
Computational Science and
Engineering (CS & E)

CS & E deals with the simulation of processes, in engineering,

physical but also in economic sciences. The simulation is

typically supercomputer based.

Numerical Simulation
on supercomputers

Computational Science
 and Engineering

• Examples of application areas are fluid dynamics (the

aerodynamics of cars and aircrafts, combustion processes,

pollution spreading), semi conductor technology (breeding

of cristals, oxidation processes), weather and climate

prediction (the growing and tracking of tornados, global

warming) but also financial mathematics (prediction of

stock and option prices).

• Numerical simulation is nowadays an equal and

indispensable partner in the advance of scientific

knowledge next to theoretical and experimental research.

S
IM

U
LA

T
IO

N

E
X

P
E

R
IM

E
N

T

T
H

E
O

R
Y

Scientific Computing, wi4201/Slide–Nr. 3

Interdisciplinary

• It is characteristic for scientific computing that practical

relevant results are only achieved by combining methods

and research results from different scientific areas.

• The application area brings the typical problem

dependent knowhow and the knowledge to verify the

computed results by means of real experiments.

• Applied mathematics deals with the definition of a

mathematical model and develops fast numerical methods

to solve the model with a computer.

• Computer science typically takes care for the usability,

and programming of modern supercomputers and designs

powerful software packages.

Physics / Engineering sciences

Computer science
Applied mathematics

Computational Science and Engineering

Scientific Computing, wi4201/Slide–Nr. 4

Six Steps

Basically, we can distinguish six important steps in simulation:

setting up a model, numerical treatment, implementation,

embedding, visualization and validation:

Setting up a model. At the start of each simulation we have

the development of a mathematical model of the process

of interest. This must be a simplified image of the reality that

contains many relevant phenomena. It must be formulated

such that the model can be solved with a computer and has a

unique solution. Often we obtain a system of (not analytically

solvable) differential equations.

The numerical treatment. As a computer can only handle

discrete numbers, we have to discretize the model (the

equations and the solution domain), so that the computer can

deal with them.

For the solution of the resulting matrix from the discrete

equations, mathematicians provide efficient numerical

methods.

The implementation. Next to the choice of computer language

and data structures, especially the distributed computation is

of major importance.

Scientific Computing, wi4201/Slide–Nr. 5

4 The embedding. The numerical simulation is just one step

in the product development in industrial applications.

Therefore, we need interfaces, so that we can link the

simulation programme with CAD tools, for example.

Only in this way it is, for example, possible to use

aerodynamics car simulation results on drag coefficients at

an early stage into the design process.

5 The visualisation. Typically, we have after a simulation huge

data sets (not only one drag coefficient as in the example

above).

Often we need the velocity in the complete flow domain,

or one is interested for the optimal control of a robot in

the path of the robot arm. We need to present such results

with the help of computer graphics, i.e. visualization is very

important.

6 The validation. After long computer times with many many

computations, we have the result of a simulation. It is of a

high importance to verify the results obtained.

Scientific Computing, wi4201/Slide–Nr. 6

Introduction

Errors in scientific computing

“If mathematical theories refer to reality,

then they are not certain. If they are certain,

then they do not refer to reality. ”

Seemingly: also numerical mathematics is not an “exact”

science. We wish to compute an exact solution x, but we obtain

an approximation x̂

⇒ An important aspect of numerical math is understanding the

errors made in computing solutions.

⇒ Find an approximation x̂ for the solution x with a known

accuracy (we have to consider possible errors and their

influence on the accuracy.)

•Obtaining an approximate solution without knowing anything

about the approximation error is useless !

Error measures: For x ∈ IR:

|x− x̂| ≤ ǫ Estimate of the absolute error

|x− x̂|
|x| ≤ ǫ Estimate of the relative error

•Area of conflict: Estimates are only of interest, if they are (more

or less) realistic.

Scientific Computing, wi4201/Slide–Nr. 7

Algorithms, Methods, Code

A purpose of scientific computing is the development

algorithms.

Algorithm: (s. computer science)

A set of instructions to carry out certain mathematical,

arithmetical and logical operations (or already known

algorithms) for solving a prescribed problem.

Important: finite algorithm: Solution is obtained after a finite

number of iterations

Example of an infinite algorithm: The Babylonian root extraction

method:

√
a : (a > 0) : x0 > 0 arbitrary

n = 1, 2, 3, ... xn =
1

2
(xn−1 +

a

xn−1

)

Practically: infinite algorithms not interesting.

Infinite algorithm + stopping criterion⇒ finite algorithm

(for example: |xn − xn−1| ≤ ε)

Often: an algorithm = finite algorithm

Scientific Computing, wi4201/Slide–Nr. 8

Introductory example

Babylonian root extraction

Given: a > 0, a ∈ IR

Required:
√

a, or a sufficient good approximation for it

Method:

1) Choose x0 ∈ IR, x0 > 0 arbitrary (f.e., x0 = 1)

2) Compute for n = 1, 2, 3... xn = 1/2(xn−1 + a/xn−1) (∗)
Theorem: The method of Babylonian root extraction, i.e. the

sequence {xn}n∈IN defined by (∗) is well defined for each positive

initial approximation x0. The sequence {xn} converges for each

positive initial approximation x0 towards
√

a. Further, it can be

shown that:

(1) xn ≥ xn+1 ≥
√

a for n = 1, 2, ...

