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Preface

In these lecture notes an introduction to Scientific Computing is presented. We start by discussion the
nature and properties of various sources of errors in scientific computing. Thereafter a summary is given
on finite difference methods of boundary value problems. The result of this are large, sparse systems of
linear equations. Fast solution of these systems is very urgent nowadays. The size of the problems can
be 109 unknowns and 109 equations. For medium size problems, direct solution methods are the methods
of choice. For large problems iterative solution methods are required. In order to obtain experience we
start with basic iterative methods. After that we discuss Multi-grid and Preconditioned Krylov subspace
methods, which are state of the art. A distinction is made between various classes of matrices. Besides
fast computation of the solution of a system of linear equations, estimates for eigenvalues and eigenvectors
are also of primary importance for stability analysis, wave phenomena and other physical quantities. In the
final chapter we discuss iterative methods to approximate eigenvalues. These method range from the basic
power method to the state of the art Lanczos and Arnoldi methods.

At the end of the lecture notes many references are given to state of the art Scientific Computing methods.
Here, we will discuss a number of books which are nice to use for an overview of background material.
First of all the books of Golub and Van Loan [27] and Horn and Johnson [36] are classical works on all
aspects of numerical linear algebra. These books also contain most of the material, which is used for direct
solvers. Varga [75] is good starting point to study the theory of basic iterative methods. Krylov subspace
methods and multigrid are discussed in Saad [56] and Trottenberg, Oosterlee and Schüller [67]. Other
books on Krylov subspace methods are [3, 5, 7, 30]. A classic reference for eigenvalue problems is the
work of Wilkinson [78]. Good starting points for iterative solvers are the books by Parlett [48] and Chatelin
[8, 9].

We thank Baljaa Sereeter and Roel Tielen for helping us with the lecture notes.

Delft, July, 2019, C. Vuik
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Chapter 1

Introduction

Computational Science and Engineering (CSE) is a rapidly growing multidisciplinary area with connec-
tions to the sciences, engineering, mathematics and computer science. CSE focuses on the development
of problem-solving methodologies and robust tools for the solution of scientific and engineering problems.
We believe that CSE will play an important if not dominating role for the future of the scientific discovery
process and engineering design. Below we give a more detailed description of Computational Science and
Engineering. For more information on CSE we refer to the Society for Industrial and Applied Mathematics
(SIAM).

In CSE we deal with the simulation of processes, as they occur amongst others in the engineering,
physical and economic sciences. Examples of application areas are fluid dynamics (the aerodynamics
of cars and aircrafts, combustion processes, pollution spreading), semi-conductor technology (breeding of
crystals, oxidation processes), weather and climate prediction (the growing and tracking of tornados, global
warming), applied physics (many particle simulations, protein folding, drug design) but also financial math-
ematics (prediction of stock and option prices). Simulation is nowadays an equal and indispensable partner
in the advance of scientific knowledge next to the theoretical and experimental research.

It is characteristic for CSE that practical relevant results are typically achieved by combining methods
and research results from different scientific areas (see Figure 1.1).

Figure 1.1: Embedding of computational science and engineering.

The application area brings the typical problem-dependent know-how, the knowledge to formulate the
problem and model and to verify the computed results by means of real experiments. Applied mathematics
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deals with the definition of a mathematical model, existence and uniqueness results and develops efficient
methods to solve the mathematical model with a computer. Computer science typically takes care for the
usability, and programming of modern computers and designs powerful software packages. Especially
the interplay of the disciplines is necessary for success. For instance: it is possible to parallelize a poor
mathematical method and implement it on a supercomputer, but this does not help us much! We need
much more a continuing development of mathematical models and numerical algorithms, the transfer of
the algorithms into powerful and user-friendly software, running this on state-of-the-art computers that
steadily increase their performance.

Basically, we can distinguish a number of important steps in simulation:

• Setting up a model.
At the start of each simulation we have the development of a mathematical model of the process of
interest. This must be a simplified image of the reality that contains many relevant phenomena. It
must be formulated such that the model has a (unique) solution. Often we obtain a system of (not
analytically solvable) differential equations.

• The analytical treatment.
Analytical tools can be used to obtain properties of the solution: existence, uniqueness, maximum
principle etc. Furtermore for simple problems an analytical solution can be found. In a number of
cases approximate solutions can be derived using an asymptotical approach.

• The numerical treatment.
Since a computer can only handle discrete numbers, we have to discretize the model (the equations
and the solution domain), so that the computer can deal with them. For the solution of the resulting
matrix from the discrete equations, mathematicians provide efficient methods.

• The implementation.
Next to the choice of computer language and data structures, especially the distributed computation
is of major importance.

• The embedding.
The numerical simulation is just one step in the product development in industrial applications.
Therefore, we need interfaces, so that we can link the simulation programme with CAD tools. Only
in this way it is, for example, possible to use aerodynamics car simulation results on drag coefficients
at an early stage into the design process.

• The visualisation.
Typically, after a simulation we have huge data sets (not only one drag coefficient as in the example
above). Often we need the velocity in the complete flow domain, or one is interested for the optimal
control of a robot in the path of the robot arm. We need to present such results with the help of
computer graphics, so visualisation is very important.

• The validation.
After long computer times with many many computations, we have the result of a simulation. It is
of a primary importance to verify the results obtained.

1.1 Errors in scientific computing
In scientific computing, we wish to compute an exact solution u, but we obtain an approximation ûh on
a numerical grid after a number of iterations of an iterative solution method implemented on a computer.
An important aspect of scientific computing is therefore the understanding of the errors made during the
computation of solutions. The aim is to find an approximation ûh for the solution u with a known accuracy.
One has to consider the possible errors occurring and their influence on the accuracy of the approximation.
Obtaining an approximate solution without knowing anything about the approximation error is useless.
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Error measures include the absolute and relative error in some norm | · |:

|u− ûh| ≤ ε Estimate of the absolute error,

|u− ûh|
|u|

≤ ε Estimate of the relative error.

An obvious area of conflict is that estimates are only of interest, if they are realistic. Especially for academic
model problems it may often be possible to get sharp error estimates, but this is far less trivial, or even not
yet reached in research for solutions of real-life, highly nonlinear systems of partial differential equations.
An overview of errors that occur in solving real-life problems with mathematical methods in scientific
computing is presented in Figure 1.2.

Reality phenomenon

Mathematic relation

 between defined 

 quantities

Building a mathematical

model (Idealisation)

MODELLING ERROR

Include measurements or other data

Solve on computers

ERROR IN DATA

ERRORS IN THE SOLUTION OF

THE PROBLEM (DISCRETIZATION,

TRUNCATION ERROR)

ROUND−OFF ERRORS

Treat problem with numerical methods

Numerical method for

solution of the math. problem

Numerical solution:

Numbers

Mathematical problem

Figure 1.2: Overview of errors made in scientific computing.

The notion of the modelling error is as follows. Practical problems are often physical, chemical, biolog-
ical or economical applications. It is necessary to set up a mathematical model, which is typically a partial
differential equation (pde) here. In order to analyse only certain features of a complicated problem, a linear
simplification of a nonlinear process may be used, for simplicity. In fluid mechanics, for example, one
distinguishes between laminar (steady, ordered) and turbulent (unsteady, nonlinear) flows. Whereas the so-
lution of laminar flow problems is fully understood, for turbulent flows modelling is still state-of-research.
Another distinction is between mathematical models involving friction, leading to the Navier-Stokes equa-
tions, versus models without friction, the Euler equations. Including friction in the mathematical model
requires the use of more complicated numerical solution methods than the use of a frictionless model. The
insight in the impact of the choice of mathematical model on the results obtained is indispensable.
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Data errors may occur because, except for trivial cases, most data that enter a computation are afflicted
with errors, for example with measurement errors. They can have a big or a small effect on a numerical
solution. This typically depends on the condition of the problem. If a problem is well-posed small changes
in data do not have a significant effect on the solution, whereas for an ill-posed problem the opposite is
true.

Discretization errors occur because we need to solve a (continuous) problem under consideration on a
numerical grid, as an analytic solution is not available. The approximation of a function on a discrete grid
means that we try to recover a function by means of function values by a finite number of points. As only
N values are obtained one ends up with an approximate solution curve (see Figure 1.3).
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Figure 1.3: An approximate solution curve as only N values are obtained on a numerical grid.

Round off errors occur as only digital numbers of a finite length are used in computers. Practically, this
means that already during multiplication and division numbers are rounded. Each separate round off error
may be small, however, during long calculations many small errors can add up, to make a solution totally
useless. In scientific computing one therefore distinguishes stable from unstable algorithms, the first class
leading to reliable numerical solutions.
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Chapter 2

Concepts from Numerical Linear
Algebra

In this section we will introduce concepts from numerical linear algebra. Textbook references for this
chapter include [41, 56].

2.1 Vectors and Matrices
In this chapter we will use bold lower-case Roman letters to denote real-valued vectors such as e.g. u ∈ Rn
having components ui where 1 ≤ i ≤ n. We will use the notation A and R to denote a real-valued square
and rectangular matrix, respectively. More precisely, we will assume that A ∈ Rn×n with components aij
where 1 ≤ i, j ≤ n and that R ∈ Rm×n with components rij where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We will
also write A = (aij). We will use the Matlab-like notation A(i, :) and A(:, j) to denote the ith row and jth
column of A, respectively. We will use the symbols ∅n×n and In×n to denote the n× n zero and identity
matrix, respectively.

We will denote by |A| and |R| the matrices obtained by taking the absolute value ofA andR component-
wise, respectively. In what follows we will say that A is positive and write A ≥ ∅n×n if and only if for
all components aij ≥ 0. This notion induces a partial ordering on the set of n × n matrices by defining
A1 ≤ A2 to hold if and only if A2 − A1 ≥ ∅n×n. It is easy to verify that the product of positive matrices
is again positive. We will denote the inverse of A by A−1.

2.1.1 Grid function
For the discretization of partial differential equations, the computational domain is covered with a grid.
The values on the grid can be stored as a vector, however it can also be seen as a function that is only
defined on the grid.

2.1.2 Rank of a Matrix
The rank of a matrix R ∈ Rm×n is defined as the size of the largest collection of linear independent rows
or columns of the matrix. It can be computed as the dimension of the largest square non-singular submatrix
of R.

2.1.3 Kronecker Product of Matrices
In these lecture notes, matrices and vectors represent discretized differential operators and fields. In partic-
ular circumstances the discrete differential operator in two and higher dimensions can be represented as a
Kronecker product of its one-dimensional counterpart.
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Definition 2.1.1 Given two rectangular matrices R1 ∈ Rm1×n1 and R2 ∈ Rm2×n2 its Kronecker product
denoted by R1 ⊗R2 ∈ Rm1m2×n1n2 is formed by replacing each entry r1,ij of R1 by r1,ij ·R2.

Example 2.1.1

[
1 2
3 4

]
⊗
[
0 5
6 7

]
=


1 · 0 1 · 5 2 · 0 2 · 5
1 · 6 1 · 7 2 · 6 2 · 7
3 · 0 3 · 5 4 · 0 4 · 5
3 · 6 3 · 7 4 · 6 4 · 7

 =


0 5 0 10
6 7 12 14
0 15 0 20
18 21 24 28


2.2 Eigenvalues, Eigenvectors and Spectrum
Definition 2.2.1 The non-zero vector v[k] ∈ Cn \ {0} is an eigenvector corresponding to the eigenvalue
λk ∈ C if and only if Av[k] = λkv

[k]. The algebraic multiplicity of λk is defined as the multiplicity of the
root of λk of the characteristic equation det(A − λI) = 0. The geometric multiplicity of λk is defined as
the dimension of the space spanned by the corresponding eigenvectors. The set of all eigenvalues of A is
called the spectrum of A and will be denoted as σ(A).

To explicitly link the eigenvalue to the matrix we will use the notation λk(A).
Two n × n matrices A1 and A2 are called similar if and only if a non-singular n × n matrix V exists

such that A2 = V −1A1V . If A1 and A2 are similar, then they have the same spectrum. A matrix is called
diagonalisable if the set of eigenvectors has dimension n. Such a matrix is similar to a diagonal matrix.
If A is diagonalisable and can therefore be written as A = V −1DV for some matrices V and D, the k-th
power of A can be computed as Ak = V −1DkV .

The concept of singular values generalises the concept of eigenvalues from square to rectangular ma-
trices.

2.2.1 Eigenvalues of Tridiagonal Matrices
As tridiagonal matrices will often appear in this course, we give the following result on the eigenvalues of
these matrices.

Theorem 2.2.1 Assuming that a, b and c are real numbers such that bc < 0 and denoting ι the imaginary
unit (ι2 = −1), the eigenvalues of the tridiagonal matrix

A =


a b 0 . . . . . . . . . 0
c a b 0 . . . . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 c a b
0 . . . . . . . . . 0 c a

 ∈ Rn×n

are given by

λk(A) = a+ 2ι
√
−bc cos(

kπ

n+ 1
) .

The proof of this theorem as well as the details of the frequently occurring case that b = c is left as an
exercise.

2.3 Symmetry
Definition 2.3.1 The transpose of A, denoted by AT , is an n× n matrix with components aTij = aji.

Example 2.3.1 If R ∈ Rm×n, then RT ∈ Rn×m, RTR ∈ Rn×n and RRT ∈ Rm×m.

Definition 2.3.2 The matrix A is symmetric if and only if AT = A.
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The theory of symmetric matrices is very rich as argued e.g. in Chapter 7 of [41]. We recall here some
basic facts.

Theorem 2.3.1 The eigenvalues of a symmetric matrix A are real, i.e., A = AT ⇒ σ(A) ⊂ R.

A proof of this theorem is given in e.g. [56] (Theorem 1.19). This theorem implies that the eigenvalues of
a symmetric matrix can be ordered in increasing magnitude as follows

σ(A) = {λ1 ≤ λ2 ≤ . . . ≤ λn} , (2.1)

where each eigenvalue is repeated according to its algebraic multiplicity. We will use the notation λmin(A) =
λ1(A) and λmax(A) = λn(A).

An n× n matrix Q is called orthogonal if and only if its n columns are orthonormal, i.e., if and only if
QTQ = I . The following theorem will be very helpful in computing the k-th power of a symmetric matrix

Theorem 2.3.2 A symmetric matrix A is orthogonally diagonalisable, i.e., there exists an orthogonal ma-
trix Q and a diagonal matrix D such that A = QTDQ. The entries of D are the eigenvalues of A and the
columns of Q span the eigenspaces of A.

2.4 Positive Definiteness
If u is a column vector, then uT is a row vector, and the product uTAu is a scalar. This scalar is zero if
u = 0, independently of A. Other choices for u are considered in the following definition.

Definition 2.4.1 The matrix A is called positive definite (positive semi-definite) if and only if

∀u ∈ RN \ {0} : uTAu > 0 (uTAu ≥ 0) . (2.2)

In the next theorem the spectrum of symmetric positive definite (SPD) and symmetric positive semi-definite
(SPSD) is considered.

Theorem 2.4.1 The spectrum of a symmetric positive definite (positive semi-definite) matrix A are strictly
positive (positive), i.e., A SPD ⇒ σ(A) ⊂ R+ (A SPSD ⇒ σ(A) ⊂ R+

0 ).

2.5 Vector and Matrix Norms

2.5.1 Inner Product
The inner product is a positive definite bilinear form on Rn. More precisely, we have the following defini-
tion.

Definition 2.5.1 Denoting c ∈ R a scalar and u,v,w ∈ Rn vectors, the inner product < ., . >: Rn ×
Rn → R is a function that satisfies the following properties

1. symmetry
< u,v >=< v,u >

2. linearity in the first argument

< cu,v > = c < u,v >

< u + v,w > = < u,w > + < v,w >

3. positive definiteness
< u,u >≥ 0 with equality only for u = 0 .

Example 2.5.1 The scalar product uTv =
∑n
i=1 uivi is an inner product on Rn.

Example 2.5.2 Given an SPD matrix A, the function < u,v >A= uTAv is an inner product on Rn
(verify this). Two non-zero vectors u and v for which < u,v >A= 0 are called A-conjugate.

A useful relation satisfied by any inner product is the so-called Cauchy-Schwartz inequality

| < x, y > |2 ≤< x, x >< y, y > . (2.3)
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2.5.2 Vector Norms
Vector norms define a distance measure in Rn. More precisely, we have the following definition.

Definition 2.5.2 Denoting c ∈ R a scalar and u,v ∈ Rn vectors, the vector norm ‖.‖ : Rn → R is a
function that satisfies the following properties

1. positivity
‖u‖ ≥ 0 with equality only for u = 0

2. homogeneity
‖cu‖ = |c|‖u‖

3. triangular inequality
‖u + v‖ ≤ ‖u‖+ ‖v‖ .

Example 2.5.3 Given an inner product < ., . >, the function u → √< u,u > defines a norm (verify).
Using the scalar product as inner product, we arrive at the Euclidean norm denoted as ‖u‖2 =

√
uTu.

Taking the inner product induced by an SPD matrix A, we arrive at the A-norm denoted as ‖u‖A =√
uTAu.

The Euclidean norm is a special instance of a p-norm defined next.

Definition 2.5.3 Given 1 ≤ p < ∞, the p-norm (Hölder norm) of a vector u ∈ Rn denoted as ‖u‖p is
defined by

‖u‖p =

[
n∑
i=1

|ui|p
]1/p

. (2.4)

We in particular have that

‖u‖1 = |u1|+ . . .+ |un| (2.5)

‖u‖2 =
[
u2

1 + . . .+ u2
n

]1/2
(2.6)

‖u‖∞ = max
i=1,...,n

|ui| . (2.7)

An orthogonal transformation Q ∈ Rn×n leaves the Euclidean (p = 2) norm of a vector invariant, i.e., if
QTQ = I then ‖Qu‖2 = ‖u‖2.

2.5.3 Matrix Norms
The analysis of matrix algorithms frequently requires the use of matrix norms. For example, the quality of
a linear system solver may be poor if the matrix of coefficients is nearly singular. To quantify the notion of
near-singularity we need a measure of distance on the space of m × n matrices. The concepts of a vector
norm and of an operator induced norm allow to define such a metric.

Definition 2.5.4 Given 1 ≤ p < ∞, the p-norm (Hölder norm) of a matrix R ∈ Rm×n denoted as ‖R‖p
is defined by

‖R‖p = sup
u∈Rn\{0}

‖Ru‖p
‖u‖p

. (2.8)

Proposition 2.5.1 It can be shown that the above definition is equivalent to

‖R‖p = sup
u∈Rn\{0}

‖Ru‖p
‖u‖p

= max
‖u‖p≤1

‖Ru‖p = max
‖u‖p=1

‖Ru‖p , (2.9)
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and that the matrix p-norm satisfies the usual properties of a norm, i.e.,

‖R‖p ≥ 0 (2.10)
‖cR‖p = |c|‖R‖p (2.11)

‖R1 +R2‖p ≤ ‖R1‖p + ‖R2‖p (2.12)

as well as the so-called multiplicative property, i.e., that for any R1 ∈ Rm×q and R2 ∈ Rq×n

‖R1R2‖p ≤ ‖R1‖p ‖R2‖p (2.13)

The proof of this proposition is left as an exercise.
As an orthogonal transformation Q leaves the Euclidean norm of a vector invariant, we have from the

definition that ‖Q‖2 = 1. It appears that orthogonal transformations leaves the Euclidean norm of a matrix
invariant. More precisely, we have the following proposition.

Proposition 2.5.2 Given an m × n matrix R and orthogonal matrices Q and Z of appropriate size, we
have that

‖QRZ‖2 = ‖R‖2 . (2.14)

This implies that in case of a symmetric n × n matrix A that can be diagonalized as A = QTDQ that
‖A‖2 = ‖D‖2. If A is SPD, then λmax(A) is defined as λmax(A) = maxi=1,...,n {λi : λi ∈ σ(A)}. We
have thus proven the following proposition

Proposition 2.5.3 If the n× n matrix A is SPD, then

‖A‖2 = λmax(A) . (2.15)

Example of a non-p-norm The Frobenius norm of a matrix R is defined as

‖R‖F =

√√√√ m∑
i=1

n∑
j=1

|rij |2 . (2.16)

It can be viewed as the Euclidean norm of the vector obtained from all rows (or columns) of B.

Computing the 1, 2 and∞-norm of a matrix In the case of p = 1, p = 2 and p = ∞, the following
expressions exist that allow to compute the matrix p-norm in practice

‖R‖1 = max
1≤j≤n

m∑
i=1

|rij | maximum absolute column sum (2.17)

‖R‖2 =
√

max
1≤i≤n

λi(RTR) =
√
λmax(RTR) (2.18)

‖R‖∞ = max
1≤i≤m

n∑
j=1

|rij | maximum absolute row sum (2.19)

The proof of these expressions is left as an exercise. Expression (2.18) in particular implies that in case of
an n× n matrix A that is SPD, ‖A‖2 = λmax(A).

Example 2.5.4 For

A =

(
−3 0
0 2

)
we have that ‖A‖1 = ‖A‖2 = ‖A‖∞ = 3.

Let e be the vector of appropriate size having only 1 as entry, that is e = (1, 1, . . . , 1)T . Then the
condition |R|e ≤ ce for some constant c states that all absolute row-sums of R are bounded by c. In this
case, the maximum absolute row sum is bounded by c as well, i.e., ‖R‖∞ ≤ c. This implies the following
proposition

Proposition 2.5.4
|R|e ≤ ce⇒ ‖R‖∞ ≤ c (2.20)
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2.6 Condition Number
Given the linear systemAu = f , a small perturbation in the right-hand side vector f → f +4f will cause a
perturbation in the solution u+4u. We will see later that the condition number of the matrixA denoted as
κp(A) allows to bound the magnitude of the perturbation4u in terms of the magnitude in the perturbation
4f .

Definition 2.6.1 The condition number measured in p-norm κp(A) of an invertible n × n matrix A is
defined as

κp(A) = ‖A‖p‖A−1‖p . (2.21)

Observe that for any p, κp(A) ∈ [1,∞) (why?). Using relation (2.18), the condition number in 2-norm can
be expressed as

κ2(A) =

√
λmax(ATA)√
λmin(ATA)

. (2.22)

In case that A is symmetric or SPD, the above expression reduces to

κ2(A) =
λmax(A)

λmin(A)
, (2.23)

where
λmax(A) = max

i=1,...,n
{|λi| : λi ∈ σ(A)} (2.24)

and
λmin(A) = min

i=1,...,n
{|λi| : λi ∈ σ(A)} . (2.25)

2.7 Spectral Radius
The spectral radius will be used in the study of the convergence of stationary iterative methods.

Definition 2.7.1 The spectral radius ρ(A) of a matrix A ∈ Rn×n is defined as

ρ(A) = max
i=1,...,n

{|λi| : λi ∈ σ(A)} . (2.26)

Note that in general ρ(A) /∈ σ(A). The computation of the spectral radius is not straightforward. The
following theorem gives an upper bound on the spectral matrix that using e.g. (2.17), (2.18) or (2.19) is
easier to compute.

Theorem 2.7.1 Given ‖ · ‖ any multiplicative matrix norm, then

ρ(A) ≤ ‖A‖ . (2.27)

Proof. Assume (λ,u) any eigenvalue-eigenvector pair of A. Then Au = λu, and thus by virtue of the
sub-multiplicative property

|λ|‖u‖ = ‖λu‖ = ‖Au‖ ≤ ‖A‖‖u‖ ⇒ |λ| ≤ ‖A‖ .

The result then follows from the fact that λ was chosen arbitrarily.

Power of a Matrix The following important theorem links the the spectral radius with the kth power of
a matrix A denoted by Ak for k →∞.

Theorem 2.7.2
ρ(A) < 1⇔ lim

k→∞
‖Ak‖2 = 0 (2.28)
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Proof. ⇒ For the proof we assume A to be diagonalisable, i.e., we assume that a matrix P and a diagonal
matrix D exist such that A = PDP−1. The columns of P span the eigenspaces of A and the diagonal
components of D are the eigenvalues of A. (In case that A is not diagonalisable an argument similar to the
one that follows can be made using the Jordan decomposition of A). This implies that Ak = PDkP−1,
which in turn implies that if ρ(A) < 1 we have that limk→∞ ‖Ak‖2 = 0.
⇐ Assume un to be a unit eigenvector corresponding to the eigenvalue with maximum modulus, i.e.,
Aun = λnun. The equality

Akun = λknun (2.29)

implies, by taking the 2-norm on both sides, that

|λn|k = ‖Akun‖2 → 0 . (2.30)

Since ρ(A) = |λn| this shows that ρ(A) < 1. 2

The following results allows to quantify the speed of convergence of the limiting process in Theorem 2.7.2.

Theorem 2.7.3 (Gelfand’s formula) For any ‖ · ‖ matrix norm, we have that

lim
k→∞

k

√
‖Ak‖ = ρ(A) . (2.31)

This shows that the spectral radius of A gives the asymptotic growth rate of the norm of Ak. The proof of
this result can be found in literature.

Proposition 2.5.3 can be generalized to a linear combination of powers inA. Assume therefore pk(x) =∑k
j=0 cjx

j to be a k-th degree polynomial and A to be a symmetric (not necessarily positive definite)
matrix with A = QTDQ its orthogonal spectral decomposition. Then the orthogonality of Q implies that
pk(A) = QT pk(D)Q and therefore ‖pk(A)‖2 = ‖pk(D)‖2 = max1≤i≤n |pk(λi)|. We have thus proven
that

Proposition 2.7.1 If the n× n matrix A is symmetric, then

‖pk(A)‖2 = max
1≤i≤n

|pk(λi)| . (2.32)

Next we consider power series of matrices.

Power Series of a Matrix For scalar arguments x we have that the power series

∞∑
k=0

xk =
1

1− x
converges if |x| < 1 . (2.33)

The next theorem generalises this result to n× n matrices.

