, 2, . . . , n do

akk := (akk −
k−1∑
p=1

a2kp)
1/2

for i = k + 1, . . . , n do

aik := (aik −
k−1∑
p=1

aipakp)/akk

end for
end for
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The Choleski decomposition (2)

The Choleski decomposition has many favourable properties:

I The number of flops for the algorithm is n3/3; both
memory and operations are half that of the LU
decomposition for general matrices.

I The inequality

c2ij ≤
i∑

p=1

c2ip = aii ,

shows that the elements in C are bounded: pivoting is not
necessary.
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Banded systems

In many applications the matrix is banded. This is the case
whenever the equations can be ordered so that each unknown
xi appears in only a few equations in a ’neighborhood’ of the
ith equation.

The matrix A has upper bandwidth q where q ≥ 0 is the
smallest number such that aij = 0 whenever j > i+ q and
lower bandwidth p where p ≥ 0 is the smallest number such
that aij = 0 whenever i > j + p.

Typical examples are obtained after finite element or finite
difference discretizations.
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Banded systems (2)

Substantial reduction of work and memory can be realized for
these systems, since L and U inherit the lower and upper
bandwidth of A.

This is easily checked by writing down some elimination steps
for a banded system of equations.

The LU decomposition can now be obtained using 2npq flops
if n� p and n� q.

However, the band structure is to a large extend destroyed if
partial pivoting is applied.
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General sparse systems (1)

Large matrices with general sparsity patterns arise for example
in unstructured finite element calculation.

In order to limit the amount of fill in the matrix is usually
reordered before it is decomposed.

Scientific Computing October 18, 2017

8



Example: ocean circulation

Numerical model: discretisation with FEM
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Example: Nonzero pattern
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The nonzero pattern of the resulting matrix A
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General sparse systems (2)

Solving a sparse system Ax = b with a direct method normally
consists of three phases:

I An analysis phase: a symbolic decomposition is made
during which a suitable ordering is determined.

I A decomposition phase: the permuted matrix is
decomposed.

I A solution phase: the solutions for one or more right-hand
sides are determined using back and forward substitution,
and back permutation to the original ordering.
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Ordering algorithms

Quite sophisticated ordering algorithms exist to minimise the
fill in. They are based on graph theory.
Some general principles that are used are:

I Try to minimise the bandwidth in every elimination step.
An example is the Reverse Cuthill-McKee algorithm.

I Select rows with the fewest nonzeros. An example is the
minimum degree ordering.
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Some remarks

I Direct solution methods are the preferred choice for dense
systems.

I Also for sparse methods they are widely used, in particular
for positive definite banded systems.

I A few of the state-of-the-art solvers are: MUMPS,
Super-LU, Pardiso, UMFpack (matlab \)

I For very large sparse systems iterative methods are usually
preferred. However, most of the time a combination of the
two is used. Iterative methods can be used to improve the
solution computed with the direct method, or an
approximate factorisation is used to accelerate the
convergence of an iterative method.
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The Power method

The Power method is the classical method to compute largest
eigenvalue and eigenvector of a matrix.

Multiplying with a matrix amplifies strongest the eigendirection
corresponding to the (in modulus) largest eigenvalues.

Successively multiplying and scaling (to avoid overflow or
underflow) yields a vector in which the direction of the largest
eigenvector becomes more and more dominant.
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Algorithm

The Power method
q0 ∈ Cn is given
for k = 1, 2, ...

zk = Aqk−1
qk = zk/‖zk‖2
λ(k) = qHk−1zk

endfor

It can easily be seen that if qk−1 is an eigenvector
corresponding to λj then

λ(k) = qHk−1Aqk−1 = λjq
H
k−1qk−1 = λj‖qk−1‖22 = λj .
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Convergence (1)

Assume that the n eigenvalues are ordered such that
|λ1| > |λ2| ≥ ... ≥ |λn| and the eigenvectors by x1, ..., xn so
Axi = λixi. Each arbitrary starting vector q0 can be written as:

q0 = a1x1 + a2x2 + ...+ anxn

and if a1 6= 0 it follows that

Akq0 = a1λ
k
1(x1 +

n∑
j=2

aj
a1

(
λj
λ1

)k
xj) .
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Convergence (2)

Using this equality we conclude that

|λ1 − λ(k)| = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
, and also that

the angle between qk and x1 is of order |λ2λ1 |
k.
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Convergence (3)

Note that there is a problem if |λ1| = |λ2|, which is the case
for instance if λ1 = λ̄2. A vector q0 which has a nonzero
component in x1 and x2 can be written as

q0 = a1x1 + a2x2 +

n∑
j=3

ajxj .

The component in the direction of x3, ..., xn will vanish in the
Power method, but qk will not tend to a limit.
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Iterative methods for linear systems

Iterative methods construct successive approximations xk to
the solution of the linear systems Ax = b. Here k is the
iteration number, and the approximation xk is also called the
iterate. The vector rk = b−Axk is the residual.

The iterative methods are composed of only a few different
basic operations:

I Products with the matrix A

I Vector operations (updates and inner product operations)

I Preconditioning operations
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Preconditioning

Usually iterative methods are applied not to the original system

Ax = b

but to the preconditioned system

M−1Ax = M−1b

where the preconditioner is chosen such that:

I Preconditioning operations (operations with M−1) are
cheap;

I The iterative method converges much faster for the
preconditioned system.
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Basic iterative methods

The first iterative methods we will discuss are the basic
iterative methods. Basic iterative methods only use information
of the previous iteration.