(2) xn ≥
√

a ≥ a/xn for n = 1, 2, ...

(3) (xn −
√

a)/
√

a ≤ 1/2n−1(x1 −
√

a)/
√

a for n = 1, 2, ...

(apriori bound)

(4) (xn −
√

a)/
√

a ≤ (xn − xn−1)
2/2a for n = 1, 2, ...

(aposteriori bound)

Scientific Computing, wi4201/Slide–Nr. 9

Derivation/ motivation of the algorithm:

Desired: zeros of g(x) = x2 − a = 0

Derive via the NewtonRaphson algorithm:

xn = xn−1 −
g(xn−1)

g′(xn−1)

xn = xn−1 −
x2

n−1 − a

2xn−1

= xn−1 −
1

2
xn−1 +

1

2

a

xn−1

xn =
1

2
(xn−1 +

a

xn−1

)

Observation: Error bound (3) is correct, but it is not sharp:

(a = 0.64,
√

a = 0.8)

n xn xn −
√

a (xn −
√

a)/
√

a (3)

0 0.76 0.04 0.05 0.05

1 0.801052631 0.001052631 0.001316 ... 0.001316

2 0.800000691 0.000000691 0.000000864 0.000658

3 0.800000000 . . . < 10−10 < 1.2510−10 0.000329

Improved error bound:

xn −
√

a√
a

=
1

2

xn−1 −

√
a√

a

2 √
a

xn−1

⇒ If x0 ≥
√

a:
xn −

√
a√

a
≤ 1

22n−1
(
x0 −

√
a√

a
)2

n

Scientific Computing, wi4201/Slide–Nr. 10

Scheme

Reality phenomenon

Mathematic relation
 between defined
 quantities

Building a mathematical
model (Idealisation)

MODELLING ERROR

Include measurements or other data

Solve on computers

ERROR IN DATA

ERRORS IN THE SOLUTION OF
THE PROBLEM (DISCRETIZATION,
TRUNCATION ERROR)

ROUND−OFF ERRORS

Treat problem with numerical methods

Numerical method for
solution of the math. problem

Numerical solution:

Numbers

Mathematical problem

Scientific Computing, wi4201/Slide–Nr. 11

Modeling errors

• Practical problems are physical, chemical, biological or

economical problems.

It is necessary to set up a model, which is often a partial

differential equation (pde).

But: (for example, for simplicity) a linear simplification of

nonlinear processes

In fluid mechanics:

Laminar – turbulent flow

Euler equations←→ NavierStokes equations

(without friction – model with friction)

Data errors

Except for trivial cases, most data that enter a computation

are afflicted with errors, for example with measurement errors.

These can have a big or a small effect on the numerical solution:

Bad↔ good condition of the problem

Scientific Computing, wi4201/Slide–Nr. 12

Turbulence: Modeling complex
flow phenomena

(Leonardo da Vinci ∼ 1508)

Scientific Computing, wi4201/Slide–Nr. 13

Re = 0.16,

Laminar, stationary,

symmetric

Re = 26,

Laminar, stationary,

recirculation

Re = 140,

Transition, unsteady,

von Kármán vortex street

Re = 2000,

Turbulent, unsteady

Re = 10000,

Turbulent, unsteady

Scientific Computing, wi4201/Slide–Nr. 14

Examples of turbulent flow

leaflet

stent

 blood flow
 outlet

⇑

 blood flow
 inlet

⇑

60° planes of symmetry

contact area

Scientific Computing, wi4201/Slide–Nr. 16

Necessity for numerical simulation

• For optimization of designs, engineers have to predict flow

phenomena

• Experiments on the real object are often impossible or very

expensive

• Model experiments can be expensive and time consuming,

certain flow phenomena cannot be simulated in a

laboratory

⇒ Computations are for certain flows the only way to gain

insight, for other flows they are cheaper than experiments.

Scientific Computing, wi4201/Slide–Nr. 17

The mathematical equations

Flow phenomena are usually described by the NavierStokes

equations. xmomentum:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

∂p

∂x
=

1

Re

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

Re = UL/ν (Reynoldsnumber)

(similar for y and zmomentum)

(Navier 1785-1835, Stokes 1819-1903)

continuity equation for an incompressible fluid:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

• Re < Retr: laminar, Re > Retr: turbulent

• System of nonlinear partial differential equations,

Solution is ‘only’ possible with numerical methods

• There are methods, by which it is in principle possible to

solve the equations:⇒ direct numerical simulation (DNS)

Scientific Computing, wi4201/Slide–Nr. 18

The Reynoldsnumber

=⇒ Re = UL/ν

• spoon in cup of coffee Re ∼ 104

• air flow around a car (50km/h) Re ∼ 3 · 106

• water flow in a river Re ∼ 107

• air flow around an aircraft Re ∼ 3 · 108

Scientific Computing, wi4201/Slide–Nr. 19

DNS, an example

• channel flow at Re = U · L/ν = 105

• smallest length scale η ≈ L/1000

• resolve the smallest turbulence movements:

1000 points in each direction: 109 points

• computer storage: > 10× 109

• number of computing operations: ∼ 500

• number of time steps: ∼ 10000

⇒ Total number of operations 5× 1015

• DNS is not yet applicable for practical applications

• With the increasing power of supercomputers, it becomes

possible to analyze increasingly larger Reynoldsnumbers.