Theorem 2.7.4

ρ(A) < 1⇔ (I −A) is non-singular, and
∞∑
k=0

Ak = (I −A)−1 (2.34)

Proof. ⇒ If ρ(A) < 1, then I−A has eigenvalues bounded away from zero, and is therefore non-singular.
We furthermore have the equality

(I −Ak+1) = (I −A)(I +A+A2 + . . .+Ak) , (2.35)

or equivalently
(I −A)−1(I −Ak+1) = (I +A+A2 + . . .+Ak) . (2.36)

Taking the limit as k →∞ and taking Theorem 2.7.2 into account then yields the desired result.
⇐ A necessary condition for the power series

∑∞
k=0A

k to converge is that limk→∞ ‖Ak‖p = 0. This
implies that limk→∞Ak = 0 and again by Theorem 2.7.2 the desired result is obtained. 2
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2.8 Irreducibility and Diagonal Dominance
In case that diagonal entries in A are large compared to off-diagonal entries, useful estimates for the lo-
cation of the eigenvalues of A can be obtained from Gershgorin’s theorem. To formalise this idea we first
introduce the concept of irreducibility and denote by P an n × n permutation matrix such that PA (AP )
corresponds to a permutation of the rows (columns) of A. The matrix A is called reducible if a permutation
matrix P exists such that PAPT is block upper triangular. If in particular A is reducible and symmetric,
then PAPT is block diagonal, implying that A after permutation is made up of not-interconnected blocks.
This motivates the following definition.

Definition 2.8.1 The matrix A is called irreducible if and only if no permutation matrix P exists such that
PAPT is block upper triangular.

Next we define the concept of diagonal dominance.

Definition 2.8.2 The matrix A is called row diagonal dominant if and only if

|aii| ≥
n∑

j=1,j 6=i

|aij | i = 1, . . . , n (2.37)

with strict inequality for at least one i.

In the following definition stronger requirements are imposed.

Definition 2.8.3 The matrix A is called row strictly diagonal dominant if and only if

|aii| >
n∑

j=1,j 6=i

|aij | i = 1, . . . , n . (2.38)

The concepts of column diagonal dominance and column strictly diagonal dominance can be defined in
a similar fashion. Note that in the above definitions the sign of the off-diagonal entries is irrelevant. The
concept of irreducibility is linked to that of diagonal dominance in the following definition.

Definition 2.8.4 The matrixA is called irreducibly strictly diagonal dominant if and only ifA is irreducible
and diagonally dominant.

Diagonal dominance of A and its spectrum can be related through the following theorem that we state here
(for matrices having possibly complex eigenvalues).

Theorem 2.8.1 (Gershgorin) If λ ∈ σ(A), then λ is located in one of the n closed disks in the complex
plane that has center aii and radius

ρi =

n∑
j=1,j 6=i

|aij | (2.39)

i.e.,
λ ∈ σ(A)⇒ ∃i such that |aii − λ| ≤ ρi, . (2.40)

This theorem is a powerful tool as it allows to certify that symmetric diagonal dominant matrices are SPD
without computing its eigenvalues explicitly. Details can be found in [56].

2.9 Positive Inverse
In the following definition the positivity of the inverse is the key feature.

Definition 2.9.1 The matrix A is an M-matrix if

(A−1)ij ≥ 0 i, j = 1, . . . , n . (2.41)
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Definition 2.9.2 A is called a Stieltjes matrix if A is a symmetric M-matrix.

In the context of the discretization of partial differential equations, the M-matrix property guarantees useful
properties such as the absence of wiggles in convection-dominated flows and the positivity of concentra-
tions in chemical engineering applications. In the context of iterative solution methods, the M-matrix prop-
erty guarantees the convergence of the basic schemes. While the M-matrix property is therefore highly
desirable, verifying whether or not a matrix satisfies the fourth of the above conditions is hard (if not
impossible at all) in practice. Therefore the following result will have a large practical value.

Definition 2.9.3 A matrix A is called a K-matrix if it has the following properties

1. aii > 0 for i = 1, . . . , n;

2. aij ≤ 0 for i 6= j, i, j = 1, . . . , n.

Theorem 2.9.1 If matrix A is a K-matrix and irreducibly diagonally dominant, then A is an M-matrix.

Note the absence of any condition on A−1 in the above conditions.

2.10 Perron-Frobenius Theorem
Converge results for stationary iterative methods critically hinge on the theorem of Perron-Frobenius
(named after Oskar Perron (1880 - 1975) and Ferdinand Georg Frobenius (1849 - 1917)).

Theorem 2.10.1 (Perron-Frobenius) Let A be a real n × n nonnegative irreducible matrix. Then λ =
ρ(A), the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists an eigenvector u with
positive elements associated with this eigenvalue.

We use this theorem to prove the following

Theorem 2.10.2 Let A be a real n× n nonnegative irreducible matrix. Then

ρ(A) < 1⇔ (I −A) is non-singular, and (I −A)−1 ≥ 0 (2.42)

Proof. ⇒ From Theorem 2.7.4 follows that if ρ(A) < 1 then I −A is non-singular and that
∑∞
k=0A

k =
(I −A)−1. The fact that the product and sum of positive matrices is again positive then implies that I −A
is non-negative.
⇐ By Theorem 2.10.1, a nonnegative vector u exists such that Au = ρ(A)u or that

(I −A)u = [1− ρ(A)]u⇔ 1

1− ρ(A)
u = (I −A)−1u . (2.43)

As both (I −A)−1 and u are non-negative and (I −A) is non-singular, we have that 1− ρ(A) > 0. 2

2.11 A collection of Matrices*
In this section we introduce a collection of matrices that we will use as example in the remainder of these
notes.

Example 2.11.1 The Hilbert matrix H ∈ Rn× is a square with unit fractions

hij =
1

i+ j − 1
. (2.44)

Clearly H is symmetric. It can be shown that H is positive definite.
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Example 2.11.2 The Pei matrix P ∈ Rn× is the square matrix than for α ∈ R can be defined through its
entries as

pij =

{
α if i = j
1 if i 6= j

(2.45)

Example 2.11.3 The Van der Monde matrix M ∈ Rn× is for a given vector v ∈ Rn can be defined
through its entries as

mij = vn−ji . (2.46)

If v holds the n complex roots of 1, then M represents the discrete Fourier transform.

Example 2.11.4 The graph Laplacian and weighted graph Laplacian are constructed on a graph. We
therefore consider an oriented graph G = G(V,E) with n vertices v ∈ V andm edges e ∈ E. We consider
the n ×m integer matrix G to be the node-edge incidence matrix. Each column of G corresponds to an
edge of G and has an entry equal to +1 in the row corresponding to the node in which the edge starts
and an entry −1 in the row corresponding to the node in which the edge ends. All the other entries in the
column are zero. The graph Laplacian is the n× n matrix

L = GGT . (2.47)

Given an m×m diagonal matrix W that attributes a strictly positive weight wj to each edge ej (maximum
flow capacity for instance), the weighted graph Laplacian is the n× n matrix

LW = GW GT . (2.48)

As the column sum of G equals zero, GT times the vector having all 1 as components is zero. The constant
vector thus lies in the null space of L and LW . This implies that L and LW are singular. We will therefore
sometimes consider the submatrix obtained of L by deleting the first row and column of L and LW . This
submatrix is referred to as the first principal submatrix of L (or LW ) and is non-singular.

As special case we consider the weighted graph Laplacian for the simple graph with 5 nodes connected
by 4 edges and unevenly weighted edges, i.e., the graph

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}
W = diag(1, 1, 104, 104) .
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2.12 Exercises
Exercise 2.12.1 Calculate the Euclidean inner products of the following vectors

a) (1,−7, 12, 2)T , (3, 2, 0, 5)T

b) (sinx, cosx)T , (cosx,− sinx)T .

Exercise 2.12.2 Calculate the Euclidean norm of the following vectors

a) (−1, 5, 2)T

b) (sinx, cosx)T .

Exercise 2.12.3 Calculate the ‖ · ‖1 and ‖ · ‖∞ norm of the vectors in Exercises 2.12.1, 2.12.2. In 2.12.2
b), determine the points x, 0 ≤ x < 2π, for which the vector (sinx, cosx)T has the largest infinity norm.

Exercise 2.12.4 Two vectors u and v are said to be orthogonal if 〈u,v〉 = 0. In the following, take 〈·, ·〉
to be the Euclidean inner product.

a) Find a vector which is orthogonal to (a, b)T .
b) Use a) to find a vector which is orthogonal to (sinx, cosx)T . Sketch the two vectors for x = π/4.

Exercise 2.12.5 Show that sup
x 6=0

‖Ax‖p
‖x‖p = max

‖x‖p=1
‖Ax‖p for p ≥ 1.

Exercise 2.12.6 Show that ‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | A ∈ Rm×n (the maximal absolute column sum).

Exercise 2.12.7 Show that ‖A‖2 =
√
λmax(ATA).

Exercise 2.12.8 Let the matrix A be given by

A =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 .

‖v‖A =
[
〈Av,v〉

]1/2
=
[
(Av)Tv

]1/2
is called the energy norm of v with respect to A.

a) Calculate the energy norm (with respect to A) of the vector v = (v1, v2, v3, v4)T .
b) Show that the energy norm calculated in a) is positive, unless v is the zero vector.

Exercise 2.12.9 The matrix norm induced by a vector norm ‖ · ‖ is defined by

‖A‖ = sup
v 6=0

‖Av‖
‖v‖

= max
‖v‖=1

‖Av‖ .

The spectral norm ‖A‖S of a symmetric positive definite matrix A is given by

‖A‖S = λmax(A) .

One can show that the matrix norm induced by the Euclidean norm is the spectral norm (see Proposi-
tion 2.5.2).

This exercise shows that the above statement is true for the matrix A given by

A =

(
2 −1
−1 2

)
.

a) Show that A is symmetric, positive definite.
b) Compute the spectral norm of A by determining its eigenvalues.
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Exercise 2.12.10 What is the condition number of the identity matrix I in any p-norm?

Exercise 2.12.11 Show the following properties of symmetric positive definite matrices:

1. A principal submatrix of a matrixA ∈ Rn×n is obtained fromA by deleting fromA rows and columns
corresponding to the same index. A principal minor is the determinant of a principal submatrix. A
leading principal submatrix of A consists of entries of A taken from the first k rows and columns of
A, where 1 ≤ k ≤ n. A leading principal minor is the determinant of a leading principle submatrix.
Show that a symmetric matrix A is positive definite if and only if all its leading principal minors are
positive.

2. If A is symmetric positive definite, then aii > 0 for all i.

3. If A is symmetric positive definite, then the largest element (in magnitude) of the whole matrix must
lie on the diagonal.

4. The sum of two symmetric positive definite matrices is symmetric positive definite.

Exercise 2.12.12 Suppose that A is symmetric and positive definite. Show that the matrix Ak consisting
of the first k rows and columns of A is also symmetric and positive definite.

Exercise 2.12.13 Show the following properties of the condition number of an invertible matrix A:

1. κp(A) ≥ 1 for any p-norm;

2. κ(αA) = κ(A), where α is any non-zero scalar, for any given norm;

3. κ2(A) = 1 if and only if A is a non-zero scalar multiple of an orthogonal matrix, i.e., AT A = αI ,
where α 6= 0. (Note that this property of an orthogonal matrix A makes the matrix very attractive
for its use in numerical computations);

4. κ2(ATA) = [κ2(A)]2;

5. κ2(A) = κ2(AT ); κ1(A) = κ∞(AT );

6. for any given multiplicative norm κ(AB) ≤ κ(A)κ(B).

Exercise 2.12.14 In this exercise we compare the determinant and the condition number of a matrix A as
a measure for the near-singularity of A.

1. Consider the matrixA ∈ Rn×n with aii = 1 and aij = −1 if j > i. Perform the following numerical
experiment to verify that A is nearly singular for large n. Consider the linear system Au = f to be
such that the vector u with all components equal to 1 is its solution. This can easily be accomplished
by, for a given values of n, setting the right-hand side vector f equal to f = Au (by a matrix-vector
multiplication). Given the right-hand side vector f and the system matrix A, solve the linear system
for u for various values of n (using the backslash direct solver u = A\f in Matlab for instance). Let
the computed solution be denoted by û. List for various values of n the relative error ‖u−û‖2/‖u‖2
and the relative residual norm ‖f − A û‖2/‖f‖2 in the computed solution. You may use to this end
the following Table 2.1.

2. Consider again the matrix A with aii = 1 and aij = −1 if j > i. Show that A has determinant
equal to 1. Show that A has condition number κ∞(A) = n 2n−1 by computing ‖A‖∞, A−1 (using
Gaussian elimination for instance) and ‖A−1‖∞. Does the determinant explain the effect observed
in part (a) of the exercise? Does the condition number explain the observed effect in part (a) of the
exercise?

3. Repeat part (1) and part (2) of the exercise using as matrix the diagonal matrix of order n of the
form A = diag(0.1, 0.1, . . . , 0.1) ∈ Rn×n. You may use the 2-norm to measure the conditioning of
the matrix.
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Exercise 2.12.15 Demonstrate Theorem 2.2.1.

Exercise 2.12.16 Draw the unit sphere for the 1, 2 and∞ norm in R2.

Exercise 2.12.17 Show that the 1, 2 and ∞ matrix norms are equivalent, i.e, show that for any α, β ∈
{1, 2,∞} and for any A ∈ Rn×n numbers r and s exist such that

r ‖A‖α ≤ ‖A‖β ≤ s ‖A‖α .

Exercise 2.12.18 Show that for any A ∈ Rn×n holds that

‖A‖2 ≤
√
‖A‖1 ‖A‖∞ .

Exercise 2.12.19 Prove Gelfand’s formula and show it experimentally.

Exercise 2.12.20 Prove Gershgorin’s theorem and show it experimentally.

Exercise 2.12.21 Prove Perron-Frobenius’ theorem stated in Theorem 2.10.1.

problem size relative error relative residual
n ‖u− û‖2/‖u‖2 ‖f −A û‖2/‖f‖2
10
20
30
40
50

Table 2.1: Numerical study of matrix conditioning.
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Chapter 3

The Model Problem and Its Finite
Difference Discretization

Many people drive, we provide the engine

3.1 Introduction
We start this chapter by giving motivating examples from engineering practice and by classifying linear
second order partial differential equations with constant coefficients. We subsequently define a sequence
of elliptic problems of increasing complexity and introduce the second order finite difference discretization
of the model problem on a uniform mesh. The properties of the coefficient matrix of the resulting linear
system will be discussed in detail. Finally we discuss which of these properties carry over to problems
encountered in engineering practice. The linear systems introduced in this chapter will serve as example
for the linear solvers discussed in subsequent chapters.

Study goals The study goals we aim at in this chapter are

• classify second order partial differential equations;

• define elliptic problems;

• discretize elliptic model problems using low order finite difference methods;

• name and demonstrate properties of the coefficient matrices of the resulting linear systems;

• argue which of the linear system properties carry over to more realistic problems.

3.2 Motivating Examples
In this section we give two motivating examples, the first from computational electromagnetics and the
second from computational fluid dynamics.

Fault Current Limiter Fault current limiters are expected to play an important role in the protection
of future power grids. They are capable of preventing fault currents from reaching too high levels and,
therefore enhance the life time expectancy all power system components. Figure 3.1 shows two examples
of fault-current limiters along with some finite element simulation results.

Industrial Furnace The simulation of flows through an enclosed surface is an often reoccuring problem
in computational fluid dynamics. In Figure 3.2 a study case of the simulation of the flow and temperature
profile inside an industrial furnace is presented.

19



 

 

(a) Open core configura-
tion

A
C

 w
in

di
ng

 

A
C

 w
in

di
ng

 

D
C

 w
in

di
ng

 

D
C

 w
in

di
ng

 

 
(b) Three legged configuration

(c) Diffusion coefficient ν (d) Current with and without limiter

Figure 3.1: Numerical simulation of fault current limiters.

3.3 Classification of Second Order Partial Differential Equations
In this section we classify second order linear partial differential equations (PDEs) with constant coeffi-
cients according to their elliptic, parabolic and hyperbolic nature and give examples of PDEs in each of
these three classes.

Classification We consider an open two-dimensional domain (x, y) ∈ Ω ⊂ R2 with boundary Γ = ∂Ω as
the domain of the second order linear partial differential equation (PDE) for the unknown field u = u(x, y)
and the source function f(x, y) that can be written as

L(u) = f on Ω (3.1)

where the operator L has constant coefficients aij , bi and c

L(u) = a11
∂2u(x, y)

∂x2
+ 2a12

∂2u(x, y)

∂x∂y
+ a22

∂2u(x, y)

∂y2
+ b1

∂u(x, y)

∂x
+ b2

∂u(x, y)

∂y
+ c u(x, y) . (3.2)

(Only in this section the coefficients aij denote functions in x and y.) We classify these equation based on
the sign of the determinant

D =

∣∣∣∣ a11 a12

a12 a22

∣∣∣∣ = a11a22 − a2
12 . (3.3)

The differential operator L is called

• elliptic if D > 0

• parabolic if D = 0

• hyperbolic if D < 0

20



(a) Schematic represention of an industrial furnace

(b) Mesh employed (c) Simulated temperature profile.

Figure 3.2: Numerical simulation of industrial furnaces.

Prototypes in this classification are the elliptic Laplace equation uxx + uyy = 0, parabolic heat equation
uxx − uy = 0 and the hyperbolic wave equation uxx − uyy = 0. In the case of varying coefficients a11,
a22 and a12, the sign of D and therefore the type of the PDE may change with the location in Ω.

As linear system solvers for discretized hyperbolic PDEs are far less developed, we will only consider
elliptic and parabolic equations in this course. Elliptic equations are characterised by the fact that changes
in the data imposed on the boundary Γ are felt instantaneously in the interior of Ω. Parabolic equations
model the evolution of a system from initial to a stationary equilibrium state.

Examples of Elliptic Partial Differential Equations We will consider the Poisson equation

−4 u := −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f (3.4)

as it plays a central role in engineering applications in which the field u plays the role of a (electric,
magnetic or gravitational) potential, temperature or displacement. The reason for the minus sign in front
of the Laplacian will be discussed together with the finite difference discretization. We will also consider
two variants of (3.4). In the first variant we introduce a small positive parameter 0 < ε� 1 to arrive at the
anisotropic variant

−ε∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f (3.5)

that can be thought of as a simplified model to study the effect of local mesh refinement required to capture
e.g. boundary layers or small geometrical details (such as for instance the air-gap in an electrical machine).
This model will be used in the study of smoothers in a multigrid context. In the second variant we again
incorporate more physical realism in (3.4) by allowing the parameter c in

− ∂

∂x

(
c
∂u(x, y)

∂x

)
− ∂

∂y

(
c
∂u(x, y)

∂y

)
= f , (3.6)

to have a jump-discontinuity across the boundary of two subdomains (such as for instance the jump in
electrical conductivity across the interface between copper and air). This model will be used both in the
study of smoothers in a multigrid context as of Krylov subspace methods.

The Helmholtz and the convection-diffusion equation are other examples of elliptic partial differential
equations. The former can be written as

−4 u− k2u = −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
− k2u = f , (3.7)
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and models the propagation of an acoustical or electromagnetic wave with wave number k. The latter is a
simplified model for the study of a flow with (dimensionless) velocity v = (1, 0) around a body and can
be written as

−ε4 u+ v · ∇u = −ε∂
2u(x, y)

∂x2
− ε∂

2u(x, y)

∂y2
+
∂u(x, y)

∂x
= f , (3.8)

where ε is the inverse of the Peclet number (which plays the same role as the Reynolds number in the
Navier-Stokes equations). The Helmholtz and the convection-diffusion equation will motivate the intro-
duction of Krylov subspace methods for symmetric indefinite and non-symmetric matrices, respectively.
The verification that the equations introduced above are indeed elliptic is left as an exercise.

Example of a Parabolic Partial Differential Equation In order to give examples of parabolic partial
differential equations, we change the notation y into t and consider Ω to be a rectangle Ω = [0, L]× [0, T ].
The parabolic differential equation with source term f(x, t)

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t) (3.9)

models the diffusion of the quantity u(x, t) in time that reaches a time-independent equilibrium state when
∂u(x,t)
∂t is zero. All of the elliptic models introduced above can be extended to a parabolic model by

allowing u to become time-dependent, that is u = u(x, y, t), and adding the term ∂u(x,y,t)
∂t . These models

will be considered for instance when discussing the role of initial vectors of iterative solution methods.
In order to guarantee uniqueness of the solution of parabolic partial differential equations, both bound-

ary and initial conditions need to be supplied.

3.4 The Model Problem
Problem Definition In the remainder of this chapter we consider the following one- and two-dimensional
Poisson (elliptic) model problems (i.e., the partial differential equation supplied with boundary conditions):

• given the domain Ω = (0, 1) with boundary Γ = ∂Ω and outward normal n, and given the boundary
data b(x) or c(x), solve for u(x) the following ordinary differential equation

−d
2u(x)

dx2
= f(x) on Ω (3.10)

supplied with either Dirichlet boundary conditions

u(x) = b(x) on Γ (3.11)

or Neumann boundary conditions

∂u(x)

∂ n
= ∇u(x) · n = c(x) on Γ . (3.12)

In case that b(x) = 0 in (3.11) (c(x) = 0 in (3.12)) the Dirichlet (Neumann) boundary conditions is
called homogeneous.

• given the domain Ω = (0, 1) × (0, 1) with boundary Γ = ∂Ω and outward normal n, and given the
boundary data b(x, y) or c(x, y), solve for u(x, y) the following partial differential equation

−4 u := −∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= f(x, y) (3.13)

supplied with either Dirichlet boundary conditions

u(x, y) = b(x, y) on Γ (3.14)

or Neumann boundary conditions

∂u(x, y)

∂n
= ∇u(x, y) · n = c(x, y) on Γ . (3.15)
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The extension of the concepts introduced in this chapter to problems with Robin, periodic or any combi-
nation of these boundary conditions is left as an exercise. If only Neumann boundary conditions are given,
the solution is not unique. It is easy to check that u(x, y) + C, where C is an arbitrary constant, is also a
solution of (3.13) and (3.15).

Continuous Spectral Properties In analysing the convergence of iterative solution methods in subse-
quent chapters, we will make extensive use of spectral properties of the discrete Laplace matrices. To
derive these properties we resort to the continuous counterpart and consider the related Sturm-Liouville
problem. This means that in case of the one-dimensional problem we look for the eigenvalues λ and
eigenfunctions u 6= 0, such that

−d
2u(x)

dx2
= λu(x) (3.16)

supplied with homogeneous Dirichlet or Neumann boundary conditions. In case of the two-dimensional
problem the PDE becomes

−∂
2u(x, y)

∂x2
− ∂2u(x, y)

∂y2
= λu(x, y) (3.17)

To solve the one-dimensional problem, we make use of the characteristic equation r2 + λ = 0. To solve
the two-dimensional problem, we employ separation of variables and proceed subsequently as in the one-
dimensional case. The results can be summarised as follows:

• the one-dimensional eigenvalues/eigenfunctions problem (3.16) has the following solutions

– in case of Dirichlet boundary conditions

u[k](x) = sin(kπx) corresponding to λk = k2 π2 for k ∈ N, k 6= 0 (3.18)

(imposing k 6= 0 is required to assure a non-trivial eigenfunction)

– in case of Neumann boundary conditions

u[k](x) = cos(kπx) corresponding to λk = k2 π2 for k ∈ N (3.19)

(k = 0 gives the constant eigenvector)

– in the mixed case u(0) = 0 and du
dx (1) = 0

u[k](x) = sin(kπx) corresponding to λk = k2π
2

4
for k ∈ N, k 6= 0 (3.20)

• the two-dimensional problem (3.17) has the following solutions

– in case of Dirichlet boundary conditions u(x, y) = 0 on Γ

u[k`](x, y) = sin(kπx) sin(`πy) corresponding to λk` = π2(k2+`2) for k, ` ∈ N, k 6= 0 and ` 6= 0
(3.21)

– in case of Neumann boundary conditions ∂u(x,y)
∂n = 0 on Γ

u[k`](x, y) = cos(kπx) cos(`πy) corresponding to λk` = π2(k2 + `2) for k, ` ∈ N (3.22)

The fact that in the case of Neumann boundary conditions the differential operator has zero as eigenvalue
corresponds to the fact that the solution is determined up to a constant. The consideration of other boundary
conditions is again left as an exercise.
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3.5 Finite Difference Discretization
Discretization of the Geometry For the discretization of the two-dimensional model problem we intro-
duce a mesh size h = 1

N (N being the number of mesh elements) and an uniform grid Gh consisting of
N + 1 nodes (for the 1D problem) and consisting of (N + 1)2 nodes (for the 2D problem) including those
on the boundary Γ

Gh = {(xi, yj)|xi = (i− 1)h, yj = (j − 1)h;h =
1

N
, 1 ≤ i, j ≤ N + 1;N ∈ N} . (3.23)

In this numbering the indices i = 1 and i = N + 1 (j = 1 and j = N + 1) correspond to grid points on
the left and right (bottom and top) boundary, respectively, as in Figure 3.3 .

i=1 i=6
j=1

j=6

(i, j) = (3, 2)

(i, j) = (4, 5)

Figure 3.3: grid ordering using (i, j)

i = 1 i = 6

I = 1

I = 9

I = 28

I = 36

Figure 3.4: x-lexicographic using I

Discretization of the Physics On Gh we introduce grid vectors approximating the source function
f(x, y), boundary data b(x, y) and c(x, y) and unknown u(x, y) in the grid nodes with increasing accuracy
as h→ 0, i.e.,

fhi,j ≈ f(xi, yj) for (xi, yj) ∈ Gh , (3.24)

and similarly for bhi,j , c
h
i,j and uhi,j .

