DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST SCIENTIFIC COMPUTING (wi4201) Wednesday January 6 2016, 13:30-16:30

1. (a) The 2-norm of a vector x is given by: $\|x\|_{2}=\sqrt{x^{T} x}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$. The 2 -norm of matrix A is given by

$$
\|A\|_{2}=\sup \frac{\|A x\|_{2}}{\|x\|_{2}} .
$$

(b) A is an SPD matrix means that A is symmetric and Positive Definite $\left(x^{T} A x>0\right.$ for all vectors $x \neq 0$). Since A is symmetric we know that the eigenvalues λ_{j} are real values and the eigenvectors span \mathbb{R}^{n} and can be chosen as a orthonormal set. Let us denote the eigenvectors by v_{j} for $j=1, \ldots, n$. From the definition of an eigenvector and the Positive Definiteness it follows that

$$
v_{j}^{T} A v_{j}=v_{j}^{T} \lambda_{j} v_{j}=\lambda_{j}>0,
$$

so all eigenvalues are positive. Take an arbitrary vector $x=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$. Substitute this vector in the definition of the 2 -norm of matrix A and use the orthonormality of the eigenvectors which leads to:

$$
\|A\|_{2}^{2}=\sup \frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}}=\sup \frac{\alpha_{1}^{2} \lambda_{1}^{2}+\ldots+\alpha_{n}^{2} \lambda_{n}^{2}}{\alpha_{1}^{2}+\ldots+\alpha_{n}^{2}}
$$

(c) Hint: Note that the matrix is symmetric. The 2 -norm of a symmetric matrix is given by the maximal absolute eigenvalue. Using Gershgorin Leads to the upperbound $\|A\|_{2} \leq 8$.
(d) Hint: see section 4.3.1 of the lecture notes.
2. (a) Hint: see the second half of page 100 of the lecture notes, where the answer is given for the A -norm
(b) Hint: see section 7.1.1
(c) Hint: Theorem 7.1.2
(d) Per iteration you need 2 innerproducts (store the norm of the residual) and 3 vector updates. This costs $10 n$ flops. Furthermore a matrix vector product is needed. For a 2D Poisson equation, there are 5 nonzero elements per row, to this costs $9 n$ flops. Memory: the matrix A has to be stored. Furthermore r, p, u has to be stored, which costs $3 n$ memory positions.
3. (a) Hint, see Section 7.3.1
(b) Hint, see Section 7.3.1 and properties mentioned during the lectures.
(c) Hint, substitute A and simplify the expression
(d) Hint, see Section 7.3.6.

