DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST SCIENTIFIC COMPUTING (wi4201)
 Wednesday January 6 2016, 13:30-16:30

1. (a) Give the definition of the 2-norm of a vector x and a matrix A.
(b) A is an SPD matrix. Show that $\|A\|_{2}$ is given by:

$$
\|A\|_{2}=\max \left\{\lambda_{j} \mid \lambda_{j} \in \sigma(A)\right\}
$$

(c) Give an upperbound for $\|A\|_{2}$, where A is given by:

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 4 & -2 \\
0 & -2 & 6
\end{array}\right)
$$

(d) Given the linear system $A u=b$ and the perturbed system $A(u+\Delta u)=b+\Delta b$. Derive an upperbound for $\frac{\|\Delta u\|}{\|u\|}$ where $\|\cdot\|$ is an arbitrary vector norm.
2. In this exercise we have to solve a linear system $A u=b$, where A is an $n \times n \mathrm{SPD}$ matrix.
(a) Take $u_{1}=\alpha b$. Derive an expression for α such that $\left\|u-u_{1}\right\|_{2}$ is minimal.
(b) Give the definition of a Krylov subspace of dimension k, matrix A and starting vector b.
(c) Give the optimisation property of the Conjugate Gradient method. Motivate why $u_{n}=u$ (without rounding errors).
(d) Given the algorithm at the top of page 101. Determine the minimal amount of memory and flops per iteration (+ motivation).
3. (a) Give the three most important properties of the Conjugate Gradient method.
(b) Give three classes of Krylov type methods for the solution of $A u=b$, where A is a non-singular matrix. Summarise the advantages and disadvantages for each class of methods.
(c) Suppose that A can be written as: $A=X D X^{-1}$. Show that

$$
A+3 A^{2}-A^{3}=X\left(D+3 D^{2}-D^{3}\right) X^{-1}
$$

(d) Given figure 7.9 in the lecture notes. Motivate when it is beneficial to use Bi-CGSTAB, GMRESR or GMRES.