Internal Nodes We enforce the PDE to hold in each grid node and approximate the continuous second
order derivatives by central finite difference approximations. The use of finite differences here is generic,
as low-order finite element or finite volume discretization result in the same linear system. Using nearest
neighbours we have for the internal nodes that

∂2u

∂x2
(xi, yj) =

uhi−1,j − 2uhi,j + uhi+1,j

h2
+O(h2) for 2 ≤ i, j ≤ N (3.25)

(and similar for the y-derivative). The approximation to the partial differential equation (3.17) discretized
on internal points of Gh can be written as

−uhi,j−1 − uhi−1,j + 4uhi,j − uhi+1,j − uhi,j+1

h2
= fhi,j for 2 ≤ i, j ≤ N . (3.26)

The discrete Laplacian on these nodes can then be represented by a so-called stencil notation

1

h2

 0 −1 0
−1 4 −1
0 −1 0

 (3.27)
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in which the middle row (column) represents the coupling of the unknown with its left and right (top and
bottom) neighbours. This stencil is referred to as the 5-point stencil.

In the treatment of the boundary conditions we distinguish between Dirichlet and Neumann boundary
conditions.

Dirichlet Boundary Nodes Two options exist to enforce that the discrete problem satisfies the Dirichlet
boundary conditions. One can either add an equation for each node on the Dirichlet boundary by imposing
for these nodes the stencil  0 0 0

0 1 0
0 0 0

 (3.28)

and replace fhi,j on the boundary by bhi,j . Together with the equations on the internal nodes, this results
in (N + 1)2 linear equations for the (N + 1)2 unknowns {uhi,j |1 ≤ i, j ≤ N + 1}. In order to preserve
symmetry of the system matrix introduced later, it is required to bring the weight −1/h2of a connection of
an interior point (i, j) to a point on the boundary to the right-hand side vector. For an internal point (2, j)
connected to the left boundary x = 0 for instance the stencil (3.27) is to be replaced by

1

h2

 0 −1 0
0 4 −1
0 −1 0

 (3.29)

and fh2,j is overwritten by fh2,j + 1
h2 b

h
1,j . For the internal point (i, j) = (2, 2) with both a left and bottom

neighbour on the boundary the stencil is to be replaced by

1

h2

 0 −1 0
0 4 −1
0 0 0

 (3.30)

fh2,2 is to be overwritten by fh2,2 + 1
h2 b

h
1,2 + 1

h2 b
h
2,1.

We will refer to the approach in which the boundary unknowns form part of the linear system as without
elimination of the boundary conditions.

Alternatively one can take advantage of the fact that the equations for the nodes corresponding to the
Dirichlet boundary are superfluous, and condense the linear system to a system for the internal points
exclusively. For an interior point connected to the boundary the stencil and the right-hand vector are to
be replaced as described above. This approach leads to a system of (N − 1)2 equations for the unknowns
{uhi,j |2 ≤ i, j ≤ N} and will be referred to as with elimination of the boundary conditions.

Neumann Boundary Nodes In case that Neumann conditions are imposed, the stencil for nodes on the
boundary needs to be defined. We distinguish between the four corners and the remaining boundary nodes.
We start with the latter and consider a grid node uh1,j with 2 ≤ j ≤ N on the left boundary where x = 0.
By introducing a ghost point uh0,j located at a distance h to the left of uh1,j , approximating the normal
derivative using the central scheme

∂u

∂n
(0, yj) = −∂u

∂x
(0, yj) = −

uh2,j − uh0,j
2h

+O(h2) (3.31)

and using the boundary condition (3.15), one can eliminate the ghost point by writing

uh1,j = 2h ch1,j + uh2,j . (3.32)

The stencil for the nodes uh0,j with 2 ≤ j ≤ N becomes

1

h2

 0 −1 0
0 4 −2
0 −1 0

 , (3.33)
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while the right-hand vector fh1,j is overwritten by fh1,j + 2
hc
h
1,j . In order to obtain symmetry of the system

matrix introduced later, the equation corresponding to this node is divided by two to obtain the stencil

1

h2

 0 −1/2 0
0 2 −1
0 −1/2 0

 , (3.34)

and the right-hand side vector component becomes 1
2f

h
1,j+

1
hc
h
1,j . The corner points are treated by repeating

the above procedure in both x and y-direction. After dividing the equation corresponding to a corner by
four, the resulting stencil for the node uh1,1 for instance is seen to be

1

h2

 0 −1/2 0
0 1 −1/2
0 0 0

 , (3.35)

while the right-hand vector fh1,1 is overwritten by 1
4f

h
1,1 + 1

hc
h
1,1. The stencils for interior and boundary

points result in (N + 1)2 equations for (N + 1)2 unknowns.
Contrary to the case of Dirichlet boundary conditions, the discretization stencil in case of Neumann

boundary conditions is adapted from the interior to the boundary without losing the property that the sum
of the coefficients in the stencil equals zero. This implies that in the latter case the matrix resulting from
the discretization has row sum equal to zero, and that therefore the constant vector lies in the null space of
the matrix. The discrete differential operator inherits this property from its continuous counterpart.

3.6 Linear System Formulation
To arrive at a linear system for the grid unknowns, we introduce a global ordering of the grid nodes. We
distinguish the cases in which the boundary unknowns are included and eliminated.

Without Elimination of the Boundary Conditions In case that the boundary conditions are not elimi-
nated, we can introduce an x-line lexicographic ordering of the internal and boundary nodes in which

node (i, j) is assigned global index I = i+ (j − 1)(N + 1) for 1 ≤ i, j ≤ N + 1 , (3.36)

such that 1 ≤ I ≤ (N + 1)2. This allows us to group the known and unknown grid values fhi,j and uhi,j
into column vectors uh and fh of size (N + 1)2

uh =



uh1,1
uh2,1

...
uhN+1,1

uh1,2
uh2,2

...
uhN+1,2

...
uh1,N+1

uh2,N+1
...

uhN+1,N+1



∈ R(N+1)2 and fh =



bh1,1
bh2,1

...
bhN+1,1

bh1,2
fh2,2

...
bhN+1,2

...
bh1,N+1

bh2,N+1
...

bhN+1,N+1



∈ R(N+1)2 . (3.37)

The model problem then translates into a linear system of equations

Ah uh = fh , (3.38)

26



in which the system matrix Ah represents the discretized differential operator. Its solution uh is a second
order approximation of the continuous solution u. If we measure the h-scaled Euclidean norm of the
discretization error, we more precisely have that

‖u(x)− uh‖h,2 =

√√√√h

N∑
I=0

[u(xI)− uhI ]2 = O(h2) , (3.39)

and

‖u(x, y)− uh‖h,2 =

√√√√h2

N2∑
I=0

[u(xI)− uhI ]2 = O(h2) , (3.40)

for the one- and two-dimensional problem, respectively. Details on the matrixAh will be given for the one-
and two-dimensional case separately.

• For the one-dimensional problem we have that

– in case of Dirichlet boundary conditions

Ah =
1

h2


h2 0 . . . . . . . . . 0
−1 2 −1 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −1 2 −1
0 . . . . . . . . . 0 h2

 ∈ R(N+1)×(N+1) (3.41)

This matrix can be made symmetric by translating the connections of the left-most and right-
most interior points to the left and right boundary point into contributions to the right-hand side
vector to obtain

Ah =
1

h2


h2 0 . . . . . . . . . 0
0 2 −1 0 . . . 0
...

...
...

...
...

...
0 . . . 0 −1 2 0
0 . . . . . . . . . 0 h2

 ∈ R(N+1)×(N+1) (3.42)

– in case of Neumann boundary conditions

Ah =
1

h2


1 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −1 2 −1
0 . . . . . . 0 −1 1

 ∈ R(N+1)×(N+1) . (3.43)

To specify Ah for the two-dimensional problem, we denote by IhN−1 and IhN+1 the identity matrix on
R(N−1)×(N−1) and R(N+1)×(N+1), respectively, by Th the matrix

Th =


4 −1 0 . . . . . . 0
−1 4 −1 0 . . . 0

...
...

...
...

...
...

0 . . . 0 −1 4 −1
0 . . . . . . 0 −1 4

 ∈ R(N−1)×(N−1) (3.44)

(observe the value of 4 on the main diagonal and the absence of the scaling with h2) and by Îh and T̂h the
matrices

Îh =

0 0 0
0 IhN−1 0
0 0 0

 ∈ R(N+1)×(N+1) and T̂h =

h2 0 0
0 Th 0
0 0 h2

 ∈ R(N+1)×(N+1) . (3.45)

27



• For the two-dimensional problem we have with this notation that in case of Dirichlet boundary con-
ditions

Ah =
1

h2



h2IN+1 0 . . . . . . . . . . . . 0

0 T̂h −Îh 0 . . . . . . 0

0 −Îh T̂h −Îh 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 −Îh T̂h −Îh 0

0 . . . . . . 0 −Îh T̂h 0
0 . . . . . . . . . . . . 0 h2IN+1


∈ R(N+1)2×(N+1)2 . (3.46)

The case of Neumann boundary conditions is left as an exercise.

With Elimination of the Boundary Conditions In case that the boundary conditions are eliminated, we
can introduce an x-line lexicographic ordering of the internal nodes only in which

node (i, j) is assigned global index I = i+ (j − 1)(N − 1) for 1 ≤ i, j ≤ N − 1 , (3.47)

such that 1 ≤ I ≤ (N − 1)2. This allows us to again to group the know and unknown grid values fhi,j and
uhi,j into column vectors uh and fh of size now (N − 1)2. The discretization again leads to a linear system
of equations in which the coefficient matrix is

• for one-dimensional problems

Ah =
1

h2
tridiag[ −1 2 −1 ] =

1

h2


2 −1 0 . . . . . . 0
−1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 −1 2 −1
0 . . . . . . 0 −1 2

 (3.48)

• for two-dimensional problems

Ah =
1

h2
tridiag[ −1 2 −1 ]⊗ IhN−1 +

1

h2
IhN−1 ⊗ tridiag[ −1 2 −1 ]

=
1

h2
tridiag[ −IhN−1 Th −IhN−1 ]

=
1

h2


Th −IhN−1 0 . . . . . . 0
−IhN−1 Th −IhN−1 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 −IhN−1 Th −IhN−1

0 . . . . . . 0 −IhN−1 Th

 , (3.49)

where ⊗ denotes the tensor product of two matrices.

Alternative Grid Node Orderings For future reference we introduce two alternative grid node orderings:
the diagonal and red-black ordering shown in Figure 3.5. The red-black ordering in particular induces a
partitioning of the discrete Laplacian that can be written as

Ah =

(
AhRR AhRB
AhBR AhBB

)
, (3.50)

where AhRR (AhBB) represents the coupling between the red (black) nodes and AhRB (AhBR) the coupling
between the red and black (black and red) nodes. The submatrices AhRR and AhBB are diagonal. The
submatrices AhRB and AhBR consist of four diagonal. These orderings will be further discussed in the
context of basic iterative and multigrid methods.
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(a) Diagonal Ordering (b) Red black ordering

Figure 3.5: Diagonal and red-black ordering of the grid nodes.

3.7 Properties of the Discrete Linear System
In this section we list the properties of the linear system matrix Ah that will play an important role in
subsequent chapters. For convenience, we will only consider the case with elimination of the boundary
conditions from here on. The properties of Ah are:

• the matrix Ah is sparse with a regular tri-diagonal (in 1D) or penta-diagonal (in 2D) structure. This
fact follows from the use of a compact finite difference stencil on a regular mesh. In subsequent
chapters we will exploit the fact that the diagonal of Ah is constant;

• the matrix Ah is symmetric. By Theorem 2.3.1, the matrix Ah therefore has real eigenvalues, i.e.,
σ(A) ⊂ R. its eigenvectors can be chosen orthogonal and can be normalised to form an orthonormal
basis;

• the matrix Ah is irreducible. Indeed, the interconnection between nodes is such that no permutation
matrix P exists such that PAhPT is block upper triangular;

• the matrix Ah is irreducibly diagonal dominant. From the theorem of Gershgorin (Theorem 2.8.1)
it therefore follows that the eigenvalues of Ah are positive. The symmetric matrix Ah is therefore
positive definite and thus SPD;

• the matrix Ah satisfies all the conditions in Theorem 2.9.1 and is therefore an M-matrix.

All of the above properties can be traced back to properties of the continuous differential operator. For
future analysis it will be useful to have analytical expressions for the eigenvalues and the eigenvectors of
Ah. These are provided in the next subsection.

3.7.1 Discrete Spectrum
The following two theorems state that the discrete Laplacian Ah inherits its spectral properties from its
continuous counterpart. We start with the one-dimensional case.

Theorem 3.7.1 In the one-dimensional problem and with elimination of the boundary conditions, the ma-
trix Ah ∈ R(N−1)×(N−1) has the following eigenvalues and eigenvectors

Ahvh,[k] = λhkv
h,[k] (3.51)
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where for k = 1, . . . , N − 1

vh,[k] =
1√
N − 1

 sin(πk x1)
...

sin(πk xN−1)

 =
1√
N − 1

 sin(πk h)
...

sin(πk (N − 1)h)

 (3.52)

and
λhk(Ah) =

2

h2
[1− cos(π h k)] =

2

h2
2 sin2(

π h k

2
) . (3.53)

Proof. The proof consist of performing a matrix-vector multiplication with the matrix Ah and the vector
vh,[k]. We will denote the elements of the matrix Ah, the vector vh,[k] and the resulting vector Ah vh,[k] as
Aiα, vh,[k]

α and [Ah v[k]]i, respectively, and make use of the trigonometric identity

sin(α+ β) + sin(α− β) = 2 sin(α) cos(β) . (3.54)

For an index i corresponding to a node not connected to the boundary we have that

[Ah vh,[k]]i =
N−1∑
α=1

aiαv
h,[k]
α (3.55)

=
1

h2

1√
N − 1

[− sin(π(i− 1)h k) + 2 sin(πi h k)− sin(π(i+ 1)h k)]

=
1

h2

1√
N − 1

[2 sin(πi h k)− 2 sin(πi h k) cos(π h k)]

=
2

h2

1√
N − 1

[1− cos(π h k)] sin(πi h k)

=
2

h2
[1− cos(π h k)] v

h,[k]
i

= λhk v
h,[k]
i for 2 ≤ i ≤ N − 2 .

For the left-most interior node instead we have that

[Ah vh,[k]]1 =
1

h2

1√
N − 1

[2 sin(πh k)− sin(π 2h k)] (3.56)

=
1

h2

1√
N − 1

[2 sin(πh k)− 2 cos(πh k) sin(πh k)]

=
2

h2
[1− cos(π h k)] v

h,[k]
1

= λhk v
h,[k]
1 ,

which, given the fact that a similar computation holds for i = N−1 and given that k was chosen arbitrarily
in its range, completes the proof. 2

The verification that the eigenvalues derived above lie in the Gershgorin disks is left as an exercise. In
Figure 3.7.1 the eigenvalues (as a function of k) and three eigenvectors (as a function of x) are shown for
N = 32. Note how the eigenvalues and the frequency of the eigenvectors increase with k.

Corollary 3.7.1 The set of N − 1 eigenvectors vh,[k] for k = 1, . . . , N − 1 forms an orthonormal basis
of RN−1. In this basis the matrix Ah can be diagonalizes, i.e., given the matrix V h whose columns are the
vectors vh,[k] and the diagonal matrix Λh whose diagonal entries are the eigenvalues λhk , we have that

Ah = V hΛh(V h)T . (3.57)

The next theorem extends the previous result to the two-dimensional case.
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(a) Eigenvalues (b) Eigenvectors

Figure 3.6: Eigenvectors and eigenvectors of the one-dimensional discrete Laplacian with elimination of
the boundary for N = 32.

Theorem 3.7.2 In the two-dimensional problem and with elimination of the boundary conditions, the ma-
trix Ah has the following eigenvalues and eigenvectors

Ahvh,[k`] = λhk`v
h,[k`] (3.58)

where for k, ` = 1, . . . , N − 1

vh,[k`] =
1

(N − 1)



sin(πk x1) sin(π` y1)
...

sin(πk xN−1) sin(π` y1)
sin(πk x1) sin(π` y2)

...
sin(πk xN−1) sin(π` y2)

...
sin(πk x1) sin(π` yN−1)

...
sin(πk xN−1) sin(π` yN−1)



=
1

(N − 1)



sin(πk h) sin(π` h)
...

sin(πk (N − 1)h) sin(π` h)
sin(πk h) sin(π` 2h)

...
sin(πk (N − 1)h) sin(π` 2h)

...
sin(πk h) sin(π` (N − 1)h)

...
sin(πk (N − 1)h) sin(π` (N − 1)h)


and

λk`(A
h) =

4

h2
[1− 1

2
cos(π h k)− 1

2
cos(π h `)] =

4

h2
[sin2(

π h k

2
) + sin2(

π h `

2
)] . (3.59)

31



Proof. The proof again consist of performing a matrix-vector multiplication. For indices i and j corre-
sponding to a internal node not connected to the boundary, we have that

[Ah vh,[k`]]ij =

(N−1)2∑
α,β=1

aαβ,ij v
h,[k`]
αβ (3.60)

=
1

h2

1

N − 1
[− sin(π(i− 1)h k) sin(πj h `)− sin(π(i+ 1)h k) sin(πj h `)

+4 sin(πi h k) sin(πj h `)

− sin(πi h k) sin(π(j − 1)h `)− sin(πi h k) sin(π(j + 1)h `)]

=
1

h2

1

N − 1
[4 sin(πi h k) sin(πj h `)

−2 sin(πi h k) sin(πj h `) cos(π h k)− 2 sin(πi h k) sin(πj h `) cos(π h `)]

=
4

h2

1

N − 1
[1− 1

2
cos(π h k)− 1

2
cos(π h `)] sin(πi h k) sin(πj h `)

=
4

h2
[1− 1

2
cos(π h k)− 1

2
cos(π h `)] v

h,[k`]
ij .

A similar computation can be done for the other nodes, completing the proof. 2

The (N − 1)2 vectors vh,[k`] can be numbered linearly using the same (e.g. lexicographic) ordering as the
grid nodes.

Corollary 3.7.2 The set of (N − 1)2 eigenvectors vh,[k`] for k, ` = 1, . . . , N − 1 forms an orthonormal
basis of R(N−1)2 . In this basis the matrixAh can be diagonalizes, i.e., given the matrix V h whose columns
are the vectors vh,[k`] and the diagonal matrix Λh whose diagonal entries are the eigenvalues are the
eigenvalues λhk`, we have that

Ah = V hΛh(V h)T . (3.61)

Next we investigate asymptotic limits for the eigenvalues as h→ 0. Using the fact that

cos(x) = 1− 1

2
x2 +O(x4) as x→ 0 (3.62)

we have that
λk` = π2(k2 + `2) as h→ 0 , (3.63)

i.e., the eigenvalues of the continuous operator are recovered. We furthermore have for the quotient of the
largest and smallest eigenvalue that

λ(N−1)(N−1)

λ11
=

1− 1
2 cos(π h (N − 1))− 1

2 cos(π h (N − 1))

1− 1
2 cos(π h)− 1

2 cos(π h)

=
π2 h2 (N − 1)2 +O(h4)

π2 h2 +O(h4)

= (N − 1)2 +O(h2)

= O(h−2) (3.64)

where we used the fact that N = 1
h . This implies that Ah becomes ill conditioned on finer meshes.

Summarising this section we can state that

the discrete Laplacian Ah is a sparse structured diag. dominant spd M-matrix with κ2(A) = O(h−2) .

(3.65)
The properties derived in this section will play a central role in all subsequent chapters. To illustrate the
M-matrix property, we plotted in Figure 3.7.1 the elements of Ah and of its inverse. The colourbar to
the right of the graph of the latter shows that all its entries are positive confirming that Ah is indeed an
M -matrix.
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(a) Ah (b) (Ah)−1

Figure 3.7: Plot of entries of the discrete Laplacian Ah and its inverse (Ah)−1.

3.8 bi-Harmonic Equation
Given the domain of computation Ω = (0, 1) and given the source function f(x) we consider the following
boundary value problem for the unknown u(x). Our goal is to find u(x) such that the following conditions
are satisfied: u(x) should satisfy the so-called bi-harmonic equation

d4u(x)

dx4
= u(4)(x) = f(x) for x ∈ Ω (3.66)

and satisfy the following boundary conditions

u(0) = u(2)(0) = 0 and u(1) = u(2)(1) = 0 . (3.67)

This system models the deflection of a beam that has free support at both end points.
The finite difference discretization of this matrix using the stencil

[Ah] =
1

h4

[
1

xi−2

−4
xi−1

6
xi
−4
xi+1

1
xi+2

]
(3.68)

leads to the coefficient matrix

Ah =
1

h4



5 −4 1
−4 6 −4 1 �
1 −4 6 −4 1

. . . . . . . . . . . .
. . . . . . . . . . . .

1 −4 6 −4 1
� 1 −4 6 −4

1 −4 5


. (3.69)

3.9 Beyond the Model Problem
In this section we discuss to which extend the nice properties of the discrete Laplacian discussed above
carry over to more realistic problems. Doing so, we will treat elliptic and parabolic problems separately.
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3.9.1 Elliptic Problems
Anisotropic Poisson Equation For the anisotropic Poisson equation (3.5) the 5-point finite difference
stencil (3.27) needs to be modified into

1

h2

 0 −1 0
−ε 2 + 2ε −ε
0 −1 0

 . (3.70)

The resulting matrix is still an SPD M-matrix, but the presence of ε affects the eigenvalues and therefore
the condition number.

Discontinuous Coefficients Poisson Equation For the discontinuous coefficients Poisson equation (3.6)
the finite difference stencil for a point lying on the interface running vertically between two regions having
diffusion coefficient µ+ and µ− is

1

h2

 0 −(µ+ + µ−) 0
−µ− 2(µ+ + µ−) −µ+

0 −(µ+ + µ−) 0

 . (3.71)

As in the anisotropic case, the resulting matrix is still an SPD M-matrix, but the discontinuity in µ affects
the eigenvalues and the condition number.

Poisson Equation with Anti-Periodic Boundary Conditions The M-matrix property is lost if so-called
anti-periodic period boundary conditions are imposed. These conditions state that

uΓ1
= −uΓ2

(3.72)

where Γ1 and Γ2 are distinct parts of the boundary, and are frequently used in modelling in the presence of
particular symmetry (as for instance in the modelling of rotary electrical machines). Suppose that Γ1 and
Γ2 correspond to the left and right part of boundary of the unit square, respectively, and that the nodes on
Γ1 are eliminated from the linear system. An interior node with left neighbour on Γ1 then gets connected
to Γ2 with a positive weight and has the stencil

1

h2

 0 −1 0
1 4 −1
0 −1 0

 . (3.73)

The resulting matrix is SPD, but no longer an M-matrix.

Poisson Equation Discretized by Higher Order Schemes The discretization of the Poisson equation
using higher order compact or non-compact finite difference schemes (see e.g. [67]) results in matrices
that are SPD, but not M-matrices due to positive off-diagonal entries. These matrices are denser than their
lower order counterparts.

Poisson Equation Discretized on Complex Geometries The discretization of the Poisson equation on
complex geometries typically requires the use of unstructured triangular meshes as shown if Figure 3.8.
The resulting matrices are still SPD. If lower order methods are used and if the mesh meets certain mild
requirements, the resulting matrices are even M-matrices! Their sparsity structure however is irregular.

Helmholtz Problem The low order finite difference discretization of the Helmholtz equation (3.7) results
in the stencil

1

h2

 0 −1 0
−1 4− k2h2 −1
0 −1 0

 . (3.74)

The resulting matrix is symmetric. It losses its diagonal dominance, positive definiteness and M-matrix
property in case that the wave number k is sufficiently large.
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(a) Coarse and fine mesh (b) Equipotentials of the computed solu-
tion

Figure 3.8: The Poisson equation solved on a complex geometry discretized by unstructured grids.

Convection-Diffusion Problem leading to a Non-Symmetric Matrix The discretization of the convection-
diffusion equation (3.8) using the 5-point finite difference stencil (3.27) for the diffusive terms and e.g. the
following central scheme

∂u

∂x
(xi, yj) =

uhi+1,j − uhi−1,j

2h
+O(h2) (3.75)

for the convective term, results in the stencil

ε

h2

 0 −1 0
−1− h

2ε 4 −1 + h
2ε

0 −1 0

 . (3.76)

The resulting matrix has the same sparsity pattern as the discrete Laplacian, but its non-symmetry compli-
cates its iterate solution considerably.

3.9.2 Parabolic Problem
The discretization of parabolic problems is typically performed by a two-stage procedure in which the
system of coupled ordinary differential equations resulting from the spatial discretization, is discretized
in time by a time-stepping procedure. This way the numerical solution procedure naturally follows the
physics of the problem. The coefficient matrix of the system of linear equations to be solved at each time
step has the same sparsity pattern as the discrete Laplacian. Due to the time stepping scheme, the matrices
to be solved are more diagonally dominant than the discrete Laplacian, rendering their iterative solution
easier.

3.9.3 Dense Matrices in PDE Problems
The discretization of PDEs does not necessarily lead to sparse matrices. The discretization of integro-
differential equations for instance leads to linear systems with a dense coefficient matrix. As example we
consider the Pocklington equation that models the current u(x) induced in a thin wire antenna of length L
exposed to an incident electrical wave f(x) with wavenumber k and that can be written as

d

dx

∫ L

0

dx′G(x− x′)d u(x′)

dx′
+ k2

∫ L

0

dx′G(x− x′)u(x) = f(x) (3.77)
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with integration kernel

G(x− x′) =
exp(−j k |x− x′|)

4π|x− x′|
. (3.78)

The discretization of this equation leads to symmetric Toeplitz matrices that are amenable to being solved
by iterative solution methods.

3.9.4 Sparse Matrices in non-PDE Problems
Sparse matrices not only appear after the discretization of partial differential equations, but are central
in the modelling of electrical, social and computer networks. The modelling of a power distribution in
network with time independent generators and loads for instance gives rise to sparse SPD M-matrices.