• Then it is possible to study the basic mechanisms of

turbulence.

Scientific Computing, wi4201/Slide–Nr. 20

Leonardo

DNS

Re = 22000

(numerical simulation)

Scientific Computing, wi4201/Slide–Nr. 21

Discretization error

���
�

���
�

���
�

���
�

��	
	

�

�

x

f(x)

Only n values are obtained: gives an approximate solution

curve.

Round off errors

Only numbers of a finite length are used in computers.

Practically, this means that already during multiplication/

division numbers are rounded. Each separate round off error

may be small, however, during long calculations many small

errors can add up, to make a solution totally useless.

Stable↔ unstable algorithms

Scientific Computing, wi4201/Slide–Nr. 22

Errors

Scientific Computing, wi4201/Slide–Nr. 23

The simulation of recirculation in
the Atlantic Ocean

4/3 Grad Atlantic Model 1/3 Grad Model

Detail near equator 148 km ca. 27 km

Detail in northern latitudes 70 km 13 km

grid points 78 × 150 × 45 308 × 600 × 45

Proc. Cray T3E 15 120

elapsed time 1.5 hours 8 hours

(for 1 year simulation)

Simulation time for future applications:

for simulation of biologicalphysical processes: 35 years

for the spreading of geochemical species: 50 years

for the spreading and absorption of CO2: > 100 years

Remark: For many applications it would be appropriate to

consider global models. The costs in CPU time would then be

four times as high.

Presently, research considers coupled models, based on a

coupling of oceanatmospheregeosphere.

Scientific Computing, wi4201/Slide–Nr. 24

Linear system with bad condition

1 1

1 1− ε

 x =

4

4− ε

 Ax = b

x∗ =

3

1

But also:

1 1

1 1− ε

 x̃ =

4 + ε

4− 2ε

 Ax̃ = b̃

x̃∗ =

1 + ε

3

Also: ||b− b̃||∞ = ε, but ||x− x̃|| = max {|2− ε|, 2} = 2

The error of the approximation is always 2, whereas the change

in rhs is only ε !

“Bad condition of the problem”

Geometrical interpretation: Lines cut under a very sharp angle

⇒ Small change in a line changes the cutting point drastically

Scientific Computing, wi4201/Slide–Nr. 25

Influence of round off errors

Problem: Computation of

xn :=
∫

1

0

tn

t + 10
dt for larger n

> 0 clearly

x0 =
∫

1

0

1

t + 10
dt = ln (10 + t)|10 = ln

11

10
= ln 1.1 ≈ 0.0953

xn :=
∫

1

0

tn

t + 10
dt =

∫
1

0

tn−1(t + 10)− 10tn−1

t + 10
dt

=
∫

1

0
tn−1dt− 10xn−1 =

1

n
− 10xn−1

Recursion: xn = 1/n− 10xn−1

⇒ In principle: Problem solved (?)

Practically: computation with 3 decimals gives the

approximations x̃n

x̃0 = 0.0953

x̃1 = 1− 0.953 = 0.047 (x1 = 0.0469..)

x̃2 = 0.5− 0.470 = 0.030 (x2 = 0.0310..)

x̃3 = 0.333− 0.300 = 0.033 (x3 = 0.0232..)

x̃4 = 0.250− 0.330 = −0.08 < 0! (x4 = 0.0185..)

Nonsense x̃3 > x̃2 is already nonsense

Reason: xn−1 contains error ε

⇒ xn contains error approx. 10ε

⇒ xn+1 contains error approx. 100ε. “Unstable recursion”

Scientific Computing, wi4201/Slide–Nr. 26

Remedy here: reversed procedure:

xn−1 =
1

10n
− 1

10
xn =

1

10
(
1

n
− xn)

⇒ Error becomes about 1/10 smaller

Start ?

xn ≤
∫

1

0

1

10
tndt =

1

10(n + 1)
→ 0 (n→∞)

employ recursion with yn = 0, yn−1 = 1/10(1/n− yn)

Error in yn < 1/(10(n + 1))

Error in yn−1 < 1/(100(n + 1))

Error in yn−j < 1/(10j+1(n + 1))

for example,

y8 = 0

ỹ7 = 0.0125

ỹ6 = 0.0143− 0.00125 = 0.0131

ỹ5 = 0.0167− 0.00131 = 0.0154

ỹ4 = 0.0200− 0.00154 = 0.0185

= x4 is 3 digits accurate

Scientific Computing, wi4201/Slide–Nr. 27