Until the 70’s they were quite popular. Some are still used but
as preconditioners in combination with an acceleration
technique. They also still play a role in multigrid techniques
where they are used as smoothers.
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Basic iterative methods (2)

Basic iterative methods are usually constructed using a
splitting of A:

A = M −N.

Successive approximations are then computed using the
iterative process

Mxk+1 = Nxk + b

which is equivalent too

xk+1 = xk +M−1(b−Axk)

The vector rk = b−Axk is called the residual, and the matrix
M is a preconditioner. The next few frames we look at M = I.
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Richardson’s method

The choice M = I, N = I −A gives Richardson’s method,
which is the most simple iterative method possible.

The iterative process becomes

xk+1 = xk + (b−Axk) = b+ (I −A)xk
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Richardson’s method (2)

This process yields the following iterates:
Initial guess x0 = 0

x1 = b

x2 = b+ (I −A)x1 = b+ (I −A)b

x3 = b+ (I −A)x2 = b+ (I −A)b+ (I −A)2b

Repeating this gives

xk+1 =

k∑
i=0

(I −A)ib
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Richardson’s method (3)

So Richardson’s method generates the series expansion for 1
1−z

with z = I −A. If this series converges we have

∞∑
i=0

(I −A)i = A−1

The series expansion for 1
1−z converges if |z| < 1. If A is

diagonalizable then the series
∑∞

i=0(I −A)i converges if

|1− λ| < 1

with λ any eigenvalue of A. For λ real this means that

0 < λ < 2
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Richardson’s method (4)

In order to increase the radius of convergence and to speed up
the convergence, one can introduce a parameter α:

xk+1 = xk + α(b−Axk) = αb+ (I − αA)xk

It is easy to verify that if all eigenvalues are real and positive
the optimal α is given by

αopt =
2

λmax + λmin
.
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Richardson’s method (5)

Before, we assumed for the initial guess x0 = 0.
Starting with another initial guess x0 only
means that we have to solve a shifted system

A(y + x0) = b⇔ Ay = b−Ax0 = r0

So the results obtained before remain valid, irrespective of the
initial guess.
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Richardson’s method (6)

We want to stop once the error ‖xk − x‖ < ε, with ε some
prescribed tolerance. Unfortunately we do not know x, so this
criterion does not work in practice.
Alternatives are:

I ‖rk‖ = ‖b−Axk‖ = ‖Ax−Axk‖ < ε
Disadvantage: criterion not scaling invariant

I ‖rk‖
‖r0‖ < ε
Disadvantage: good initial guess does not reduce the
number of iterations

I ‖rk‖
‖b‖ < ε

Seems best

Scientific Computing October 18, 2017

28



Convergence of Basic Iterative Methods

To investigate the convergence of Basic Iterative Methods in
general, we look again at the formula

Mxk+1 = Nxk + b.

Remember that A = M −N . If we subtract Mx = Nx+ b
from this equation we get a recursion for the error e = xk − x:

Mek+1 = Nek

Scientific Computing October 18, 2017

29



Convergence of Basic Iterative Methods (2)

We can also write this as

ek+1 = M−1Nek

This is a power iteration and hence the error will ultimately
point in the direction of the largest eigenvector of M−1N . The
rate of convergence is determined by the spectral radius
ρ(M−1N) of M−1N :

ρ(M−1N) = |λmax(M−1N)| .

For convergence we must have that

ρ(M−1N) < 1 .
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Linear convergence

Ultimately, we have ‖ek+1‖ ≈ ρ(M−1N)‖ek‖, which means
that we have linear convergence
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Classical Basic Iterative Methods

We will now briefly discuss the three best known basic iterative
methods

I Jacobi’s method

I The method of Gauss-Seidel

I Successive overrelaxation

These methods can be seen as Richardson’s method applied to
the preconditioned system

M−1Ax = M−1b .
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Jacobi’s method

We first write A = L+D + U , with L the strictly lower
triangular part of A, D the main diagonal and U the strictly
upper triangular part. Jacobi’s method is now defined by the
choice M = D, N = −L− U . The process is given by

Dxk+1 = (−L− U)xk + b

or equivalently by

xk+1 = xk +D−1(b−Axk)

Scientific Computing October 18, 2017

33



The Gauss-Seidel method

We write again A = L+D + U . The Gauss-Seidel method is
now defined by the choice M = L+D, N = −U . The process
is given by

(L+D)xk+1 = −Uxk + b

or equivalently by

xk+1 = xk + (L+D)−1(b−Axk)
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Successive overrelaxation (SOR)

We write again A = L+D + U . The SOR method is now
defined by the choice M = D + ωL, N = (1− ω)D − ωU .
The parameter ω is called the relaxation parameter. The
process is given by

(D + ωL)xk+1 = ((1− ω)D − ωU)xk + ωb

or as
xk+1 = xk + ω(D + ωL)−1(b−Axk)

With ω = 1 we get the method of Gauss-Seidel back. In
general the optimal value of ω is not known.
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Iterative refinement

Before the break we discussed direct methods. For numerical
stability it is necessary to perform partial pivoting. However,
this goes at the expense of the efficiency.
If the LU -factors are inaccurate, such that A = LU −N , they
can still be used as preconditioner for the process

xi+1 = xi + (LU)−1(b−Axi)

This is called iterative refinement and is used to improve the
accuracy of the direct solution.
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Concluding remarks

During this lesson we discussed so called Basic Iterative
Methods, also called Stationary Iterative Methods.

They only use information from the previous iteration.

In the next lessons we will see methods that use information
form all previous iterations to find optimal solutions.

Scientific Computing October 18, 2017

37