3.10 List of Model Problems
For future reference we give here an enumerated list of model problem

• MP-1: 1D or 2D Poisson equation with Dirichlet boundary conditions, discretized by 5-point stencil;

• MP-2: 1D or 2D Poisson equation with Neumann boundary conditions, discretized by 5-point sten-
cil;

• MP-3: 2D Poisson equation with anti-periodic boundary conditions, discretized by 5-point stencil;

• MP-4: 2D Poisson equation with Dirichlet boundary conditions, discretized by a non-compact higher
order scheme

• MP-5: convection diffusion equation discretized by a central scheme for the flux.

3.11 Computer Implementation
Storing sparse matrices by using two-dimensional arrays is memory inefficient. Sparse matrix storage
schemes such as the compressed row format, that avoid having to store the zero elements, have therefore
been developed.

36



3.12 Exercises
Exercise 3.12.1 Show that the operator L with mixed derivatives in the equation −∆u+ τuxy = b is
elliptic for |τ | < 2, parabolic for |τ | = 2 and hyperbolic for |τ | > 2.

Exercise 3.12.2 Determine the type of each of the following PDEs for u = u(x, y).

a) uxx + uyy = b
b) −uxx − uyy + 3uy = b
c) uxy − ux − uy = b
d) 3uxx − ux − uy = b
e) −uxx + 7uxy + 2ux + 3u = b

Exercise 3.12.3 Determine the type of each of the following PDEs in dependence of the parameter ε for
u = u(x, y).

a) −εuxx − uyy = b
b) −ε∆u+ a1ux + a2uy = b

Exercise 3.12.4 In the case of nonconstant coefficients a11 = a11(x, y), a12 = a12(x, y), a22 =
a22(x, y), it is possible to generalise the determination of the type of an equation (elliptic, hyperbolic,
parabolic) in a straightforward way. In that case, the determinant

a11a22 − a2
12

depends on x, y. The equation type then also depends on x, y. With coefficients aij depending of solution
u and/or derivatives ux, uy the differential equation is called quasilinear. It is also in that case possible to
determine the equation type in a similar way.

An equation describing the flow of a stationary, rotation-free, inviscid ideal fluid is the so-called full
potential equation. In 2D, it reads,

uxx + uyy −
1

C2
(u2
xuxx + 2uxuyuxy + u2

yuyy) = 0

where C = C(ux, uy) is the local speed of sound. (C also depends on other physical quantities, such as
density ρ.) Vector (ux, uy) represents the velocity, with components in x- and y-direction, respectively.

Determine the type of the equation in dependence on C.
Can you interpret your solution from a physical point of view?

Exercise 3.12.5 Show that, for sufficiently smooth functions u, the differential equation

ũξη = 0

can be transformed into the well-known wave equation

uxx − uyy = 0

by the coordinate transformation

x = (ξ + η)/2, y = (ξ − η)/2.

Exercise 3.12.6 Show that the Black-Scholes equation

∂u

∂t
+
σ2

2
s2 ∂

2u

∂s2
+ rs

∂u

∂s
− ru = 0

for u(s, t) is equivalent to the equation
∂y

∂τ
=
∂2y

∂x2

for y(x, τ). To show this, proceed as follows:
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a) For the transformation s = Eex and an appropriate transformation t ↔ τ , the Black-Scholes equa-
tion is equivalent to

−u̇+ u′′ + αu′ + βu = 0

with u̇ = ∂u
∂τ , u

′ = ∂u
∂x , and α, β depending on r and σ. Determine this transformation and show

that this leads to the given partial differential equation.

b) The remaining part follows after a transformation of the type

u = Eeγx+δτy(x, τ)

with appropriate γ, δ.

Exercise 3.12.7 Let [sκ1κ2 ]h be the five-point stencil

[sκ1κ2 ]h =
1

h2

 0 −1 0
−1 4 −1

0 −1 0


h

and Ωh = {(ih, jh) | 0 < i, j < 5}.

a) Let wh be the grid function (see Section 2.1.1)

wh(ih, jh) = 1 (ih, jh) ∈ Ωh .

Calculate [sκ1κ2
]hwh(3h, 2h) and [sκ1κ2

]hwh(3h, 3h).

b) Let wh be the grid function

wh(ih, jh) = jh (ih, jh) ∈ Ωh .

Calculate [sκ1κ2 ]hwh(3h, 2h) and [sκ1κ2 ]hwh(3h, 3h).

c) Let wh be the grid function

wh(ih, jh) = (jh)2 (ih, jh) ∈ Ωh .

Calculate [sκ1κ2 ]hwh(3h, 2h) and [sκ1κ2 ]hwh(3h, 3h).

d) We know that the five-point stencil is a discretization of the Laplacian −∆ = −∂2/∂x2 − ∂2/∂y2.
In view of this fact, interpret the results of a) - c) in terms of their continuous analogs.

Exercise 3.12.8 We derive finite difference methods systematically for second order derivatives of func-
tions of one variable. Therefore, we consider the central difference for a second derivative, which we write
in the form

(u′′i )h =
1

h2
(a1ui−1 + a2ui + a3ui+1)

where a1, a2 and a3 represent parameters, that must be calculated so that the scheme has a high accuracy.
By Taylor’s expansion of ui−1 and ui+1 around ui we find

(u′′i )h =
1

h2

(
ui(a1 + a2 + a3) + hu′i(−a1 + a3) +

1

2!
h2u′′i (a1 + a3)

+
1

3!
h3u′′′i (−a1 + a3) +

1

4!
h4u′′′′i (a1 + a3) + · · ·

)
Use this equation to compute the best possible approximation for the second derivative of u under the
assumption that h is very small.
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Figure 3.9: figure
Grid points for a higher order central difference scheme.

Exercise 3.12.9 One can obtain a higher order central difference scheme for the approximation of a first
derivative u′, if one uses, for example, u-values at four grid points, x = −2h, x = −h, x = h and x = 2h
(see Fig. 3.9).

The approximation for the first derivative at x = 0 is written in the form

(u′0)h = a1u1 + a2u2 + a3u3 + a4u4,

where a1, a2, a3 and a4 are parameters that must be calculated so that the scheme has the required accuracy.
Calculate the parameters a1, a2, a3 and a4 so, that the approximation of u′ is exact for the functions

u(x) = 1, u(x) = x, u(x) = x2 and u(x) = x3.

Exercise 3.12.10 Let the following Sturm-Liouville boundary value problem be given:

−u′′ + p(x)u′ + q(x)u = r(x), u(a) = α, u(b) = β

with p(x) ≥ p0 > 0 for x ∈ [a, b].
We search for approximations ũi of the exact values u(xi), xi = a + ih, i = 1, .., n and h = b− a

n+ 1 . If

one replaces u′(xi) by ũi+1 − ũi−1

2h
and u′′(xi) by ũi−1 − 2ũi + ũi+1

h2 for i = 1, ..., n and further sets

ũ0 = α and ũn+1 = β, a system of equations is obtained for the vector ũ := (ũ1, ..., ũn)T

Aũ = b with A ∈ Rn×n, c ∈ Rn.

a) Determine A and b.
b) For which h > 0 does A satisfy the requirement ai,j ≤ 0 for i 6= j?

Exercise 3.12.11

a) Set up three second-order accurate discretizations for the mixed derivative of the form uxy = ∂2u
∂x∂y ,

that can be represented in stencil notation by,

Ah =
1

h2

 a2 a1 0
a1 a3 a1

0 a1 a2


h

, Bh =
1

h2

 0 b1 b2
b1 b3 b1
b2 b1 0


h

, Ch =
1

h2

 c1 0 c2
0 0 0
c3 0 c4


h

;

b) Consider the equation

−∆u− τuxy = 0 (Ω = (0, 1)2) (3.79)
u = g (∂Ω). (3.80)

Write down a discretization in stencil notation for an interior grid point.
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c) A MatrixA is called aZ-matrix, if aij ≤ 0 for i 6= j. TheZ-matrix property is (for example, as a part
of the definition of M -matrices) a basis for convergence proofs of certain iterative solution methods.
For which τ -values and which discretization approaches discussed under (a), does the boundary
value problem (3.80) result in a Z-matrix? Which discretization approach for (3.80) would give the
Z-matrix property for general −2 < τ < 2?

Exercise 3.12.12 Prove the relation

Lu− Lhu = O(h2) for h→ 0

for sufficiently smooth functions u for the standard five-point discretization

−∆h =
1

h2

 −1
−1 4 −1

−1


h

of the operator L = −∆ using Taylor expansion.

Exercise 3.12.13 Consider the 1D problem Lu(x) = −u′′(x) = b(x) on the interval Ω = (0, 1) with
boundary conditions u(0) = u0, u(1) = u1. Set up the discrete problem (matrix and right-hand side) for
the discretization

Lh =
1

h2

[
−1 2 −1

]
and h = 1/4

a) without elimination of boundary conditions,
b) with elimination of boundary conditions.

Exercise 3.12.14 Consider Lu(x) = −∆u(x, y) = b(x, y) on the domain Ω = (0, 1)2 with boundary
conditions u(x, y) = g(x, y). Set up the discrete problem (matrix and right-hand side) for the standard
five-point discretization of L (see Exercise 3.12.12) and h = 1/3

a) without elimination of boundary conditions,
b) with elimination of boundary conditions,

using a lexicographic ordering of grid points in both.

Exercise 3.12.15 Consider Lu(x) = −∆u(x, y) = b(x, y) on the domain Ω = (0, 1)2 with boundary
conditions u(x, y) = g(x, y). Set-up the discrete problem (matrix and right-hand side) for the standard
five-point discretization of L (see Exercise 3.12.12) and h = 1/3

a) without elimination of boundary conditions,
b) with elimination of boundary conditions,

using a red–black ordering of grid points.

Exercise 3.12.16 Determine the sparsity structure of the five-point stencil if the grid points are ordered in
alternating lines

13 14 15 16
5 6 7 8
9 10 11 12
1 2 3 4

Exercise 3.12.17 Given the coefficient matrix Ah given by (3.69) resulting from the finite difference ap-
proximation of the bi-harmonic equation on a mesh with mesh size h

1. show that Ah is symmetric, positive definite and an M-matrix;

2. derive an expression for the eigenvalues of Ah;

3. derive the order of the condition number cond2(Ah).

40



Chapter 4

Direct Solution Methods

We learn from failures.

4.1 Introduction
In this chapter we study direct solution methods for systems of linear equations. Given a non-singular
coefficient matrix A ∈ Rn×n and a right-hand side vector f ∈ Rn, our goal is to solve the linear system

Au = f , (4.1)

as efficiently and as reliably as possible. We will first discuss Gaussian elimination for A being a square,
non-singular but otherwise general matrix. We will treat row permutations as a technique to keep pivot
elements small in size and keep the error bounds of the Gaussian elimination sharp. We then extend this
discussion for symmetric positive definite, banded and finally sparse matrices A. Direct solution methods
are the methods of choice for solving problems that are moderate in size. The overhead in the use of these
methods can be substantially reduced in solving problems with multiple right-hand sides that typically arise
in time-stepping or parameter studies. Direct solution methods can also be combined with iterative solvers
in various ways. Direct methods are for instance used as subdomain solver in domain-decomposition
methods and as coarse grid solvers in multigrid methods. The former therefore remains an important
component in current day solvers. Due to their requirement in computational resources however, direct
methods are inadequate as stand-alone solvers for large scale problems that typically arise in scientific
computing.

Study goals In this chapter we aim at

• introduce the concept of stability analysis for linear systems and give an intuitive interpretation to
the condition number of a matrix;

• introducing the concept of the LU-factorization of the system matrix and of the forward and back-
ward substitutions, discussing the computational complexity of these methods as well as their error
bounds;

• explaining how partial pivoting allows to keep the pivoting elements small and therefore the algo-
rithm numerically stable;

• discuss how to take advantage of system matrix properties such as diagonal dominance, symmetric
positive definiteness, banded non-zero structures and sparsity to tailor the direct solutions methods
to the problems being solved.

The monograph on numerical linear algebra by Golub and van Loan [24], of Jack Demmel [12], of Tre-
fethen and Bau [66] and of Biswa Nath Datta [10] contain a chapter on direct solution methods. The direct
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solution of sparse linear systems is covered by the book of Duff, Erisman and Reid [13] and of Timothy
Davies [11]. Research into direct solution methods for sparse linear systems is actively being pursued giv-
ing rise to modern implementations such as MUMPS [1], PARDISO [58] and SUPERLU [42]. The report
[29] compares the performance of different implementations using a collection of test matrices.

4.2 Floating Point Arithmetic
• t-digit floating point representation (subset of real numbers)

x = ±s · βp

where s, β and p are the mantissa, base and exponent. s is a t-digit fraction. The exponent p varies
between upper and lower bounds m and M , i.e., m ≤ p ≤M .

• Given a real number x, we denote by fl(x) its floating point representation obtained by rounding.
The relative error in this representation is bounded by the machine precision denoted by µ, i.e.,

|fl(x)− x|
|x|

≤ µ where µ =
1

2
β1−t .

This error bound is equivalent to

fl(x) = x(1 + δ) where |δ| ≤ µ .

• elementary operations on real numbers

fl(x± y) = (x± y)(1 + δ) where |δ| ≤ µ
fl(xy) = (xy)(1 + δ) where |δ| ≤ µ

if y 6= 0 then fl(x/y) = (x/y)(1 + δ) where |δ| ≤ µ

• floating point arithmetic is not associative

• a flop is the cast of a floating point operation as there are: +, −, ∗, / and √.

4.3 Perturbation Analysis
Prior to discussing the performance of any solution algorithm for the system of linear equations (4.1), it is
crucially important to distinguish the following two types of difficulties

• those intrinsically related to the linear systems considered (and from which any solution algorithm
will suffer);

• those related to a particular solution algorithm.

To be able to distinguish the above two types, we will perform in this section a perturbation analysis on
the linear system (4.1). We will describe how small changes in the coefficient matrix A and the right-hand
side vector f (the problem or input data) affect the solution vector u (the output). Such small changes can
either be caused by measurement errors or by round-off in the computation of A or f due to finite precision
arithmetic. We will provide two results. In the first we limit ourselves to perturbations in f only. This will
allow us to provide an intuitive explanation for the concept of the condition number of the matrix A and to
show that a small perturbation in the data might result in a large perturbation in the computed solution if
the problem is badly conditioned, i.e., if the condition number is much larger than 1. In the second result
the analysis is generalized to the case in which both matrix A and right-hand side vector f are perturbed.
The analysis in this section is by no means linked to a particular (direct or iterative) solution algorithm.
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4.3.1 Perturbation in the right-hand side only
Given the linear system (4.1), we aim at describing the effect of a perturbation in f on the solution u. We
assume f 6= 0 and A non-singular such that u 6= 0. Given a submultiplicative norm ‖ · ‖ and δ > 0, we
assume a perturbation of the form

f → f + ∆f where ‖∆f‖ ≤ δ‖f‖ . (4.2)

If we assume that A is not affected by the perturbation, the perturbed solution u + ∆u solves the system

A(u + ∆u) = f + ∆f . (4.3)

Due to linearity, the perturbation ∆u then solves the system

A∆u = ∆f , (4.4)

from which ∆u = A−1∆f and therefore ‖∆u‖ ≤ ‖A−1‖ ‖∆f‖. From (4.1) follows that ‖f‖ ≤ ‖A‖ ‖u‖
and therefore

1

‖u‖
≤ ‖A‖ 1

‖f‖
(4.5)

Combining these inequalities we arrive at the following bound on the norm of the perturbed solution

‖∆u‖
‖u‖

≤ ‖A−1‖ ‖A‖ ‖∆f‖
‖f‖

= κ(A)
‖∆f‖
‖f‖

≤ δ κ(A) , (4.6)

where κ(A) denotes the condition number of A measured in the norm ‖ · ‖. We thus have demonstrated the
following theorem

Theorem 4.3.1 A perturbation of the form (4.2) to linear system (4.1) results in a perturbation in the
solution with relative error bound given by (4.6).

Assume that e.g. δ = 10−6 and that the matrix is poorly conditioned with κ(A) = 106. Then the
theorem says that in case that a perturbation ∆f that is small in norm (as bounded by a small δ) results in a
perturbation ∆u that is possibly very large (as bounded by δ κ(A) = 1). Examples showing that the bound
given in the above theorem is attained and therefore sharp can easily be constructed.

Example 4.3.1 Consider the following linear system(
1 1
1 0.999

) (
x
y

)
=

(
2

1.999

)
.

The two rows of the system matrix A are nearly equal and A is therefore nearly rank-deficient. The
eigenvalues smallest in size is therefore nearly zero. The condition number of the system matrix measured
in 2-norm is therefore large, i.e., the matrix is badly conditioned. The exact solution to this system is
u =

(
1 1

)T
. Suppose now that the right-hand vector is slightly changed to f +∆f =

(
2 2

)T
either due

to measurement or rounding errors. The solution of the perturbed problem is then given by u =
(
2 0

)T
which is totally different from the solution of the original (unperturbed) system.

4.3.2 Perturbation in both matrix and right-hand side
The aim of this subsection is to generalize the analysis of the previous subsection to the more general and
practically more relevant case in which a perturbation affects both f and A. Given as above a submulti-
plicative norm ‖ · ‖ and δ > 0, we assume perturbations of the form

f → f + ∆f where ‖∆f‖ ≤ δ‖f‖ (4.7a)
A→ A+ ∆A where ‖∆A‖ ≤ δ‖A‖ (4.7b)
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The perturbed solution u + ∆u then solves the system

(A+ ∆A)(u + ∆u) = f + ∆f . (4.8)

To avoid the perturbed problem from becoming singular, we impose the condition that

δ κ(A) = r < 1 . (4.9)

To verify that this condition indeed prevents A+ ∆A from becoming singular, we first write this matrix as

A+ ∆A = A
[
I − (−A−1 ∆A)

]
. (4.10)

Theorem 2.7.1 then implies that

ρ(−A−1 ∆A) ≤ ‖ −A−1 ∆A‖ ≤ ‖A−1‖ ‖∆A‖ ≤ δ‖A−1‖ ‖A‖ = δ κ(A) = r < 1 . (4.11)

By Theorem 2.7.4 we find that the matrix I − (−A−1 ∆A) is therefore non-singular. The matrix A +
∆A is therefore non-singular (as a product of two non-singular matrices) if the condition (4.9) holds.
Theorem 2.7.4 also implies that[

I − (−A−1 ∆A)

]−1

=

∞∑
k=0

(−A−1 ∆A)k , (4.12)

and therefore given that ‖A−1‖ ‖∆A‖ ≤ r we have that∥∥∥∥[I − (−A−1 ∆A)
]−1
∥∥∥∥ ≤ ∞∑

k=0

∥∥A−1 ∆A
∥∥k ≤ 1

1− r
. (4.13)

Next we rewrite the perturbed system (4.8) as

u + ∆u =
[
I − (−A−1 ∆A)

]−1
A−1

[
f + ∆f

]
(4.14)

=
[
I − (−A−1 ∆A)

]−1[
A−1f +A−1∆f

]
=

[
I − (−A−1 ∆A)

]−1[
u +A−1∆f

]
.

Therefore using (4.13)) we obtain

‖u + ∆u‖ ≤
∥∥∥∥[I − (−A−1 ∆A)

]−1
∥∥∥∥[‖u‖+ ‖A−1‖‖∆f‖

]
(4.15)

≤ 1

1− r

[
‖u‖+ δ‖A−1‖‖f‖

]
≤ 1

1− r

[
‖u‖+ δ‖A−1‖‖A‖‖u‖

]
.

Scaling by ‖u‖ we obtain that

‖u + ∆u‖
‖u‖

≤ 1

1− r

[
1 + δ‖A−1‖‖A‖‖

]
=

1 + r

1− r
. (4.16)

We collect the results obtained in the following lemma.

Lemma 4.3.1 A perturbation of the form (4.7) to the linear system (4.1) satisfying the condition (4.9) is
such that A+ ∆A is non-singular and the the bound (4.16) holds.

This lemma is used to demonstrate the following theorem that gives a bound on the norm of the relative
error.
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Theorem 4.3.2 A perturbation of the form (4.7) to linear system (4.1) satisfying condition (4.9) is such
that A+ ∆A is non-singular and

‖∆u‖
‖u‖

≤ 2δ

1− r
κ(A) . (4.17)

Proof. Using v = u + ∆u and the perturbed system (4.8) can be rewritten as

Av + ∆Av = f + ∆f ⇔ v +A−1∆Av = A−1f +A−1∆f (4.18)
⇔ v +A−1∆Av = u +A−1∆f .

Therefore
u− v = A−1∆Av −A−1∆f , (4.19)

and therefore

‖u− v‖ ≤ δ‖A−1‖‖A‖‖v‖+ δ‖A−1‖‖f‖ ≤ δ‖A−1‖‖A‖‖v‖+ δ‖A−1‖‖A‖‖u‖ (4.20)

and so
‖u− v‖
‖u‖

≤ δ κ(A)
‖v‖
‖u‖

+ δ κ(A) ≤ δ κ(A)
1 + r

1− r
+ δ κ(A) =

2δ

1− r
κ(A) . (4.21)

2

The theorem states that in case that A is badly conditioned, a perturbation in the input that is small in norm
causes a perturbation in the output that is not necessarily small. Indeed, assume that δ = 106 and that A
is badly conditioned with κ(A) = 0.5 · 106 such that r = δ κ(A) = 0.5 to satisfy condition (4.9). Then
the upper bound 2 δ κ(A)/(1 − r) = 2 is too large to guarantee that ‖∆u‖/‖u‖ remains small. Practical
computations show that perturbations that are large in norm or likely to occur in the case that A is badly
conditioned. Compared to the situation in which only the right-hand side is perturbed, the upper bound is
magnified by a term 2/(1− r). Observe again that the above analysis is independent of the method used
to solve the linear system.

4.3.3 Diagonal Scaling and Conditioning
In practical computations it may appear that the coefficient matrix A ∈ Rn×n of the linear system (4.1)
has entries whose magnitude varies on a wide scale. The conditioning of badly scaled matrices can be
improved by scaling the rows of the matrix, i.e., by multiplying matrix A on the left with a diagonal matrix
D = diag[d1, d2, . . . , dn]. If D is chosen such that each row of D−1A has approximately the same∞-
norm, then κ∞(D−1A) is smaller than κ∞(A). The problem is in other words better conditioned. In more
advanced scaling techniques [24, 10] the columns of A are scaled as well.

Example 4.3.2 Consider the following linear system [24](
10 100, 000
1 1

)(
x1

x2

)
=

(
100, 000

2

)
(4.22)

and its equivalent row-scaled variant (
0.0001 1

1 1

)(
x1

x2

)
=

(
1
2

)
(4.23)

each solved using β = 10, t = 3 arithmetic. Then the solutions x̂ = (0.00, 1.00)T and x̂ = (1.00, 1.00)T

are respectively computed. Note that x = (1.0001 . . . , .9999 . . .)T is the exact solution.
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4.4 The Gaussian Elimination Method
Direct solution methods for the system of linear equations (4.1) rely on some form of Gaussian elimination
and typically consist of two stages. In the first stage the coefficient matrix is factored into a product of two
matrices L and U such that A ∈ Rn×n can be written as

A = LU . (4.24)

The matrices L and U are lower and upper triangular and the diagonal elements of L are set equal to one.
In the second stage the factored form (4.24) is substituted into the linear system (4.1) to obtain the system
LUu = f . The latter system is solved by a forward and backward triangular substitution. In the forward
step the system

Ly = f (4.25)

for an auxiliary vector y. In the backward step the system

Uu = y (4.26)

is solved for the unknown vector u. We will refer to U (and L) as the upper (and lower) triangular factor
of A. Some references further subdivide the factorization stage in a symbolic pre-processing stage and an
actual computation stage.

This section is subdivided into four subsection. We subsequently discuss the existence and uniqueness
of theLU -factorization, its computation, the forward and backward triangular solves and the computational
cost of the direct solution method.

4.4.1 Existence and Uniqueness of the LU-Factorization
The factorization (4.24) defines n2 equations for the n2 non-specified elements of L and U . The LU -
factorization of A can be proven to exist if A and all its principal submatrices are non-singular. A principal
submatrix of A is obtained by removing from A rows and columns that have the same index. If the LU -
factorization of a non-singular matrix A exists, the factors L and U can be proven to be unique by an
argument of contradiction.

4.4.2 Computing the LU-Factorization
The coefficient matrixA is brought into the factored form (4.24) by a sequence of row operations that brings
A to upper triangular form. These row operations correspond to linear combinations of the equations that
do not change the solution of the linear system. The process that brings A to upper triangular form is
known as Gaussian elimination. In this process the columns of A are consecutively visited. The row
operations that brings the k-th column of A below the diagonal to zero are collected into a single Gaussian
transformation Mk. This transformation will be defined later in this section. To bring A to upper triangular
form, n−1 Gaussian transformation are required. More precisely we have that givenA(0) = A, a sequence
of n− 1 matrices {A(1), A(2), . . . , A(n−1)} is computed such that

A(k) = Mk A
(k−1) = MkMk−1 . . .M2M1A for 1 ≤ k ≤ n− 1 , (4.27)

and A(n−1) = U , where U is the upper triangular factor of A. Furthermore, the Gaussian transformation
matrix Mk is defined in Definition 4.4.1. The first k − 1 columns of A(k−1) are zero below the main
diagonal. It can therefore be partitioned into

A(k−1) =

( k − 1 n− k + 1

k − 1 A
(k−1)
11 A

(k−1)
12

n− k + 1 0 A
(k−1)
22

)
for 1 ≤ k ≤ n− 1 , (4.28)
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where the (1, 1)-block A(k−1)
11 is of size (k − 1) × (k − 1) and upper triangular. The (2, 2)-block A(k−1)

22

is of size (n− k + 1)× (n− k + 1) and can further be partitioned into

A
(k−1)
22 =

( 1 n− k
1 a

(k−1)
k,k cTk

n− k bk B(k−1)

)
for 1 ≤ k ≤ n− 1 . (4.29)

The diagonal element a(k−1)
k,k is called the k-th pivot element. The zeroth pivot element is thus the (1, 1)-

element of the original matrix A.
To give details on how the k-th Gaussian transformation Mk is constructed using A(k−1) as input, we

make the following assumptions

• we only use row replacement operations to bring A to echelon form. In a row replacement operation
a given row is replaced by the sum of that row and a scalar multiple of another row [41]. No row
interchanges and no row scaling operations will be used. The use of the latter two row operations
will be covered in the forthcoming sections.

• we assume that each of the n−1 Gaussian elimination steps can be applied in such a way that all the
pivot element remains non-zero, i.e., a(k−1)

k,k 6= 0 for each 1 ≤ k ≤ n − 1. This assumption is met
in case that all the principal submatrices of A are non-singular. In finite precision arithmetic a bound
away from zero will be required. Techniques to treat the occurrence of zero pivot elements will be
covered in the next sections.

Example 4.4.1 The linear system (
0 1
1 0

) (
x
y

)
=

(
1
1

)
is easy to solve. The straightforward application of Gaussian elimination requires due care and to avoid
the division by zero caused by the selection of the (1,1)-element of the coefficient matrix as pivot element.

The Gaussian transformations Mk for 1 ≤ k ≤ n − 1 can be expressed as a rank-one modification
of the identity matrix. We therefore introduce such modifications first. Given two vectors v,w ∈ Rn, its
outer product wvT is an n× n matrix that in column form can be written as

wvT = [v1 w, v2 w, . . . , vnw] . (4.30)

If in particular v = ek where ek is the k-th unit vector, the outer product weTk is the zero matrix with the
k-th column replaced by the vector w. Given the linear dependence of its columns, the matrix defined by
(4.30) clearly has rank equal to one. The matrix I + wvT is therefore called a rank-one modification of
the identity matrix.

The matrix expression A(k) = MkA
(k−1) can be written as n equalities of columns. The k-th of these

equalities reads
A(k)(:, k) = MkA

(k−1)(:, k) . (4.31)

Using the block partitioning of A(k−1) defined in (4.28) and (4.29), the k-th column of A(k−1) can be
expressed as

A(k−1)(:, k) =
[
(A

(k−1)
12 (:, 1)︸ ︷︷ ︸
k−1

, a
(k−1)
k,k︸ ︷︷ ︸

1

, bk︸︷︷︸
n−k

)
]T

(4.32)

where A(k−1)
12 (:, 1) denotes the first column of A(k−1)

12 . In the following we define the k-th Gaussian
transformation Mk as the rank-one modification of I that is such that its action on A(k−1) reduces the
components of the k-th column of A(k−1) below the diagonal to zero, i.e.,

A(k)(:, k) = MkA
(k−1)(:, k) = Mk

A(k−1)
12 (:, 1)

a
(k−1)
k,k

bk

 =

A(k−1)
12 (:, 1)

a
(k−1)
k,k

0

 . (4.33)
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The action of Mk on A(k−1) is equivalent to performing row operations on the last n − k rows of A(k−1)

and leaves the first k rows of A(k−1) unchanged. Each of the last n− k rows is more specifically replaced
by this row minus a scalar multiply of the (n − k − 1)-st row. The first k − 1 entries of the rows that are
replaced by the action of Mk were brought to zero by the application of previous Gauss transformations.
The Gauss transformation Mk are thus defined as follows.

Definition 4.4.1 Assume that k − 1 Gaussian transformation steps of the matrix A ∈ Rn×n result in the
matrix A(k−1) ∈ Rn×n that can be decomposed into blocks according to (4.28) and (4.29) with a pivot
element a(k−1)

k,k 6= 0. The k-th Gauss-vector α(k) ∈ Rn is defined as

α(k) = (0, . . . , 0︸ ︷︷ ︸
k

,bk/a
(k−1)
k,k︸ ︷︷ ︸

n−k

)T . (4.34)

The non-zero elements of α(k) ∈ Rn are referred to as Gaussian multipliers. The k-th Gaussian transfor-
mation Mk ∈ Rn×n that satisfies (4.33) is defined as

Mk = I −α(k)eTk =


0
...

I(:, 1 : k − 1) 0 I(:, k + 1 : n)
1

−bk/a(k−1)
k,k

 . (4.35)

The application of Mk to A(k−1) leads to (n − k) row replacement operations in which the rows have
length (n − k + 1). The action of Mk thus requires 2 (n − k)(n − k + 1) flops. The following gives the
inverse of Mk.

Lemma 4.4.1 (Inverse of a Gauss Transformation) The inverse of the Gauss transformation Mk =
I −α(k)eTk is the rank-one modification M−1

k = I + α(k)eTk .

Proof. A straightforward computation shows that MkM
−1
k = M−1

k Mk = I . 2

The next lemma computes the product of the inverses of the n− 1 Gaussian transformation matrices.

Lemma 4.4.2 (Product of Inverses of Gauss Transformations) We have that

(Mn−1 · . . . ·M1)−1 = M−1
1 . . .M−1

n−1 =

n−1∏
k=1

(
I + α(k)eTk

)
= I +

n−1∑
k=1

α(k)eTk . (4.36)

Proof. The result follows from the fact that for 1 ≤ k ≤ n− 1 we have that(
α(k)eTk

) (
α(k+1)eTk+1

)
= α(k)

(
eTk α(k+1)

)
eTk+1 = α(k)

(
0
)
eTk+1 = 0 .

The ordering of the factors Mk thus matters. 2

If we now define the matrix L as

L = (Mn−1 . . .M1)−1 = I +

n−1∑
k=1

α(k)eTk , (4.37)

then L is lower triangular with unit diagonal, i.e., diag(L) = I , and L contains all the Gaussian multipliers
below its main diagonal. In the above sum the matrix L is computed column-wise. We now have all the
ingredients to formulate the main result of this section.

Theorem 4.4.1 Assume that the coefficient matrix A ∈ Rn×n of the linear system (4.1) is non-singular
and that it can be brought to its upper triangular form U using n − 1 row operations without scaling and
without interchanges in such a way that pivot elements a(k−1)

k,k for k = 1, . . . , n− 1 are non-zero. Then the
n− 1 Gaussian transformation Mk for k = 1, . . . , n− 1 exist such that

Mn−1Mn−2 . . .M1A = U ⇔ A = (Mn−1 . . .M1)−1 U

⇔ A = LU . (4.38)
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The theorem states that A can be factored into a lower triangular matrix L times an upper triangular matrix
U . The fact that diag(L) = I makes storing diag(L) redundant and allows to overwrite in a practical
implementation the upper and lower triangular part of A by U and L, respectively. A prototype of such an
implementation is given by Algorithm 1.

After the application of n−1 Gaussian transformation, the n−1 pivot elements a(k−1)
k,k for 1 ≤ k ≤ n−1

populate the n− 1 first entries of the diagonal of U . The determinant of A can thus be computed as

det(A) = det(LU) = det(L) det(U) = 1 det(U) = unn

n−1∏
k=1

a
(k−1)
k,k =

n∏
k=1

ukk , (4.39)

where we used the fact that the determinant of a triangular matrix is given by the products of its diagonal
elements. The determinant det(A) is thus zero in case that one of the pivot elements a(k−1)

k,k is zero. The

matrix A can thus be seen to be (close to) singular in case that one of the pivot elements a(k−1)
k,k is (close

to) zero. The condition on the non-singularity of the principal submatrices of A guarantees that none of the
pivot elements are zero.

The factored form ofA renders the linear system easy to solve. This is discussed in the next subsection.

Algorithm 1 Matrix LU Factorization Step
for k = 1→ n− 1 do

if Akk = 0 then
quit {breakdown due to zero pivot}

else
for i = k + 1→ n do
L(i, k)← A(i, k)/A(k, k)
A(i, k)← L(i, k)
for j = k + 1→ n do
A(i, j)← A(i, j)− L(i, k)A(k, j)

end for
end for

end if
end for

4.4.3 Forward and Backward Substitution
Once the system matrix A is brought to factored form (4.24), the linear system (4.1) can easily be solved
by a forward followed by a backward linear solve. The forward solve determines the auxiliary vector y
from the linear system (4.25). The backward solve determines the solution vector u from the linear system
(4.26). Prototype implementations are given in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 Forward Substitution Step (assuming that L(i, i) = 1)
for i = 1→ n do
y(i)← [f(i)− L(i, 1 : i− 1) · y(1 : i− 1)]

end for

Algorithm 3 Backward Substitution Step
for i = n→ i do
u(i)← [y(i)− U(i, i+ 1 : n) · u(i+ 1 : n)]/U(i, i)

end for
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4.4.4 Computational Cost
The computational cost of the LU direct solution method is given by the sum of the cost of the factorization
and of the triangular solves.

Computational Cost of Factorization The computational cost of the LU-factorization can be computed
by adding the computational cost of the n − 1 Gaussian transformations. This results in a total computa-
tional cost equal to

2

n−1∑
k=1

(n− k)(n− k + 1) = 2

n−1∑
`=1

`(`− 1) =
2

3
n3 +O(n2) flops . (4.40)

Computational Cost of Forward and Backward Substitution In the forward (or backward) substitu-
tion the computation of the i-th component of the solution vector requires the inner product of two vectors
of length i (or n− i) and followed by a scaling (division by the diagonal element of L or U ). This requires
2 i+ 1 (or 2(n− i) + 1) flops. The totals cost of both the forward and backward solve is thus given by

n∑
i=1

2i+ 1 = n2 +O(n) flops . (4.41)

The computational cost of the direct solution method is clearly dominated by the cost of the factoriza-
tion process.

4.5 Gaussian Elimination in the Presence of Round-Off Errors
In this section we discuss the effect of finite precision arithmetic on both stages of the Gaussian elimination
process. In the process we will reconsider the assumptions we made in Subsection 4.4.2 on the absence of
row scaling and row interchange operations and on the boundedness away from zero of the pivot elements
in the computation of the Gaussian transformations. This section is subdivided into two subsections. In the
first and second subsection we discuss the effect of round-off errors in the solve and the factorization stage,
respectively.

4.5.1 Solve Stage
The solve stage amounts to consequetively solving the linear systems (4.25) Ly = f for y and (4.26)
Uu = y for u. It can be shown (see e.g. [10, 24]) that in solving Ly = f the solution vector ŷ computed
in the presence of round-off solves the system

(L+ F )ŷ = f (4.42)

where F ∈ Rn×n is a perturbation of the matrix L that can be bounded element wise by

|F | ≤ nµ|L|+O(µ2) (4.43)

where as before µ denotes the machine precision. On modern computing platform using double precision
µ = .5 · 10−15 it is save to assume that nµ ≤ 0.1. The above bound implies that each entry in F is
small relative to the entries in L and that the forward triangular solve is numerically stable. Using a similar
argument it can be shown that in solving Uu = y for u the computed solution solves the perturbed system

(U + F )û = y where |F | ≤ nµ|U |+O(µ2) (4.44)

The perturbations are small in size and the algorithm is therefore stable.
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4.5.2 Factorization Stage
The factorization stage amounts to computing the factors L and U such that A = LU . It can be shown (see
again e.g. [10, 24]) that the factors L̂ and Û computed using the Gaussian elimination procedure described
in Subsection 4.4.2 satisfy the relation

L̂ Û = A+ E where ‖E‖ ≤ nµ‖ |L̂| ‖ ‖ |Û | ‖ . (4.45)

The upper bound becomes large in the case that L̂ has elements that are large in size. In this case the norm
of the perturbation E can become large without violating the upper bound. To illustrate what this means,
we will consider the next example

Example 4.5.1 Consider computing the LU-factorization of the matrix

A =

(
0.0001 1

1 1

)
. (4.46)

The first pivot element a(0)
1,1 = 0.0001 is small. The application of the first Gaussian transformation M1

results in

Û = A(1) = M1A
(0) = M1A =

(
1 0
−104 1

)(
0.0001 1

1 1

)
=

(
0.0001 1

0 1− 104

)
, (4.47)

and therefore

L̂ =

(
1 0

104 1

)
and Û ≈

(
0.0001 1

0 −104

)
. (4.48)

The product L̂Û is equal to

L̂Û =

(
1 0

104 1

)(
0.0001 1

0 −104

)
=

(
0.0001 1

1 0

)
, (4.49)

which is different from A in the (2, 2)-element. The 1-norm of the perturbation

E =

(
0 0
0 1

)
(4.50)

is equal to ‖E‖1 = 1 which is of the same order of magnitude as ‖A‖1 = 2. The (1, 2)-element of L is
equal to 104 and its size results in a large upper bound for ‖E‖.

The bound for the size of the perturbation (4.45) allows for large perturbations E in case the elements
in L̂ become large as in the previous example. The LU-factorization process is said to be unstable. The
Gaussian elimination process can however be adapted to avoid small pivot elements and large entries in L
by resorting to (partial) pivoting as will be discussed in the next section.

4.6 Gaussian Elimination with Pivoting
In the previous section we saw that the upper bound on the error of the LU-factorization of A ∈ Rn×n
becomes large due to large entries in L. In this section we will discuss how the growth in the elements of L
can be avoided by resorting to a technique called pivoting. This section is subdivided into two subsections.
In the first and second subsection we will describe partial and complete pivoting, respectively.

4.6.1 Gaussian Elimination with Partial Pivoting
Let as before the matrix A(k−1) and Mk denote the matrix obtained after k − 1 stages of the Gaussian
elimination process and the k-th Gaussian transformation, respectively. LetA(k−1)(:, k) be the k-th column
of A(k−1) as in Equation (4.32). In Gaussian elimination with partial pivoting a row interchange is applied
to A(k−1) prior to the application of Mk aiming at avoiding small pivot elements. More precisely, the
following two steps are taken:
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1. first identify the entry largest in size (absolute value) in the last n − k + 1 rows of the k-th column
of A(k−1), i.e., in the vector

A(k−1)(k : n, k) ∈ Rn−k+1 . (4.51)

Let ` denote the row index in which this largest element appears;

2. next interchange rows k and ` by multiplying A(k−1) to the left with a permutation matrix denoted
by Pk. After this row interchange the element largest in size in the k-th column of PkA(k−1) appears
on the k-th position.

After this row interchange one proceeds as before by computing the Gauss vector α(k) and applying the
Gaussian transformation Mk to PkA

(k−1). The difference however is that pivoting guarantees all the
elements of α(k) to be bounded to 1. After n−1 Gaussian transformations all the elements ofL are bounded
by 1 avoiding the afore mentioned growth in the upper bound of the perturbation in the factorization. The
algorithm is referred to as Gaussian Elimination with Partial Pivoting (GEPP).

It appears that Gaussian elimination with partial pivoting results in the LU -factorization of a row-
permuted matrix A. This is formalized in the following theorem.

Theorem 4.6.1 If Gaussian elimination with partial pivoting (GEPP) is used to compute the upper trian-
gularization

Mn−1Pn−1 . . .M1P1A = U , (4.52)

then
PA = LU , (4.53)

where P = Pn−1 . . . P1 and L is a unit lower triangular matrix with |lij | ≤ 1.

Example 4.6.1 Consider computing the LU-factorization with partial pivoting of the matrix

A =

(
0.0001 1

1 1

)
. (4.54)

Permuting the first and second row of this matrix results in

P1A =

(
0 1
1 0

) (
0.0001 1

1 1

)
=

(
1 1

0.0001 1

)
(4.55)

The first pivot element equals 1. The application of the first Gaussian transformation M1 results in

Û = A(1) = M1P1A =

(
1 0

−0.0001 1

)(
1 1

0.0001 1

)
=

(
1 1
0 0.9999

)
, (4.56)

and therefore

L̂ =

(
1 0

0.0001 1

)
. (4.57)

The product L̂Û is equal to

L̂Û =

(
1 0

0.0001 1

)(
1 1
0 0.9999

)
=

(
1 1

0.0001 1

)
, (4.58)

which is exactly equal to P1A. The use of partial pivoting prevents large elements to appear in L and the
algorithm to become unstable.

To quantify the effect of round-off errors in finite arithmetic computations of GEPP, we will use the
growth factor defined as follows

Definition 4.6.1 The growth factor ρ of the Gaussian elimination of the matrix A ∈ Rn×n is defined as
the ratio

ρ =
max{α, α1, . . . , αn−1}

α
, (4.59)

where α = maxi,j |aij | and αk = maxi,j |a(k)
ij |.
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The term growth factor derives from the fact that from this definition immediately follows that |uij | =
|an−1
ij | ≤ ρmaxi,j |aij |. With partial pivoting we have that

L̂ Û = A+ E where ‖E‖∞ ≤ n3 µρ‖A‖∞ . (4.60)

How does the growth factor ρ increases with the problem size n? Numerical experience has shown that the
growth factor ρ remains bounded and that GEPP is a numerically stable algorithm. The additional overhead
to be paid for this stability is the comparison of n−k floating point numbers at each stage k of the Gaussian
elimination process.

4.6.2 Gaussian Elimination with Complete Pivoting
Examples of n× n matrices for which the growth factor equals ρ = 2n−1 can be constructed. To compute
the LU -factorization of such matrices, Gaussian elimination with complete pivoting was developed to
obtain better bounds in the growth factor. In Gaussian elimination with complete pivoting both two rows
and two columns of A(k−1) are interchanged prior to the application of Mk. More precisely, the following
two steps are taken:

1. first identify the entry largest in size (absolute value) in the (2, 2)-subblock of A(k−1) denoted by
A

(k−1)
22 in (4.28). Denote by `1 and `2 the row and column index in which this largest element

appears;

2. next interchange rows k and `1 by multiplying A(k−1) to the left with a permutation matrix denoted
by Pk and interchange columns k and `2 by multiplyingA(k−1) to the right with a permutation matrix
denoted byQk. After this row and column interchange, the entry largest in size in the (2, 2)-subblock
of Pk A(k−1)Qk appears in the (k, k)-position.

Gaussian elimination with complete pivoting (GECP) results in a growth factor that is a slowly function of
the problem size n. The overhead to be paid is the comparison of (n− k)2 floating point numbers at each
stage k of the elimination process.

4.7 Iterative Improvement
After the solution is computed, it is possible to improve the computed solution in a cheap way by iterative
improvement.

Iterative improvement
Assume t-digit, base β arithmetic, then the computed solution û satisfies

(A+ ∆A)û = f , ‖∆A‖∞ ≈ µ‖A‖∞ , µ =
1

2
β1−t.

The residual of a computed solution û is the vector f −Aû.

Heuristic 1 Gaussian elimination produces a solution û with a relatively small residual ‖f−Aû‖∞ ≈ µ‖f‖∞.
Small residuals do not imply high accuracy. Using Theorem 4.3.1 we see that

‖û− u‖∞
‖u‖∞

≈ µκ∞(A).

Heuristic 2 If the unit round off and condition satisfy µ ≈ 10−d and κ∞(A) ≈ 10q , then Gaussian
elimination produces a solution û that has about d− q correct decimal digits.

Suppose Au = f has been solved via the partial pivoting factorization PA = LU in t-digit arithmetic.
Improvement of the accuracy of the computed solution û can be obtained by the following loop:
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Iterative improvement

for i = 1, . . . until u is accurate enough, do

Compute r = f −Au in 2t− digit arithmetic,

Solve Ly = Pr for y,

Solve Uz = y for z,

Form u := u + z.

end for

(4.61)

Heuristic 3
If the machine precision µ and condition number satisfy µ ≈ 10−d and κ∞(A) ≈ 10q , then after k
executions of (4.61), u has approximately min(d, k(d− q)) correct digits.

If µκ∞(A) ≤ 1, then iterative improvement can produce a solution u that has t correct digits. Note
that the process is relatively cheap in flops. Each improvement costs O(n2) flops whereas the original
LU decomposition costs O(n3) flops. Drawbacks are: the implementation is machine dependent, and the
memory requirements are doubled because an original copy of A should be stored in memory.

4.8 Diagonally dominant matrices
In case that the system matrix A is column diagonally dominant as defined in Definition 2.8.2, Gaussian
elimination without pivoting can be applied. This will turn out to be a very attractive property in practical
computations as we will point out in the remainder of this section. To argue that pivoting is redundant,
one proceeds by induction. Assume that A is column diagonally dominant. Then no row interchanges in
computing the first Gaussian transformation M0. Assume next the matrix A(k−1) is column diagonally
dominant in such a way that the k-th Gaussian transformation can be computed and applied without the
need for row permutations. Then it can be shown that the resulting matrix A(k) = Mk A

(k−1) is again
column diagonally dominant. For a proof we refer to [24, 10]. It appears that the growth factor ρ for column
diagonally matrices is bounded by 2 and that therefore Gaussian elimination is a very stable algorithm for
diagonally dominant matrices.

4.9 Cholesky Decomposition
In this section we focus on solving systems with coefficient matrices that are symmetric and positive defi-
nite (SPD). Looking into this problem is important as SPD matrices appear in a large variety of applications
such as for instance the discretization of elliptic partial differential equations or the modeling of networks
in terms of weighted graph Laplacians. In case that A is SPD, it can be shown that the LU -decomposition
of A ∈ Rn×n reduces to its so-called Cholesky decomposition of A, i.e., a decomposition in the form

A = C CT , (4.62)

where C ∈ Rn×n is a lower triangular matrix. The fact that only a single lower triangular matrix C
needs to be be computed obviously results in savings both in computational cost and in memory storage
over the LU -decomposition. It furthermore appears that the SPD property guarantees numerical stability
of the factorization algorithm. This section is subdivided into four subsections. We subsequently discuss
the following aspects of the Cholesky decomposition: the existence and uniqueness, its computation (in
algorithmic form), its computational cost, and its stability.
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4.9.1 Existence and uniqueness
The factorization (4.62) defines 1/2n (n + 1) equations for the 1/2n (n + 1) martrix elements of C. It
can be shown that the principal submatrices of an SPD matrix are non-singular. The condition for the
existence of an LU -decomposition is thus met and the decomposition A = LU is guaranteed to exist.
The non-singularity of A implies that none of the pivot elements stored in the diagonal of U is zero.
We therefore can write the diagonal matrix D = diag(U) and the lower triangular matrix M such that
MT = D−1 U . TheLU -decomposition can thus be written asA = LDMT . It can subsequently be shown
that if A is symmetric, then necessarily M = L and the factorization can be written as A = LDLT . The
positive definiteness of A implies that the elements of D are positive (at least in finite precision arithmetic)
allowing to write that D =

√
D
√
D. We therefore have argued that if A is SPD, A can be written as

A = L
√
D
√
DLT = C CT where C = L

√
D.

4.9.2 Computing the Choleski Factor
An algorithm to compute the entries of the matrix C can be derived by carrying out the matrix-matrix
product C CT and equating the results to the matrix A. This results in the algorithm listed in Algorithm 4.
This algorithm computes the matrix C column-wise and stores the result in the lower triangular part of A.
Other algorithmic variants exist.

Algorithm 4 Cholesky Factorization Step
for k = 1→ n do
A(k, k)← C(k, k) =

√
A(k, k)−

∑k−1
j=1 C(k, j)2

for i = k + 1→ n do
A(i, k)← C(i, k) = 1

C(k,k)

(
A(i, k)−

∑k−1
j=1 C(i, j)C(k, j)

)
end for

end for

4.9.3 Work
The computational cost of the Cholesky factorization equals half the cost of the LU -factorization as is
given by

1

3
n3 +O(n2) flops . (4.63)

4.9.4 Stability
The Cholesky decomposition can be viewed as a special case of the LU -decomposition in which at stage
k the k-th column of factor C is computed. A growth factor can be defined similarly as in Definition 4.6.1.
Given however the fact that for 1 ≤ j ≤ i ≤ n we have that

c2ij ≤
i∑

k=1

c2ik = aii (4.64)

The growth factor is bounded by one, and the Cholesky factorization is a stable numerical algorithm. It can
in fact be shown that the computed solution û satisfies (A+ E)û = f with

‖E‖2 ≤ cnµ‖A‖2 (4.65)

where cn is a small constant. Moreover, if qnµκ2(A) ≤ 1, where qn is another small constant, then the
algorithm runs to completion, i.e., no square roots of negative numbers appear.
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4.10 Band Matrices
In our discussion on direct solution methods we thus far made no assumptions on the sparsity pattern of the
system matrix A. The discretization of partial differential equations using finite difference, finite volume
or finite element methods and the modeling of networks results in sparse matrices, i..e., matrices with only
a limited number of non-zero elements per row. In a first approach to analyze Gaussian elimination applied
to such matrices we assume the matrix A to have a band structure. A band matrix is a matrix is a sparse
matrix whose non-zero entries are confined to a diagonal band. More formally, we can give the following
definition.

Definition 4.10.1 Given a square matrix A ∈ Rn×n, and given non-negative integer numbers p ≥ 0 and
q ≥ 0, the matrix A is said to have a lower bandwidth p if and only if p is the smallest number such that
aij = 0 whenever i > j + p. Similarly, the matrix A is said to have a upper bandwidth q if and only if q is
the smallest number such that aij = 0 whenever j > i+ q. If p = 0 (q = 0) A is upper (lower) triangular.

Observe that this definition still allows for zero elements to appear inside the band. In a computer imple-
mentation one typically takes advantage of matrix storage data structures that avoid having to store the zero
elements outside the band.

Example 4.10.1 The discretization of the Poisson equation on the unit square with Dirichlet boundary
conditions using N elements in both coordinate directions without the elimination of boundary conditions
results in a discrete operator A ∈ Rn×n where n = (N + 1)2 with lower and upper bandwidth p = q =
(N + 1) =

√
n.

In the following three sections we discuss the Gaussian elimination of a band matrix without pivoting, the
fill-in occurring during the factorization process and Gaussian elimination with partial pivoting, respec-
tively.

4.10.1 Gaussian Elimination without Pivoting
The banded structure of A results in a substantial reduction in work and memory storage in the Gaussian
elimination procedure. It can be shown that if A is banded, and if Gaussian elimination without pivoting
can be applied to A, i.e., A = LU , then L and U inherit the lower and upper bandwidth of A, respectively.
This is formalized in the next theorem.

Theorem 4.10.1 Suppose that A ∈ Rn×n has a lower bandwidth p, an upper bandwith q, and an LU-
factorization that can be computed without partial pivoting, i.e., A = LU . Then L has a lower bandwidth
p and U has an upper bandwidth q.

A proof of this theorem can be found in [24]. One can convince oneself of this result by writing down a
few steps of the elimination process.

We recall here that ifA is either SPD or diagonally dominant, the use of partial pivoting can be avoided.
In discussing the required computational cost, we again distinguish between the factorization and solve
stage. We furthermore assume that n � p and n � q, allowing to neglect higher order terms in the
asymptotic expressions of the flop count. It can be shown (see e.g. [24]) that the factorization stage
requires 2 p q n flops. The forward and backward triangular solve costs 2n p and 2n q flops, respectively.

Example 4.10.2 Consider again the discrete Laplace operator A as in Example 4.10.1. For this matrix
Gaussian elimination without partial pivoting can be applied (explain why). The factorization stage costs
2 p q n = 2n2 flops. Both the forward and backward triangular solve costs 2n3/2 flops.

4.10.2 Occurrence of fill-in
The difficulty with Gaussian elimination or Cholesky factorization applied to the discrete Laplacian (or
discretized elliptic partial differential equations in more general terms) is that they destroy zeros located
inside the band. This is illustrated in Figure 4.1. In this figure we show the sparsity pattern of L (left)
and U (right) obtained from the LU-factorization of the 2D discrete Laplacian A on a uniform mesh with
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N = 8 elements in both coordinate directions. The figure clearly shows that while A has zero diagonals
inside its band, the lower band of L and the upper band of U are fully populated. These non-zero elements
have to be computed and stored, causing a severe penalty in the deployment of Gaussian elimination or
Cholesky factorization in large scale applications.

(a) Sparsity pattern of L (b) Sparsity pattern of U

Figure 4.1: Sparsity pattern of the L and U factors resulting from the LU factorisation of the 5-point
discrete Laplacian on a uniform mesh with 8 elements in both directions.

4.10.3 Gaussian elimination with partial pivoting
Gaussian elimination with partial pivoting can be tailored to exploit the band structure of A in the same
way as Gaussian elimination without partial pivoting. However, if P A = LU , then the sparsity structure
of L and U are not immediately obvious. The following theorem can be stated.

Theorem 4.10.2 Suppose that A ∈ Rn×n has a lower bandwidth p, an upper bandwith q and an LU-
factorization that can be computed using partial pivoting, i.e., P A = LU . ThenU has an upper bandwidth
p + q. The k-th Gaussian transformation vector α(k) has at most p non-zero entries. More precisely, we
have that α(k)

i = 0 whenever i ≤ k or k + p < i < n.

For a proof we again refer to [24].
Pivoting thus destroys the band of structure of A in the sense that U becomes larger than the upper

triangle of A. Nothing at all can be said about the lower bandwidth of L. However, since the k-th column
of L is a permutation of the k-th Gaussian transformation vector α(k), it follows that L has at most p + 1
non-zero entries per column. It is for this reason that partial pivoting is to be avoided as much ass possible
in practical computations when solving banded systems .

4.11 General Sparse Matrices
In the case of a general sparse matrix A, substantial memory requirement reductions can be realized by
storing only the non-zero entries. Storing the zero entries inside the band is thus avoided. Depending on
the number and distribution of the non-zero entries, different data structures can be used and yield huge
savings in memory when compared to the basic approach. The caveat is that accessing the individual
elements becomes more complex and additional structures are needed to be able to recover the original
matrix unambiguously.

In the following we discuss the Yale, the compressed sparse row and compressed sparse column matrix
format. The first one is the basis for the latter two.

We start with an example using a finite difference method the matrix of the linear system can in general
adequately be described with a band structure. For the more general finite element method the matrix can
be better described using a profile structure . The profile of a matrix can be defined as follows: in the lower
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triangle all the elements in the row from the first non zero to the main diagonal, and the upper triangle all the
elements in the column from the first non zero to the main diagonal belong to the profile. All other elements
are lying outside the profile. An example is given in Figure 4.2. In this example the profile of the matrix is
symmetric. Only the elements of the matrix within its profile are stored in memory. As can be seen from

a 0 a
11 13

a 0 0 0 a

000

22 26

a 0 a a a 0

0 a a 0

0

a

0 a 0 a 0

a 0 a 0 a

31 33 34 35

43 44 46

53 55

62 64 66

A  =

0

0

0

Figure 4.2: Example of a sparse matrix with its profile structure

the example this can lead to a large saving, also with respect to a band structure. To give an idea how to
store this profile we give an example for the matrix of Figure 4.2. This matrix requires the following arrays:

diag : [a11, a22, a33, a44, a55, a66],

row : [a31, 0, a43, a53, 0, a62, 0, a64, 0],

column: [a13, 0, a34, a35, 0, a26, 0, a46, 0],

position: [1, 1, 1, 3, 4, 6, 10].

The array diag contains all the diagonal elements, the array row contains the lower triangular part row-wise,
whereas the array column contains the upper triangular part column-wise. The length of row (column) i is
given by position(i+ 1)-position(i). The contents of a nonzero row i starts at row (position(i)) (the same
for a column).
It can easily be seen that if A = LU , where L and U are constructed by Gaussian elimination without
pivoting, L+ U has the same profile as A. So the above given storage scheme can also be used to store L
and U . Renumbering of the equations and unknowns can be used to minimize the profile (band) of a given
matrix. For finite element discretizations we refer to [39] and [22].
If pivoting is necessary, or the non zero elements in the profile of original matrix are not stored, the memory
to store L and U can be much larger than the memory used to store A.

In the next subsections, we discuss a number of popular sparse matrix formats.

4.11.1 Yale Format
The Yale sparse matrix format stores a given sparse A ∈ Rn×n in row form using three (one-dimensional)
arrays AA, IA and JA. Let nnz denote the number of nonzero entries in A. (Note that unlike in ordinary
mathematics zero-based indices shall be used here.)

1. the real-valued array AA is of length nnz and holds all the nonzero entries of A in left-to-right
top-to-bottom (row-major) order;

2. the integer array IA is of length n + 1 and contains the index in A of the first element in each
row, followed by the total number of nonzero elements nnz + 1. IA(i) contains the index in A
of the first nonzero element of i-th row. Row i of the original matrix extends from AA(IA(i)) to
AA(IA(i + 1) − 1), i.e. from the start of one row to the last index before the start of the next. The
last entry, IA(n), must be the number of elements in AA plus one;
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3. the third array, JA, contains the column index in A of each element of IA and hence is of length
nnz.

Example 4.11.1 Consider the 4× 4 matrix

A =


0 0 0 0
5 8 0 0
0 0 3 0
0 6 0 0

 (4.66)

with 4 nonzero elements, hence

AA =
(
5 8 3 6

)
IA =

(
0 1 3 4 5

)
JA =

(
1 2 3 2

)
.

So, in array JA, the element ”5” from A has column index 1, ”8” and ”6” have index 1, and element ”3”
has index 2.

Example 4.11.2 Another example is the 4× 6 matrix

A =


10 20 0 0 0 0
0 30 0 40 0 0
0 0 50 60 70 0
0 0 0 0 0 80

 (4.67)

with 8 nonzero elements, so

AA =
(
10 20 30 40 50 60 70 80

)
IA =

(
1 3 5 8 9

)
JA =

(
1 2 2 4 3 4 5 6

)
.

Here we have that

• IA splits the array AA into rows: (10, 20)(30, 40)(50, 60, 70)(80);

• JA aligns values in columns: (10, 20, . . .)(0, 30, 0, 40, . . .)(0, 0, 50, 60, 70, 0)(0, 0, 0, 0, 0, 80).

4.11.2 Compressed sparse row (CSR or CRS) format
CSR is effectively identical to the Yale Sparse Matrix format, except that the column array is normally
stored ahead of the row index array. I.e., CSR is val, col ind, row ptr, where val is an array of the (left-
to-right, then top-to-bottom) non-zero values of the matrix; col ind is the column indices corresponding
to the values; and, row ptr is the list of value indexes where each row starts. This format is efficient for
arithmetic operations, row slicing, and matrix-vector products.

4.11.3 Compressed sparse column (CSC or CCS) format
CSC is similar to CSR except that values are read first by column, a row index is stored for each value,
and column pointers are stored. I.e. CSC is (val, row ind, col ptr), where val is an array of the (top-
to-bottom, then left-to-right) non-zero values of the matrix; row ind is the row indices corresponding
to the values; and, col ptr is the list of val indexes where each column starts. This format is efficient
for arithmetic operations, column slicing, and matrix-vector products. This is the traditional format for
specifying a sparse matrix in MATLAB (via the sparse function).
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Direct solution of Ax = b

Factorization stage

• O(n3) operations

• unstable without partial pivoting

Solve stage

• O(n2) operations

• stable

Effective for A small or dense.

Fails for A large and sparse.

Figure 4.3: A summary of direct solution methods.

4.11.4 Sparse Direct Solvers
The Gaussian elimination and Cholesky decomposition algorithms can be tailored to exploit sparsity to a
larger extend than their counterpart for banded systems. This gives raise to sparse direct methods that are
the subject of the monographs of e.g. Duff, Erisman and Reid [13] and of Timothy Davies [11]. Possibly
these sparsity-exploiting methods need to be combined with reordering schemes that reduce the bandwidth
of the matrix. These reordering schemes aim at reducing the amount of fill-in.

4.12 Conclusions and Outlook
A summary of the important lessons to be drawn from this chapter can be found in Figure 4.3. The sharp
increase in CPU time for direct solution methods applied to the sparse linear systems is shown in Figure 4.4.
This motivates the study of iterative solution techniques in future chapters.

Figure 4.4: Performance in CPU time of direct and iterative solutions on a large scale problem.
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4.13 Exercises
Exercise 4.13.1 Show that if A ∈ Rn×n has an LU decomposition and is nonsingular, then L and U are
unique.

Exercise 4.13.2 Show that for every nonsingular matrix A, partial pivoting leads to an LU decomposition
of PA so: PA = LU .

Exercise 4.13.3 Show that if A ∈ Rn×n has an LDM decomposition and is nonsingular, then L, D, and
M are unique. Note that L is a lower triangular matrix with lii = 1, D is a diagonal matrix and M is an
upper triangular matrix with mii = 1. (Remark: if you use the uniqueness of the LU decomposition, you
should also show this)

Exercise 4.13.4 Suppose A = LU with L = (lij), U = (uij) and lii = 1. Derive an algorithm (pseu-
docode) to compute lij and uij by comparing the product LU with A.

Exercise 4.13.5 Suppose that A is a symmetric and positive definite tridiagonal matrix. Give an algorithm
(pseudocode) to compute the LDLT decomposition, where lii = 1.

Exercise 4.13.6 For a symmetric and positive definite matrix A, we define the numbers fi(A), i =
1, . . . , n as follows:

fi(A) = min{j|aij 6= 0}.

Show that for the Cholesky decomposition A = LLT the equality fi(L) = fi(A) holds for i = 1, . . . , n.

Exercise 4.13.7 Prove the following property of M-matrices

• Suppose that A ∈ Rn×n is an M-matrix and suppose that A(1) is formed by applying a Gaussian
elimination step to A, i.e., A(1) = M1A. Prove that A(1) is again an M-matrix.
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Chapter 5

Basic Iterative Methods

We iterate to exploit structure.

5.1 Introduction
In this section we draw lessons from the pitfalls of direct solution methods and lay the basis for Basic
Iterative solution Methods (BIMs). In our presentation we follow the historical development of these
methods. The methods introduced in this chapter are not efficient, but serve as building blocks for more
advanced methods (preconditioners in a Krylov subspace context and smoothers in a multigrid context).

Study Goals In this chapter we aim at

• introducing the concept of iteratively solving a system of linear equations

• giving the Richardson, (damped) Jacobi, Gauss-Seidel, SOR(ω) and symmetric SOR(ω) methods as
examples of BIMs derived from splitting the coefficient matrix

• arguing how diagonal dominance, the M -matrix and consistent ordering property guarantees the
convergence of the prototype BIMs introduced

• quantifying the speed of convergence of the BIMs if applied to the model problem and reveal the
twice bad news story

• studying the convergence properties of SOR(ω) in more detail

• linking the concept of splitting to that of defect correction and of preconditioning

Classical references on this topic are the monographs of David Young and [79] and of Richard Varga [75].
Modern discussion can be found in among others the monographs of Stoer and Bulirsch [64], of Anne
Greenbaum [31], of Yousef Saad [53] and Jack Demmel [12]. A reference focussing on implementational
aspects is [5].

5.2 Why Iterating?
We assume that A is an invertable matrix so A−1 exits. The idea of iterating for solving a system of linear
equations

Au = f (5.1)

can be compared to shooting on a target with a crooked gun. After a first shot, the deviation from the target
is measured and an improved shot is attempted for. The process is repeated until the target is deemed to
have been reached with sufficient precision. We denote the sequence of iterates by

{uk}k≥0 where uk → u for k →∞ , (5.2)
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where u0 and u denotes the initial guess (first shot) and exact solution (target) of the linear system (5.1),
respectively. With each iterant we associate the distance to the solution or error vector

ek = u− uk . [error] (5.3)

Knowing ek at step k is equivalent to knowing u as uk + ek = u. Computing the error is therefore as
challenging as computing the exact solution. The residual vector at step k is defined as

rk = f −Auk . [residual] (5.4)

and is a computable measure of the quality of the approximation at step k. By approximating the error by
the residual we mean that the following residual equation holds

Aek = rk . (5.5)

To construct an iterative scheme, we assume that a non-singular matrix M exists and define the matrix N
as N = M −A. We can then write

A = M −N . (5.6)

The linear system Au = f can then be written as Mu = Nu + f . By multiplying to the left and right by
M−1 we can define an iterative scheme

uk+1 = M−1Nuk +M−1f

= M−1(M −A)uk +M−1f

= uk +M−1(f −Auk)

= uk +M−1rk (5.7)

Each update k → k + 1 of the iterative scheme can be seen to require

• a matrix-vector multiplication with the matrix A. If A is sparse (with on average c number of non-
zeros per row), this operation requires O(2cN) instead of O(N2) flops for dense matrices. Matrix-
structure motivates the use of iterative solution techniques.

• a linear system solve with the matrix M . It is therefore of paramount importance to make this
operation as cheap as possible. From our study of direct solution techniques we know this to be the
case if M is diagonal or triangular.

We will see in the next section that the matrix-vector multiplication withA and the linear system solve with
M can be interleaved in such a way that the computational complexity (number of floating point operations)
of the above iteration bringing uk to uk+1 is roughly equivalent to the computational complexity of a matrix
vector multiplication with the matrixA. The computational complexity of this matrix-vector multiplication
is therefore typically used as unit (called work-unit and abbreviated as WU) to measure the cost of these
schemes.

The recursion for the error vector is given by

ek+1 = u− uk+1 (5.8)
= u− uk −M−1rk

= ek −M−1A ek

= (I −M−1A)ek

and for the residual vector by

rk+1 = f −Auk+1 (5.9)
= f −Auk −AM−1rk

= rk −AM−1 rk

= (I −AM−1)rk
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These recurrence relations imply that the vectors ek+1 and rk+1 satisfy (5.5) if ek and rk do. The matrices
I −M−1A and I − AM−1 are called the error and residual propagation matrix, respectively. They are
related by

I −M−1A = A−1(I −AM−1)A (5.10)

are therefore similar and thus have the same spectrum. This justifies using the (computable) residual norm
to develop a stopping criterion for the iterative scheme. We will call the matrix (as is conventional practise)

B = I −M−1A . (5.11)

the iteration matrix. Iterative solution methods which can be completely characterised by one single matrix
as above are called stationary iterative methods. Various families of stationary iterative solution methods
correspond to choices for M . Examples include splittings, approximate factorizations and approximate
inverses. Splittings will be introduced in the next section. The discussion on approximate factorizations
is postponed to the study of preconditioners in subsequent chapters. Approximate inverse fall outside the
scope of this lecture notes and are discussed in e.g. Section 10.5 of [55].

5.3 Prototypes of BIMs
To give specific examples of methods that fit into the abstract framework introduced above, we write the
system matrix A as

A = D − E − F ∈ Rn×n (5.12)

where D, −E and −F denote the diagonal, the strictly lower and the strictly upper triangular part of A,
respectively, as shown in Figure 5.1. We also introduce the notation

Ê = D−1E and F̂ = D−1F . (5.13)

A = 

−E

−F

D

Figure 5.1: Splitting of the coefficient matrix A as A = D − E − F .

5.3.1 The Method of Jacobi and Gauss-Seidel
The method of Jacobi (named after Carl Gustav Jacob Jacobi 1804-1851) is obtained by setting

MJAC = D (5.14)
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(and thus N = E + F ) while the method of Gauss-Seidel (named after Carl Friedrich Gauss 1777-1855
and Philipp Ludwig von Seidel 1821-1896) is obtained by setting

MGS = D − E (5.15)

(and thus N = F ). With these choices M is either diagonal or triangular and therefore easy to compute a
linear system solve with M . Note that these methods are only well defined if all elements aii 6= 0.

It is instructive to write the update uk+1 = M−1(Nuk + f) for both methods component wise. For the
method of Jacobi we have that uk+1 = D−1[(E + F )uk + f ] and therefore

uk+1
i =

[
fi −

n∑
j=1,j 6=i

aiju
k
j

]
/aii ∀i = 1, . . . , n [Jacobi] . (5.16)

For the method of Gauss-Seidel we have that uk+1 = (D−E)−1(Fuk + f) or (D−E)uk+1 = Fuk + f
yielding Duk+1 = Euk+1 + Fuk + f and therefore

uk+1
i =

[
fi −

i−1∑
j=1

aiju
k+1
j −

n∑
j=i+1

aiju
k
j

]
/aii ∀i = 1, . . . , n [Gauss-Seidel] . (5.17)

From the above two formulas we observe that

• the Jacobi iteration allows to update all components of the iterant uk independently from each other
and is therefore inherently parallel. The result of the Gauss-Seidel iteration depends on the order in
which the components of uk are visited and is inherently sequential.

• the Gauss-Seidel iteration uses recent information as soon as it becomes available. We can therefore
expect the the Gauss-Seidel iteration will converge faster than Jacobi. We will see later that for a
specific class of problems Gauss-Seidel converges twice as fast as Jacobi.

The pseudo code for a single step of a Jacobi and Gauss-Seidel iteration is given in Algorithm 5 and
Algorithm 6. These pseudo-codes show that the computational complexity of these algorithms is the same
and equal to the computational complexity of one matrix-vector multiplication with matrix A.

Algorithm 5 Single Step of a Jacobi Iteration
z ← u { z is an auxiliary vector }
for i = 1→ n do
z(i)← [f(i)−A(i, 1 : i− 1) · u(1 : i− 1)−A(i, i+ 1 : n) · u(i+ 1 : n)]/A(i, i)

end for
u← z

Algorithm 6 Single Step of a Gauss-Seidel Iteration
for i = 1→ n do
u(i)← [f(i)−A(i, 1 : i− 1) · u(1 : i− 1)−A(i, i+ 1 : n) · u(i+ 1 : n)]/A(i, i)

end for

Error propagation In the convergence analysis of these methods, we will use the expressions for the
iteration matrix B = I −M−1A. For the method of Jacobi we have that

BJAC = I −D−1(D − E − F )

= I − I +D−1E +D−1F

= Ê + F̂ , (5.18)
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while for the method of Gauss-Seidel we have that

BGS = I − (D − E)−1(D − E − F )

= I − I + (D − E)−1F

= (D − E)−1DD−1F

= (I − Ê)−1F̂ . (5.19)

The following lemma will be useful in demonstrating that the Gauss-Seidel method converges for a wide
class of matrices.

Lemma 5.3.1 (Elementwise bound on the Gauss-Seidel iteration matrix) Assume A ∈ Rn×n and as-
sume BGS to be the Gauss-Seidel iteration matrix defined by (5.19). Then

|BGS | ≤ (I − |Ê|)−1|F̂ | . (5.20)

Proof. Given that the lower triangular matrix Ê has a zero diagonal, its n-th (and all higher) power(s)
is (are) equal to the zero matrix. The power series expansion of (I − Ê)−1 given in Theorem 2.7.4 in
Chapter 2 reduces to the finite sum

(I − Ê)−1 = I + Ê + Ê2 + . . .+ Ên−1 .

The same argument yields that

(I − |Ê|)−1 = I + |Ê|+ |Ê|2 + . . .+ |Ê|n−1 .

Therefore
|(I − Ê)−1| ≤ I + |Ê|+ |Ê|2 + . . .+ |Ê|n−1 = (I − |Ê|)−1 .

and thus
|BGS | ≤ |(I − Ê)−1||F̂ | ≤ (I − |Ê|)−1|F̂ |,

where we have used that |AB| < |A||B|, concluding the proof. 2

Application to the Model Problem The above expressions can be made more explicit in case that the
system matrix A = Ah results from the discretization on a grid of mesh size h of the model problem MP-1
introduced in a previous chapter. In this case the Jacobi iteration matrix B = Bh = Ih − (Dh)−1Ah can
be represented by a stencil notation.

• For the one-dimensional problem we have that

BhJAC = [ 1/2 0 1/2 ] . (5.21)

• For the two-dimensional problem we have that

BhJAC =

 0 1/4 0
1/4 0 1/4
0 1/4 0

 . (5.22)

The verification of these stencils is left as an exercise. As the error ek satisfies the recursion ek+1 =
Bek, these stencils show that in a Jacobi iteration the error in each node is replaced by an average of its
neighbours. We will return to this issue when explaining that the Jacobi (and Gauss-Seidel) method is slow
to converge and motivating its multigrid acceleration.
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Parallel Complexity and Orderings The fact that BIMs use the matrix-vector multiplication as a build-
ing block renders their implementation on parallel computing architectures particularly attractive. The
parallel complexity of a method is defined as the number components of the iterant uk that can be updated
independently from each other. The parallel complexity of the Jacobi method is n (and thus optimal).
So-called block variants of the Jacobi method exist in which groups of components of the iterant uk are
treated as aggregates. In the model problem MP-1, blocks can be formed by grouping components of uk

lying e.g. on a (vertical or horizontal) grid line. Alternatively, the computational domain can be subdi-
vided into patches and aggregates formed according to these patches. This gives raise to so-called domain
decomposition methods studied in the monographs [60, 51, 65].

The Gauss-Seidel method introduced by (5.15) is referred to as the forward lexicographic Gauss-Seidel
method to contrast is with the backward lexicographic Gauss-Seidel method defined by the splitting

MGS = D − F . (5.23)

Both have parallel complexity equal to 1. This can be improved by changing orderings in which the
unknowns are visited without increasing the computational cost per iteration. In the model problem MP-
1 the red-black and diagonal ordering of the unknowns results in a Gauss-Seidel method with parallel
complex equal to n/2 and

√
n, respectively (explain!). Block variant of the Gauss-Seidel method have

been used as well.

Block Jacobi and block Gauss-Seidel Method The Jacobi and Gauss-Seidel method discussed above act
on single components of the iterant uk at a time and are therefore also referred to as pointwise methods. It
however possible to aggregate components into groups and to update members of a group simultaneously.
This gives raise to the block variant of the Jacobi and Gauss-Seidel method. Assume that the system
Au = f is partitioned into the formA1,1 . . . A1,q

...
...

Aq,1 . . . Aq,q


U1

...
Uq

 =

F1

...
Fq

 (5.24)

whereUi andFi are vectors of size ni, whereAi,j is a submatrix of size ni×nj and where n1+. . .+nq = n.
This partitioning into blocks allows to define the splitting of the matrix

A = DA − EA − FA , (5.25)

where DA, EA and FA are block diagonal, the block lower triangle part and block upper triangular part of
A, respectively. With this splitting a block Jacobi and block Gauss-Seidel method can be defined.

The block Jacobi method updates the iterant Uk = (Uk1 , . . . , U
k
q ) using the formula

Uk+1
i = A−1

i,i

Fi − q∑
j=1,j 6=i

Ai,jU
k
j

 ∀i = 1, . . . , q . (5.26)

The forward block Gauss-Seidel method updates the iterant Uk = (Uk1 , . . . , U
k
q ) according to

Uk+1
i = A−1

i,i

Fi − i−1∑
j=1

Ai,jU
k+1
j −

q∑
j=i+1

Ai,jU
k
j

 ∀i = 1, . . . , q . (5.27)

Each iteration k of both methods requires a linear system solves with the matrices Ai,i for 1 ≤ i ≤ q. The
partitioning is ideally chosen such that these operations are cheap to perform. If for example in the model
problem MP-1 the nodes are numbered according to an x-lexicographic ordering and if different blocks
are chosen to correspond to a grid line parallel to the x-axis, then the diagonal blocks Ai,i are tridiagonal.
For tridiagonal systems cheap solution algorithms are available.

The rate of convergence of block methods is typically higher than that of their pointwise counterparts.
In choosing the size of the blocks one typically takes into account the computational cost of one iteration
and the overall rate of convergence.

67



5.3.2 The Richardson and damped Jacobi Method
Given a real-valued, non-zero parameter τ 6= 0, the method of Richardson (named after Lewis Fry Richard-
son 1881-1953) is defined by the splitting A = τI − (τI −A) and setting MRICH = τI . We will show in
the next section that the optimal value τ∗ is the argument that minimises the spectral radius of the iteration
matrix BRICH = I − τ−1A, i.e.,

τ∗ = argminτ∈Rρ(BRICH(τ)) . (5.28)

In the damped Jacobi method a weighted average of the current iterant uk and the full Jacobi step
ūk+1,JAC is computed. We denote the damping parameter by ω, and define the iterant resulting from the
damped Jacobi method as

uk+1 = (1− ω)uk + ω ūk+1,JAC . (5.29)

In this definition ω = 1 corresponds to the undamped Jacobi iteration. Substituting the expression (5.7)
with M = D for ūk+1, we obtain that

uk+1 = (1− ω)uk + ω uk + ωD−1rk (5.30)
= uk + ωD−1rk

showing that the ω-damped Jacobi method is defined by

MJAC(ω) =
1

ω
D and BJAC(ω) = I − ωD−1A . (5.31)

It is an easy exercise to show that the ω-damped Jacobi method corresponds to the Richardson method with
parameter τ = ω−1 applied to the diagonally scaled system D−1A = D−1f .

Application to the Model Problem When applied to the model problem MP-1, the choice ω = 1 appears
to be optimal in terms of convergence. Other values of values of ω will become meaningful in a multigrid
context.

5.3.3 The Successive Overrelaxation Method
Damping the Gauss-Seidel results in the method of Successive Overrelaxation (SOR). As the Gauss-Seidel
updates the components of the iterant with the most recently available information, the damping is per-
formed component wise as well. Denoting the components of components of the iterant computed using a
full Gauss-Seidel step as ūk+1,GS

i , damping results in

uk+1
i = (1− ω)uki + ωūk+1,GS

i

= (1− ω)uki + ω
[
fi −

i−1∑
j=1

aiju
k+1
j −

N∑
j=i+1

aiju
k
j

]
/aii (5.32)

or equivalently

aiiu
k+1
i + ω

i−1∑
j=1

aiju
k+1
j = (1− ω)aiiu

k
i − ω

N∑
j=i+1

aiju
k
j + ωfi (5.33)

which in matrix-vector form can be expressed as

(D − ωE)uk+1 = (1− ω)Duk + ωFuk + ωf . (5.34)

This iterative scheme corresponds to the following splitting of ωA

ωA = (D − ωE)− ((1− ω)D + ωF ) (5.35)
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showing that the SOR(ω) method is defined by

MSOR(ω) =
1

ω
D − E (5.36)

and

BSOR(ω) = I −M−1
SOR(ω)A

= I − ω(D − ωE)−1A

= I − ω(I − ωÊ)−1D−1(D − E − F )

= I − (I − ωÊ)−1(ωI − ωÊ − ωF̂ )

= I − (I − ωÊ)−1(I − ωÊ + (ω − 1)I − ωF̂ )

= (I − ωÊ)−1((1− ω)I + ωF̂ ) (5.37)

Observe that for ω = 1 as expected, MSOR(ω) and BSOR(ω) coincide with MGS and BGS , respectively.
A pseudo code for SOR(ω) is given in Algorithm 7, showing that the computational cost of one SOR(ω)
iteration equals that of one matrix-vector product plus one vector update.

Algorithm 7 Single Step of an SOR(ω) Iteration
for i = 1→ n do
σ ← u(i) { σ is an auxiliary variable }
u(i)← [f(i)−A(i, 1 : i− 1) · u(1 : i− 1)−A(i, i+ 1 : n) · u(i+ 1 : n)]/A(i, i)
u(i)← (1− ω)σ + ωu(i)

end for

(The rest of this section is for further reading.)

The following lemma will be useful in analysing the convergence properties of SOR(ω).

Lemma 5.3.2 (Characteristic Polynomial of SOR iteration matrix) Assume A ∈ Rn×n. Then the
characteristic polynomials of the SOR(ω) iteration matrix defined by (5.37) can be written as

ϕSOR(ω)(λ) = det
[
(1− λ− ω)I + ωF̂ + λωÊ

]
. (5.38)

Proof. We have that

ϕSOR(ω)(λ) = det
[
BSOR(ω) − λI

]
= det

[
(I − ωÊ)−1((1− ω)I + ωF̂ )− λI

]
= det

[
(I − ωÊ)−1

]
det
[
(1− ω)I + ωF̂ − λ(I − ωÊ)

]
=

1

det
[
(I − ωÊ)

]det
[
(1− λ− ω)I + ωF̂ + λωÊ

]
The proof then follows from the fact that I −ωÊ is a lower-triangular matrix with ones on the diagonal. 2
The following lemma immediately follows from the previous one and from the fact that the matrix U has a
zero diagonal.

Lemma 5.3.3 (Characteristic Polynomial of SOR iteration matrix) Assume A ∈ Rn×n. Then zero is
an eigenvalue of the Gauss-Seidel iteration matrix, i.e., 0 ∈ σ(BGS).

Symmetric SOR In a Krylov subspace context is will be advantageous to have the matrix defining the
splitting to be SPD in case that A is SPD. It is an easy exercise to show that the Jacobi splitting results
in such an M -matrix. The SOR method can be made to result in an SPD splitting by combining an M1-
forward and M2-backward sweep by setting

M1 =
1

ω
D − E and M2 =

1

ω
D − F (5.39)
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and defining the composite step for the error vector ek

ek+1 = [I −M−1
2 A] [I −M−1

1 A] ek (5.40)
= [I − (M−1

1 +M−1
2 −M−1

2 AM−1
1 )A] ek

This iteration can be identified with (5.8) with the inverse of the splitting matrix defined by

M−1 = M−1
1 +M−1

2 −M−1
2 AM−1

1 (5.41)
= M−1

2 [M2 +M1 −A]M−1
1

=
2− ω
ω

M−1
2 DM−1

1

= ω(2− ω)(D − ωE)−1D(D − ωF )−1 .

The resulting iteration is referred to as Symmetric SOR(ω) (SSOR(ω)) and has as iteration matrix

MSSOR(ω) =
1

ω(2− ω)
(D − ωF )D−1(D − ωE) . (5.42)

A pseudo code for a single SSOR(ω) iteration is given in Algorithm 8 showing that the computational cost
of a single iteration equals that of two matrix vector multiplications plus two vector updates.

Algorithm 8 Single Step of an SSOR(ω) Iteration
for i = 1→ n do
σ ← u(i) { σ is an auxiliary variable }
u(i)← [f(i)−A(i, 1 : i− 1) · u(1 : i− 1)−A(i, i+ 1 : n) · u(i+ 1 : n)]/A(i, i)
u(i)← (1− ω)σ + ωu(i)

end for
for i = n→ 1 do
σ ← u(i) { σ is an auxiliary variable }
u(i)← [f(i)−A(i, 1 : i− 1) · u(1 : i− 1)−A(i, i+ 1 : n) · u(i+ 1 : n)]/A(i, i)
u(i)← (1− ω)σ + ωu(i)

end for

5.4 To Convergence or Not To Converge
In this section we discuss qualitative (yes/no) results on the convergence of BIMs. We start with a general
result.

5.4.1 A General Result
Applying the expression (5.8) repeatedly, we obtain

ek = (I −M−1A)ek−1 (5.43)
= (I −M−1A)2ek−2

= . . .

= (I −M−1A)ke0

= Bke0

stating that the error after k steps can be obtained by k applications of the iteration matrix. A single matrix
thus fully characterises the iterative scheme and the scheme is therefore called stationary. A necessary and
sufficient conditions for the convergence of the scheme is given in the following theorem
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Theorem 5.4.1
ρ(B) = ρ(I −M−1A) < 1⇔ {uk}∞k=1 converges

Proof. This theorem is an immediate consequence of Theorem 2.7.2. 2

Apart from giving a condition on the convergence, the above theorem also quantifies the speed of conver-
gence (number of iterations required to reach sufficient accuracy). Indeed, if ρ(I −M−1A) � 1 (M is
good approximation of A) then we can expect a fast convergence, while if ρ(I −M−1A) ≈ 1 (M is bad
approximation if A) be can expect a slow convergence.

5.4.2 Matrix Norm Bounds
Theorem 2.7.1 states that any matrix norm which is multiplicative is an upper bound on the spectral radius.
For p-norm with p = 1, p = 2 or p =∞, the matrix norms can be computed using (2.17), (2.18) or (2.19),
respectively. For the Jacobi iteration, the p = 1, p = ∞ and Frobenius matrix norm bound translates into
the following conditions for convergence

‖BJAC‖1 = ‖Ê + F̂‖1 = max
1≤j≤n

n∑
i=1,i6=j

|aij |
|aii|

< 1 [column sum criterion] (5.44)

‖BJAC‖∞ = ‖Ê + F̂‖∞ = max
1≤i≤n

n∑
j=1,j 6=i

|aij |
|aii|

< 1 [row sum criterion] . (5.45)

‖BJAC‖F = ‖Ê + F̂‖F =

n∑
i,j=1,i6=j

(aij
aii

)2
< 1 [square sum criterion] . (5.46)

These results are of practical importance as they show that the Jacobi method is faster to converge if more
weight is placed on the diagonal. This occurs for instance when as parabolic PDE in advanced in time
using an implicit time integration method.

5.4.3 Regular Splittings
In the following definition the notion of positivity plays a central role.

Definition 5.4.1 The splitting A = M − N is called regular if and only if M is non-singular, M−1 ≥ 0
and N ≥ 0.

Example 5.4.1 The Jacobi splitting of Ah in model problem MP-1 and MP-2 is obviously regular. Theo-
rem 2.9.1 allows to establish that the matrixM in the Gauss-Seidel splitting ofAh in model problem MP-1
and MP-2 satisfies M−1 ≥ 0 and that it is therefore defines a regular splitting. In model problem MP-3
and MP-4 nor the Jacobi neither the Gauss-Seidel define a regular splitting due to the negative entries in
N .

The following theorem gives necessary conditions on A for a regular splitting to converge. The notion of
positivity again plays a central role.

Theorem 5.4.1 Assume A = M −N to be a regular splitting. Then

ρ(M−1N) < 1⇔ A is non-singular and A−1 is non-negative (5.47)

Proof. ⇒ Let as before B denote the matrix B = I −M−1A = M−1N . Then B ≥ 0 (as a product
of non-negative matrices). By virtue of Theorem 2.10.2, the matrix (I − B) is then non-singular and
(I −B)−1 ≥ 0. As

A = M −N = M(I −M−1N) = M(I −B) , (5.48)

we have that A is non-singular (as a product of non-singular matrices). Furthermore, as A−1 = (I −
M−1N)−1M−1 = (I − B)−1M−1, we have that A−1 is non-negative (as a product of non-negative
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matrices).
⇐ From (5.48) follows that (I − B) is non-singular. Both matrices B = M−1N and A−1N = (I −
B)−1B are positive (as a product of positive matrices). By virtue of the Perron-Frobenius Theorem 2.10.1,
there exists a positive vector u such that Bu = ρ(B)u. As (I −B)−1 ≥ 0, we have that (I −B)−1Bu =

ρ(B)(I − B)−1u = ρ(B)
1−ρ(B)u ≥ 0. As u ≥ 0, the former can only be true is ρ(B)

1−ρ(B) ≥ 0, which can only
be true if 0 ≤ ρ(B) ≤ 1. Since I −B is non-singular, then ρ(B) 6= 1, which implies that ρ(B) < 1. 2

Example 5.4.2 The convergence of Jacobi and Gauss-Seidel for in model problem MP-1 follows immedi-
ately from this theorem (why?). In model problem MP-2 the matrix Ah is singular, and the theorem does
not apply. The theorem does not guarantee the convergence of Jacobi and Gauss-Seidel for MP-3 and
MP-4. This issue is settled in the next section.

5.4.4 Diagonal Dominance
Whereas in the previous subsection we discussed regular splittings of the coefficient matrix, in this sub-
section we will only consider the Jacobi and Gauss-Seidel methods. It appears that for these methods
the condition of regularity of the splitting for convergence can be weakened to that of strong diagonal
dominance of the coefficient matrix.

Theorem 5.4.2 Assume A ∈ Rn×n to be strongly row diagonally dominant. Then the Jacobi and Gauss-
Seidel method applied to A converge, i.e.,

n∑
j=1,j 6=i

|aij | < |aii| ∀i = 1, . . . , n ⇒ ‖BGS‖∞ ≤ ‖BJAC‖∞ < 1 (5.49)

Proof. For the Jacobi method, the result follows from (5.44). For the Gauss-Seidel method we denote by
e1 ∈ Rn the vector having only 1 as components. Using Lemma 5.3.1, we have that

|BGS |e1 ≤ (I − |Ê|)−1|F̂ |e1 . (5.50)

As the matrix |BJAC | is computed element-wise, we have that

|BJAC | = |Ê|+ |F̂ |

and therefore |F̂ |e1 = |BJAC |e1 − |Ê|e1. The term |BJAC |e1 can be bounded by the strict diago-
nal dominance of A. We indeed have that |BJAC |e1 ≤ ‖BJAC‖1e1, from which follows |F̂ |e1 ≤[
‖BJAC‖1I − |Ê|

]
e1. Substituting this in Equation (5.50), we obtain

|BGS |e1 ≤ (I − |Ê|)−1
[
‖BJAC‖1I − |Ê|

]
e1

= (I − |Ê|)−1
[
I − |Ê|+ (‖BJAC‖1 − 1)I

]
e1

=
[
I + (‖BJAC‖1 − 1)(I − |Ê|)−1

]
e1

We have already proven that ‖BJAC‖1 < 1 and therefore ‖BJAC‖1 − 1 < 0. Moreover, from |Ê| ≥ 0
follows that I − |Ê| ≤ I and by taking the inverse of both sides that (I − |Ê|)−1 ≥ I . Combining these
two results we have that I + (‖BJAC‖1 − 1)(I − |Ê|)−1 ≤ I + (‖BJAC‖1 − 1)I = ‖BJAC‖1I , from
which

|BGS |e1 ≤ ‖BJAC‖1e1 . (5.51)

Proposition 2.5.4 then gives the desired result that ‖BGS‖1 ≤ ‖BJAC‖1. 2

Example 5.4.3 The matrix Ah in model problems MP-1, MP-3 and MP-4 is irreducibly diagonally dom-
inant, while is not in model problem MP-2 (as a strict inequality is missing) and nor in model problem
MP-5 (due to the weight in the off-diagonals). The above theorem thus extends the proof of convergence of
Jacobi and Gauss-Seidel from MP-1 to MP-3 and MP-4.
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5.4.5 Converge of SOR(ω)
In this subsection we discuss the convergence of the successive overrelaxation method. The following
theorem states that the method does not converge unless the parameter ω lies in the range 0 < ω < 2.

Theorem 5.4.3 For an arbitrary n× n matrix A holds that

ρ(BSOR(ω)) ≥ |1− ω|

Proof. The constant term ϕ(0) in the characteristic polynomial ϕ(λ) of BSOR(ω) is the product of its
eigenvalues, i.e,. by Lemma 5.3.2

Πn
i=1λi(BSOR(ω)) = ϕ(0) = det[(1− ω)I + ωF̂ ] = (1− ω)n . (5.52)

This implies that ρ(BSOR(ω)) = maxi |λi(BSOR(ω))| ≥ |1− ω| . 2

The convergence of SOR(ω) for the model problems MP-1 is a colorary of the following theorem.

Theorem 5.4.4 Assume A to be SPD. Then SOR(ω) for 0 < ω < 2 applied to A converges.

A proof of this theorem can be found in [64].

5.5 Speed Convergence of BIMs
The aim of this section is to derive quantitative results on the speed of convergence of BIMs applied to
model problem MP-1. The term speed here refers to the required number of iterations to reach a prescribed
accuracy. We in particular relate the speed of convergence to the meshwidth h used in the finite difference
discretization.

5.5.1 A General Result
It appears that the asymptotic speed of convergence of the BIMs is linear.

Definition 5.5.1 The sequence {uk}k≥0 converges linearly to u in the norm ‖ · ‖ if there exists a number
µ ∈ (0, 1) such that for all k

‖uk − uk−1‖ ≤ µ‖uk−1 − uk−2‖ (5.53)

The number µ is called the rate of convergence or reduction factor.

Applying this definition recursively yields that if the sequence {uk}k≥0 converges linearly

‖uk − uk−1‖ ≤ µ‖uk−1 − uk−2‖ ≤ . . . ≤ µk−1‖u1 − u0‖ . (5.54)

This allows to proof the following estimate for the error after k steps

Theorem 5.5.1 If the sequence {uk}k≥0 converges linearly to u in the norm ‖ · ‖ with rate of convergence
µ, then the following estimate holds

‖ek‖2 = ‖uk − u‖ ≤ µk

1− µ
‖u1 − u0‖ =

µk

1− µ
‖e0‖ . (5.55)

Proof. If ` ≥ k + 1 then

‖u` − uk‖ = ‖u` − u`−1 + u`−1 − u`−2 + . . .+ uk+1 − uk‖
≤ ‖u` − u`−1‖+ ‖u`−1 − u`−2‖+ . . .+ ‖uk+1 − uk‖
≤ (µ`−k + µ`−k−1 + . . .+ µ)‖uk − uk−1‖
= µ(µ`−k−1 + µ`−k−2 + . . .+ 1)‖uk − uk−1‖

= µ
1− µ`−k

1− µ
‖uk − uk−1‖ .

73



Taking the limit of both sides of this inequality as `→∞ using the fact that the norm ‖ · ‖ is a continuous
functional, we obtain

lim
`→∞

‖u` − uk‖ = ‖ lim
`→∞

u` − uk‖

= ‖u− uk‖

≤ lim
`→∞

µ
1− µ`−k

1− µ
‖uk − uk−1‖

=
µ

1− µ
‖uk − uk−1‖

≤ µk

1− µ
‖u1 − u0‖ ,

concluding the proof. 2

Assuming that the equality holds in the estimate (5.55), and taking the log10 of both sides yields

log10 ‖ek‖ = log10(µ)k + log10(
‖e0‖
1− µ

) (5.56)

This implies that on a log-log scale the curve ‖ek‖ as a function of k is a straight line with a negative slope
given by log10(µ) < 0. A small value of µ therefore gives a fast convergence. Given ‖e0‖, this result can
be used to estimate the number of iterations required to reach a particular accuracy.

To link this general result to the convergence of a BIM, we make the following assumption on the
iteration matrix B ∈ Rn×n : ρ(B) < 1 that fully characterises the BIM. This assumption is met by the
Jacobi, Gauss-Seidel and SOR(ω) methods when applied to the discretized elliptic problems introduced
earlier. We assume that

• the spectral radius ρ(B) < 1 is large compared with the modulus of the n− 1 remaining eigenvalues
of B. We denote σ(B) = {µk|k = 1, . . . , n} and number the eigenvalues such that ρ(B) = |µn|.
We thus have that 1 > |µn| � |µk| for k = 1, . . . , n− 1;

• B has n eigenvectors {v[k]|k = 1, . . . , n} that form an orthonormal basis of Rn.

Assume that the initial error e0 corresponding to the initial guess u0 can be decomposed in the eigenbasis
of B according to

e0 = γ1v
[1] + . . .+ γnv

[n] , (5.57)

where γ` =< e0,v[`] >. Substituting this initial error into (5.43) yields that after k steps

ek = Bke0

= γ1B
kv[1] + . . .+ γnB

kv[n]

= γ1µ
k
1v

[1] + . . .+ γnµ
k
nv

[n] .

Each error component in span(v[`]) is therefore damped with a different factor µk` , the slowest one to
converge being ` = n. For k sufficiently large, a good approximation is therefore

ek = γnµ
k
nv

[n]

a other contributions to this sum are negligible. This implies

‖ek‖ = |γn||µn|k = |γn|ρ(B)k ⇔ log10 ‖ek‖ = ρ(B)k + log10 γn

which shows that ρ(B) can be identified as the convergence factor of the linearly converging process. We
can now state that

• while the condition ρ(B) < 1 assures convergence, the condition ρ(B) � 1 assures fast conver-
gence;
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• in practical problems ρ(B) is close to 1 and increasing towards 1 with the problem size; this will be
illustrated further in this section and implies that BIM as stand-alone methods are too slow to solve
realistic engineering problem;

• the above observations do not change when monitoring the norm of the residual instead of the error.

5.5.2 Speed of Convergence of Damped Jacobi
Next we quantify the speed of convergence of the damped Jacobi method.

Theorem 5.5.2 Assume Ah results from the discretization of the two-dimensional model problem MP-1
on a grid of mesh size h = 1

N after elimination of the boundary conditions implying that Ah can be
diagonalizes according to Ah = V hΛh(V h)T . Assume BhJAC(ω) to be the iteration matrix resulting from
a damped Jacobi splitting of Ah. Then BhJAC(ω) = V hΛhJAC(ω)(V

h)T where the diagonal entries of
ΛhJAC(ω) are the eigenvalues of BhJAC(ω) given by

λk`(B
h
JAC(ω)) = 1− ω

[
1− 1

2
cos(πhk)− 1

2
cos(πh`)

]
. (5.58)

In the proof we exploit the fact that Ah has a constant diagonal.
Proof. If vh,[k`] is an eigenvector of Ah corresponding to the eigenvalue λk`(Ah), the same vh,[k`] is a
eigenvector of BhJAC(ω) corresponding to the eigenvalue λk`(BhJAC(ω)) = 1 − ω h

2

4 λk`(A
h). The result

then follows from Theorem 3.7.2. 2

The theorem can be used to investigate the speed convergence of Jacobi (ω = 1) as a function of the
meshwidth h. Indeed, we have have that the eigenvalues of the Jacobi method are given by

λk`(B
h
JAC) =

1

2
cos(πhk) +

1

2
cos(πh`) , (5.59)

and thus the spectral radius by

ρ(BJAC) = λ11(BhJAC) = cos(πh) = 1− π2

2
h2 +O(h4) . (5.60)

This result gives us the first instance of the twice bad news story, namely that

• for moderate values of h, ρ(BJAC) ≈ 1, implying slow convergence. For h = 1/64 for instance, we
that ρ(BJAC) = 0.998;

• ρ(BJAC) → 1 as h → 0, implying that convergence slows down as the mesh is refined to obtain
more accurate discretizations.

Furthermore, when Ah is consistently ordered, the Gauss-Seidel method converges twice as fast as the
Jacobi method (see also Corollary 5.5.1). The convergence of the Jacobi method on the model problem
MP-1 is shown in Figure 5.2. This figure clearly shows how the convergence slows down on finer meshes.

5.5.3 Speed of Convergence of SOR(ω) *
In this section we look into the convergence of SOR(ω) motivated by the following goals:

• clarifying under which conditions the Gauss-Seidel method (ω = 1 in SOR(ω) converges twice as
fast the Jacobi method;

• illustrating how the the convergence of SOR(ω) can be adapted by tuning a parameter;

• giving an example of an iterative method that has a better computational asymptotic complexity for
h→ 0 than the method of Jacobi and Gauss-Seidel.
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Figure 5.2: Convergence of the Jacobi method for model problem MP-1 on various mesh sizes.

To be able to make quantitative statements on the convergence of SOR(ω), we need to make additional
assumptions on the matrix A as in the following definition.

Definition 5.5.2 The matrix A ∈ Rn×n has the A-property if a permutation matrix P exists such that the
matrix A = PAPT has the following form

A = PAPT =

[
D1 M1

M2 D2

]
with D1 and D2 diagonal matrices . (5.61)

Example 5.5.1 The system matrix in model problem MP-1 has the A-property as the red-black reordering
of the unknowns (3.50) results in a non-zero structure required by (5.61).

The A-matrix property is important as it allows:

• to relate the eigenvalues and thus the speed of convergence of the Jacobi and SOR(ω) iteration
matrices (and thus relate the speed of convergence of Jacobi and Gauss-Seidel method as BGS =
BSOR(ω=1));

• to find the values of ω that is optimal in terms of convergence for SOR(ω).

The following theorem is an intermediate results towards the above statement.

Theorem 5.5.3 Assume the n× n matrix A to have the A-property and that aii 6= 0 for i = 1, . . . , n. Let
P be a permutation such that the matrix A = PAPT is of the form (5.61) and let A = D−1(I − Ê − F̂ )
denote a splitting of A of the form (5.12)-(5.13). Then for α ∈ C, α 6= 0, the eigenvalues of the matrix

BJAC(α) = αÊ + α−1F̂ (5.62)

are independent of α

Proof. We show that the matrices J(α) and J(1) are similar, and therefore have the same spectrum. Indeed,
by definition there exists a permutation matrix P such that

A =

(
D1 M1

M2 D2

)
= D−1(I − Ê − F̂ )
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where as D1 and D2 are invertible, and

D =

(
D1 0
0 D2

)
, Ê = −

(
0 0

D−1
2 M2 0

)
and F̂ = −

(
0 D−1

1 M1

0 0

)
.

We now have that

BJAC(α) =

(
0 α−1D−1

1 M1

αD−1
2 M2 0

)
= −Sα

(
0 D−1

1 M1

D−1
2 M2 0

)
S−1
α

= −SαBJAC(1)S−1
α ,

where Sα is the diagonal matrix

Sα =

(
I1 0
0 αI2

)
and I1, I2 are identity matrices .

This concludes the proof. 2

This result motivates the following definition.

Definition 5.5.3 A matrix A ∈ Rn×n is called consistently ordered if and only if the eigenvalues of the
matrix BJAC(α) = αÊ + α−1F̂ are independent of α.

The concept of A-property was introduced by David Young (1923-2008) in his seminal PhD thesis and
later generalized to consistent orderings by Richard Varga (1928). We have now all elements to state the
main result on the convergence of SOR(ω). Observe that Lemma 5.3.3 for ω = 1 implies that 0 ∈ σ(BGS)
always holds. The zero eigenvalue is therefore separately in part c. in the next theorem.

Theorem 5.5.4 Assume A to be consistently ordered and let ω 6= 0. Then the following propositions hold

a. if µ ∈ σ(BJAC) then −µ ∈ σ(BJAC);

b. if µ ∈ σ(BJAC) and if
(1− λ− ω)2 = λω2µ2 , (5.63)

then λ ∈ σ(BSOR(ω));

c. if λ 6= 0, λ ∈ σ(BSOR(ω)) and if (5.63) holds, then µ ∈ σ(BJAC).

Proof. a. If A is consistently ordered, then J(1) = Ê + F̂ and J(−1) = −Ê − F̂ have the same
eigenvalues.
b. If λ = 0, then (5.63) implies that ω = 1. In this case λ ∈ σ(BGS) as follows from Lemma 5.3.3. We

can therefore assume that λ 6= 0 in demonstrating that

µ ∈ σ(BJAC)⇔ det[BJAC − µI] = 0⇔ det[Ê + F̂ − µI] = 0

implies that λ ∈ σ(BSOR(ω)). From (5.5.4), follows that either 1−λ−ω =
√
λωµ or 1−λ−ω = −

√
λωµ.

Without loss of generality, we choose the latter. Using Lemma 5.3.2, we then have that

λ ∈ σ(BSOR(ω)) ⇔ ϕSOR(ω)(λ) = 0

⇔ det
[
(1− λ− ω)I + ωF̂ + λωÊ

]
= 0

⇔ det
[
− ωµ

√
λI + ωF̂ + λωÊ

]
= 0

⇔ det
[
− ωµ

√
λI + ω

√
λ(
√
λÊ +

1√
λ
F̂ )
]

= 0

⇔ (ω
√
λ)Ndet

[√
λÊ − 1√

λ
F̂ − µI

]
= 0

By virtue of Theorem 5.5.3, the eigenvalues of the matrices BJAC(
√
λ) =

√
λÊ + 1√

λ
F̂ and BJAC(1) =

Ê + F̂ are the same, and therefore we have that µ ∈ σ(BSOR(ω)).
c. The above reasoning can be reversed to proof this part of the theorem. 2
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Example 5.5.2 Theorem 5.5.3 shows that Jacobi iteration matrix BJAC in model problem MP-1 lie sym-
metric around the origin.

Corollary 5.5.1 If A is consistently ordered, then

ρ(BGS) = [ρ(BJAC)]
2
. (5.64)

This corollary quantifies the heuristic that Gauss-Seidel is twice as fast to converge as Jacobi. In model
problem MP-1 we have that

ρ(BGS) = µ2
11 =

[
1− π2

2
h2 +O(h4)

]2

(5.65)

= 1− π2h2 +O(h4) , (5.66)

showing that the twice bad news story holds for the Gauss-Seidel method as well. For h = 1/64 for
instance, we that ρ(BJAC) = 0.9976. The convergence of the Gauss-Seidel method is compared to that of
the Jacobi method in Figure 5.3. This figure clearly shows that Gauss-Seidel requires half the number of
Jacobi iterations to converge to the same accuracy.
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Figure 5.3: Convergence of the Jacobi and Gauss-Seidel method for model problem MP-1 for mesh size
h = 1/16.

The above theorem gives the eigenvalues of BSOR(ω) as the roots of a quadratic equation that depend
on both ω and the eigenvalues of BJAC . We will denote these roots as λ(1)

i (ω, µi) and λ(2)
i (ω, µi), where

the numbering in i is in ascending order of magnitude. This quadratic relation allows to compute the
optimal relaxation parameter denoted as ω∗ and defined by

ω∗ = argminω∈Rρ(BSOR(ω)) = argmin0<ω<2ρ(BSOR(ω)) , (5.67)

where we have used Theorem 5.4.3. In the next theorem the optimal value of ω is determined.
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Theorem 5.5.5 Assume that A ∈ Rn×n is consistently ordered and that the eigenvalues of BJAC are real
values with ρ(BJAC) < 1. Then the optimal relaxation parameter and the corresponding optimal spectral
radius are given by

ω∗ =
2

1 +
√

1− [ρ(BJAC)]2
and ρ(BSOR(ω=ω∗)) = ω∗ − 1 =

(
ρ(BJAC)

1 +
√

1− [ρ(BJAC)]2

)2

, (5.68)

respectively. More generally, we have that

ρ(BSOR(ω)) =

{
λ

(2)
n (ω, ρ(BJAC)) if 0 < ω ≤ ω∗
ω − 1 if ω∗ ≤ ω < 2

(5.69)

where

λ(2)
n (ω, ρ(BJAC)) = 1− ω +

1

2
ω2[ρ(BJAC)]2 + ωρ(BJAC)

√
1− ω +

1

4
ω2[ρ(BJAC)]2 (5.70)

as illustrated in Figure 5.4.
Proof. We start the proof by a geometric interpretation of the relation (5.63) that can be equivalently
rewritten as

(λ+ ω − 1)/ω = ±µi
√
λ ,

separating the dependency in ω and µi in the left and right-hand side, respectively. This shows that the roots
λ

(1)
i (ω, µi) and λ(2)

i (ω, µi) are abscissa of the points of intersection of the line Lω(λ) = (λ + ω − 1)/ω

and the parabola Pµi(λ) = ±µi
√
λ as shown in Figure 5.4(a) . For all ω ∈ (0, 2), the line Lω(λ) passes

through the points (λ = 1 − ω,Lω = 0) and (λ = 1, Lω = 1) as shown in Figure 5.4(b). Increasing the
value of µi ∈ (0, 1) decreases the curvature of Pµi as shown in Figure 5.4(c). To find the largest abscissa
of intersection of Lω(λ) and Pµi , it suffices to consider µi = ρ(BJAC) only. There exists a critical value
ωc for ω such that the graphs of Lω(λ) and Pρ(BJAC) have two points of intersection for ω ∈ (0, ωc), one
single point of intersection for ω = ωc and no such points for ω > ωc. For ω = 1, the points of intersection
are λ(1) = 0 and λ(2) = [ρ(BJAC)]2. To find ωc, we adopt an algebraic argument and write (5.63) as the
following quadratic equation in λ

λ2 + [2(ω − 1)− ω2(ρ(BJAC))2]λ+ (ω − 1)2 = 0 . (5.71)

Depending on the sign of the discriminant

Dλ = ω2(ρ(BJAC))2[(ρ(BJAC))2ω2 − 4(ω − 1)] ,

this equation has two distinct real-valued (Dλ > 0), one single real-valued (Dλ = 0) or two complex
conjugate Dλ < 0 solutions. The roots of Dλ in turn are given by ω = 0, and the roots of the quadratic
equation

(ρ(BJAC))2ω2 − 4ω + 4 = 0 .

given by ω± = (2± 2
√

1− [ρ(BJAC)]2)/[ρ(BJAC)]2, where 1 < ω− < 2 and ω+ > 2. We furthermore
have that

• for 0 < ω ≤ ω−, Dλ > 0 and the two real roots of (5.71) are

λ(1),(2)
n (ω, ρ(BJAC)) = 1− ω +

1

2
ω2[ρ(BJAC)]2 ± ωρ(BJAC)

√
1− ω +

1

4
ω2[ρ(BJAC)]2 ,

• for ω = ω−, Dλ = 0 and the single real root of (5.71) is

λ(1)
n (ω, ρ(BJAC)) = λ(2)

n (ω, ρ(BJAC)) = 1− ω +
1

2
ω2[ρ(BJAC)]2 ;
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• for ω > ω−, Dλ < 0 and the modulus of the complex conjugate roots of (5.71) in λ is

|λ(1)
n (ω, ρ(BJAC))| = |λ(2)

n (ω, ρ(BJAC))| = |1− ω| = ω − 1 ;

and therefore we have that

• for 0 < ω ≤ ω−, ρ(BSOR(ω)) = λ
(2)
n (ω, ρ(BJAC));

• for ω− ≤ ω ≤ 2, ρ(BSOR(ω)) = ω − 1.

The graph in Figure 5.4(d) shows that ρ(BSOR(ω)) reaches its minimum at

ω∗ = ω− =
2− 2

√
1− [ρ(BJAC)]2

[ρ(BJAC)]2
=

2

1 +
√

1− [ρ(BJAC)]2
(5.72)

with a minimum value equal given by (5.68), completing the proof. 2

In the model problem MP-1 we have that the optimal relaxation parameter is given by
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Figure 5.4: Convergence analysis of SOR(ω).

ω∗ =
2

1 + sin(πh)
(5.73)
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and that the corresponding spectral radius is given by

ρ(BSOR(ω=ω∗)) = ω∗ − 1 =
1− sin(πh)

1 + sin(πh)
= 1− 2πh+O(h2) (5.74)

which for h = 1/64 yields ρ(BSOR(ω=ω∗)) = 0.90. The convergence of the SOR(ω) method applied to
model problem MP-1 for the mesh size h = 1/16 and for various values of ω is shown in Figure 5.5. This
figure clearly shows reduction in number of iterations that can be achieved by choosing close-to-optimal
values of ω.
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Figure 5.5: Convergence of the SOR(ω) method for model problem MP-1 for mesh sizes h = 1/16 for
various values of ω.

The fact that using the optimal relaxation parameter ρ(BSOR(ω=ω∗)) = 1 − O(h) is a substantial
improvement over Gauss-Seidel (and Jacobi) for which ρ(BGS) = 1 − O(h2). Determining the optimal
ω-value does however require the computation of ρ(BJAC), which is not a straightforward task.

To summarise this section, we recall the three main results

ρ(BJAC) = 1− π2

2
h2 +O(h4) (5.75)

ρ(BGS) = 1− π2h2 +O(h4) (5.76)
ρ(BSOR(ω=ω∗)) = 1− 2πh+O(h2) (5.77)

A more refined analysis of matrices with the A-property allows to derive expressions for the eigenvectors
of the GS and SOR(ω) iteration matrices. This in turn allows to analyze the convergence of these methods
in more details.

5.6 Starting, Monitoring and Stopping
The practical implementations of (basic) iterative methods requires an initial guess, a procedure monitoring
the converge (i.e., the distance to the solution) and a stopping criterion. These issues will be looked into in
this section.
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5.6.1 Choice of Starting Guess
The choice of the initial guess is usually given by the context of the problem. In solving a discretized linear
elliptic partial differential equation for example, an initial guess can be obtained by for instance solving the
same problem approximately by a simplified pen-and-paper model or on a coarser mesh. The latter option
requires interpolating the solution obtained from the coarse to the fine mesh. In solving a non-linear, time or
parameter-dependent partial differential equation, an initial guess can be obtained from a previous iteration
or by an extrapolation of a sequence of such solutions.

5.6.2 Monitoring the Convergence Process
To judge the quality of the solution uk of a given iterant at iteration k, the 2-norm of the residual vector is
usually used. Bounding the norm of the error by the norm of the residual however is not without difficulties.
Indeed, as the residual equations (5.5) hold, we have the following bound on the relative error

‖ek‖
‖e0‖

≤ κ2(A)
‖rk‖
‖r0‖

, (5.78)

and this bound is unpractical if κ2(A) is large.
Application-specific contexts might motivate the use of other norms or other quantities like an energy

or deviation from a divergence-free vector field.

5.6.3 Choice of Stopping Criterium
In the choice of a good stopping criterion one aims at balancing the quality imposed on the solution with
the required computational cost. The above discussion motivates iterating until the residual norm ‖rk‖
becomes smaller than a given number ε. In the following we make this statement more precise by discussing
various stopping criteria. One can decide to stop iterating if

1. criterion 1: ‖rk‖ ≤ ε:
the main disadvantage of this stopping criterion is that it is not scaling invariant. This means that
‖rk‖ = ‖f −Auk‖ ≤ ε does not imply that e.g. ‖100(f −Auk)‖ ≤ ε, although the accuracy of the
iterant uk remains the same. Some kind of scaling therefore needs to be introduced.

2. criterion 2: ‖rk‖/‖r0‖ ≤ ε:
the main disadvantage of this stopping criterion is that the required accuracy increases with the
quality of the initial guess, i.e., a good initial guess does not imply a reduction in the number of
iterations.

3. criterion 3: ‖rk‖/‖f‖ ≤ ε:
this is a good stopping criterion.

5.7 The Triumvir: Splitting, Defect Correction and Preconditioning
BIMs have been shown to be slow to converge. They do however serve as building blocks for more efficient
iterative solution methods. In this section we introduce three equivalent points of view on writing the matrix
A as in (5.6) that will allow to build these more efficient methods.

Splitting Writing the matrix A as in equation (5.6) is referred to as a splitting of A. Observe the contrast
between factoring the matrix A in A = LU performed by direct soution methods and a splitting of A. In
direct solution methods, computing the factors L and U determines the computational complexity of the
algorithm. In BIMs, the term M is immediately available. The choice of M is motivated by the desire to
make the linear system solve involving M as cheap as possible (either diagonal or triangular).
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Defect Correction We already mentioned the fact that knowing the error ek is equivalent to knowing
the exact solution u. Assume an approximation uk and some approximation Â to A such that the Â linear
system is easy to solve to be given. Then we can define an iterative scheme by solving the residual equations
(5.5) approximately by the following sequence of three steps

• compute the defect (residual): rk = f −Auk;

• compute the approximate correction by solving the approximate residual equations: Âêk = rk;

• add the correction to the previous iterant uk+1 = uk + êk.

We will refer to this scheme as the defect-correction scheme. Combining the last two steps we arrive at

uk+1 = uk + êk = uk + (Â)−1rk , (5.79)

which upon identifying terms with (5.7) shows that Â in a defect-correction scheme plays the same role as
a BIM defined by M . The concept of a defect-correction iteration will link BIM with multigrid methods in
subsequent chapters. In the latter, the matrix Â is obtained by discretizing the PDE on a coarser mesh. In
other contexts, the matrices A and Â may correspond to the discretization of the same partial differential
equation using higher and lower order techniques, respectively.

Preconditioning The term preconditioning refers to replacing the linear system to solve by another one
that it easier to solve while keeping the same solution. Given a matrix M , possibly in factored form
M = M1M2 such that the M (M1 and M2) linear system is easy to solve, the term left, right and split
preconditioning refer to solving

M−1Au = M−1f (5.80)

AM−1z = f z = Mu (5.81)

M−1
1 AM−1

2 z = M−1
1 f z = M2u , (5.82)

respectively. Richardson with parameter τ = 1 applied to the left-(right-)preconditioned system has itera-
tion matrix B = I −M−1A (B = I − AM−1). Solving the left preconditioned system with Richardson
(τ = 1) therefore corresponds to solving the original unpreconditioned system with a BIM defined by
M . The goal of preconditioning is to enhance the speed of Richardson by replacing asymptotic speed of
convergence ρ(I −A) on the unpreconditioned system by the superior rate ρ(I −M−1A)� ρ(I −A) of
the preconditioned system. The concept of preconditioning will link BIMs with Krylov subspace methods
in subsequent chapters.

5.8 What did we learn?
In this chapter we introduced basic iterative methods for solving linear systems. Quantitative and qualitative
convergence properties were discussed and illustrated on model problems.
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5.9 Exercises
Exercise 5.9.1

a) Let A ∈ Rn×n be a positive definite symmetric (n× n)-matrix. Show, that

||x|| :=
√
xTAx

defines a vector norm in Rn.

b) Show that the spectral norm for square matrices is the matrix norm induced by the Euclidean norm
(see Exercise 2.12.9 for the definition of induced matrix norms).
Hint: The spectral norm is defined as follows:

‖ A ‖2:=

√
ρ(A

T
A)

where ρ is the spectral radius.

c) Let D ∈ Rn×n be a diagonal (n× n)-matrix with diagonal elements di > 0 and
let the (n× n)-matrix C ∈ Rn×n be symmetric.
Show that, the following inequality is valid for the spectral norm:

‖ D−1C ‖2≤ (min{di : 1 ≤ i ≤ n})−1ρ(C)

d) Determine the unit circle E := {x ∈ R2|xTAx ≤ 1} for

A =

(
9/5 −8/5
−8/5 21/5

)
and sketch E.

Exercise 5.9.2 Show that the iteration given by

ri = f −Aui, Âêi = ri, ui+1 = ui + êi (i = 0, 1, 2 . . .)

can be written in the form ui+1 = Qui + s, with Q = I − (Â)−1A.

Exercise 5.9.3 Show that the iteration

Âui+1 = Rui + f .

(which is based on a splitting A = Â − R leads to an iteration of the form ui+1 = Qui + s, with
Q = I − (Â)−1A.

Exercise 5.9.4 Let A be a symmetric, positive definite matrix. Show that the Richardson iteration applied
to A converges in the Euclidean norm for

0 <
1

τ
< 2‖A‖−1

2 .

Exercise 5.9.5 Let A be a symmetric, positive definite matrix with largest and smallest eigenvalues λmax
and λmin respectively. Show that the value of τ for which ρ(I − τA) becomes minimum, and thus the
optimal value for the Richardson iteration, is

τ =
2

λmax + λmin
.
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Exercise 5.9.6 For the solution of the system Au = f , an iterative method

ui+1 = Qui + s

with u0 = 0 is chosen. Prove that for ui

ui = (I −Qi)A−1f

is valid. Indicate the assumptions and determine s.

Exercise 5.9.7 Consider the problem

10u1 + u2 = 1

u1 + 10u2 = 10

with the solution (u1, u2)T = (0, 1)T . For a general system of equations

Au = f

with an n× n matrix A, which consists of a lower triangular submatrix −E, the diagonal D and the upper
triangular submatrix −F (A = D − E − F ), Gauss–Seidel iteration is defined by

ui+1 = D−1
(
f + Eui+1 + Fui

)
and Jacobi iteration is given by

ui+1 = D−1
(
f + Eui + Fui

)
Perform

a) four Gauss–Seidel iterations,
b) four Jacobi iterations,

starting with the initial approximation (u1, u2) = (0, 0).

Exercise 5.9.8 Perform

a) four Gauss–Seidel iterations,
b) four Jacobi iterations,

starting with the initial approximation (u1, u2) = (0, 0), for the problem

u1 + u2 = 2

4u1 + 5u2 = 9

The exact solution is (u1, u2) = (1, 1). Compare the convergence speed of both iterations with that in
Exercise 5.9.7.

Exercise 5.9.9 Let the matrix A be as in Exercise 2.12.8. This matrix is a discretization of L = −d2/dx2

with homogeneous Dirichlet boundary conditions.

a) Compute the eigenvalues and eigenvectors of A. What is the 2 norm of A?
b) Sketch the eigenvectors belonging to the largest and smallest eigenvalues as grid functions (see

Section 2.1.1) on the grid [0, 1, 2, 3, 4, 5], appending zeros before and after them.

Exercise 5.9.10 Apply the lexicographic Gauss-Seidel method for the five-point stencil on a grid of mesh
size h one time at the point (x5, y6) given that

a) bh(xm, yn) = 0 for all m, n, ui+1
h (x5 − h, y6) = 1, ui+1

h (x5, y6 − h) = 1,
uih(x5 + h, y6) = 1, uih(x5, y6 + h) = 1.
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b) bh(xm, yn) = 0 for all m, n, ui+1
h (x5 − h, y6) = −1, ui+1

h (x5, y6 − h) = −1,
uih(x5 + h, y6) = 1, uih(x5, y6 + h) = 1.

Exercise 5.9.11

a) Show that the Jacobi iterative method, but not the Gauss-Seidel method, converges for

A =

 1 −2 2
−1 1 −1
−2 −2 1

 .

b) Show that the Gauss-Seidel method, but not the Jacobi method, converges for

A =
1

2

 2 1 1
−2 2 −2
−1 1 2

 .

Exercise 5.9.12 Suppose that

A1 =

(
1 −1/2
−1/2 1

)
and A2 =

(
1 −3/4
−1/12 1

)
Let BJAC,1 and BJAC,2 be the associated Jacobi iteration matrices. Show that

ρ(BJAC,1) > ρ(BJAC,2)

thereby refuting the claim that greater diagonal dominance implies more rapid Jacobi convergence.

Exercise 5.9.13 Let Ah correspond to the finite difference discretization of the one-dimensional diffusion
operator supplied with homogeneous Dirichlet boundary conditions on the interval (0, 1) using the central
three-point stencil on a uniform mesh with meshwidth h and using elimination of the boundary conditions,
i.e., the matrix

Ah =
1

h2

2 −1 0 . . . 0
...

...
...

...
...

0 . . . 0 −1 2

 ∈ R(N−1)×(N−1) (5.83)

Assume thatBGS = I−M−1
GSA

h is the iteration matrix corresponding to the forward Gauss-Seidel splitting
of the matrix Ah. Give an analytical expression for the eigenvalues of BGS . Motivate your answer.

Exercise 5.9.14 LetAh correspond to the finite difference discretization of the one-dimensional bi-harmonic
operator supplied with clamped boundary conditions on the interval (0, 1) using the central five-point sten-
cil on a uniform mesh with meshwidth h and using elimination of the boundary conditions, i.e., the matrix

Ah =
1

h4



5 −4 1
−4 6 −4 1 �
1 −4 6 −4 1

. . . . . . . . . . . .
. . . . . . . . . . . .

1 −4 6 −4 1
� 1 −4 6 −4

1 −4 5


. (5.84)

Derive an expression for the asymptotic rate of convergence for the method of Jacobi, where D = 8
h4 I ,

applied to Ah as a function of the meshwidth h.
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Chapter 6

Multigrid Methods

Towards Optimality.

6.1 Introduction
In this chapter we introduce multigrid methods that are considered to be among the most efficient solution
techniques for systems of linear equations resulting from the discretization of PDEs. In these solution
methods the PDE background giving raise to the linear algebra problem is explicitly exploited. Their com-
putational efficiency stems from a divide and conquer approach that decomposes the iteration error into
frequency components and subsequently treats each component on its most appropriate scale of discretiza-
tion.

Study Goals In this chapter we aim at

• explaining that while basic iterative methods (BIMs) are effective in reducing the high frequency
component of the iteration error, the low frequency components impede the fast convergence of
these methods. These low frequency error components are slowly varying grid vectors;

• explaining that slowly varying error grid vectors can be transferred to a coarser grid without essen-
tial loss of information and that this allows to construct defect correction (DC) type iteration that
effectively reduces low frequency error components;

• explaining how a basic iterative method can be combined with defect correction to arrive at a two
grid (TG) cycle that effectively reduces all frequency components of the error, i.e., explaining that
TG = BIM + DC;

• explaining that computational efficiency requires to call the the two grid cycle recursively giving
raise to different types of genuine multigrid cycles (MG);

• gives evidence of the distinct characteristic of the convergence of a multigrid cycle, namely its h-
independent convergence and how this characteristic translates into computational efficiency.

6.2 Basic Iterative Methods Act as Smoothers
In this section we revisit the convergence of BIMs applied to the discrete Poisson equation and reveal what
causes their slow convergence. We recall some facts from previous chapters. To this end we consider
solving the linear system

Ahuh = fh (6.1)

resulting from the finite difference discretization of model problem MP-1 in either one or two dimensions.
The eigenvalues and eigenvectors of the system matrix Ah are derived in Chapter 3. The eigenmodes
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can be subdivided into low and high frequency modes. The low frequency modes are slowly varying grid
vectors that correspond to the small eigenvalues of Ah ∈ Rn×n. We more precisely have that in one
and two dimension the low frequency modes are the eigenvectors vh,[k] for 1 ≤ k ≤ n/2 and vh,[k`]

for 1 ≤ k, ` ≤ n/2, respectively. The remaining eigenmodes are called the high frequency modes and
correspond to oscillatory grid vectors.

We consider solving (6.1) using Jacobi’s method. Let us denote the matrices Dh = diag(Ah), Nh =
Mh−Ah,BhJAC = I−(Mh)−1Ah and the vector sh = (Mh)−1fh. Jacobi’s method produces a sequence
of iterands uh,k+1 given by

uh,k+1 = BhJACu
h,k + sh . (6.2)

In our notation we will drop the upper index h in case there in which the meaning is clear from the context.
The stencil representation of the iteration matrix is given by (5.21) in one dimension and by (5.22) in
two dimensions. These stencils show that a single iteration ek+1 = BJACe

k amounts to replacing a
single component of the error by an arithmetic average of its neighbors. We indeed have that ek+1

i =
(eki−1 + eki+1)/2 in 1D and ek+1

ij = (ek(i−1)j + ek(i+1)j + eki(j−1) + eki(j+1))/4 in 2D. If therefore the error
ek is only a slowly varying grid vector (constant for instance), applying B to it will hardy change its shape
or amplitude. Only if ek is an oscillatory grid vector, the above averaging procedure will have an apparent
effect.

To formalise these ideas, we consider solving (6.1) in 1D using a damped Jacobi method with corre-
sponding iteration matrix BhJAC(ω) defined by (5.31). Theorem 5.5.2 then show that the matrices Ah and
BhJAC(ω) share their eigenvectors and that the eigenvalues of BhJAC(ω) are given by

λk(BhJAC(ω)) = 1− ωh
2

2
λk(Ah) = 1− ω [1− cos(πhk)] . (6.3)

These eigenvalues are plotted for n = 32 as a function of k in Figure 6.1 for three values of ω. This figure
shows that for all values of ω the spectral radius ρ(BhJAC(ω)) is given by the eigenvalue corresponding to
the lowest frequency mode k = 1. It also shows that for ω = 2/3:

• the eigenvalues λk(BhJAC(2/3)) for 1 ≤ k ≤ n/2 corresponding to low frequency modes are close
to 1;

• the eigenvalues λk(BhJAC(2/3)) for n/2 < k ≤ n corresponding to high frequency modes are close
to 0.

We use this information to reconsider the argument made in Subsection 5.5.1 on how the iteration error
evolves according to ek = BkJACe

0. To this end we set first the initial error e0 equal to particular eigen-
modes vh,[k] of BJAC . The analysis of Subsection 5.5.1 shows that the low frequency modes have a
damping factor close to 1 and are thus slow to converge while high frequency modes have a small damping
factor and are thus fast to converge. This is illustrated in Figure 6.2 in which three iterations of damped
Jacobi are applied to different eigenmodes. Subsequently we set the initial error e0 equal to a grid vector
made up from both low and high frequency components. In this case the analysis of Subsection 5.5.1 shows
that damped Jacobi acts as a low-pass filter that effectively reduces the high frequency components of the
error while leaving the low frequency error components virtually unchanged. Figure 6.3 indeed shows that
the error becomes slowly varying while its amplitude is hardly affected. Stated differently, damped Jacobi
acts as a smoother.

The argument given above for the damped Jacobi method for a one-dimensional problem carries over
to higher dimensions and to other BIMs such as the Gauss-Seidel and SOR(ω) methods. The smoothing
property of the lexicographic Gauss-Seidel method in two-dimensions e.g. is illustrated in Figure 6.4. The
smoothing property of BIMs is the first of two ingredients of multigrid methods.

6.2.1 Smoothing Analysis
The above discussion does not address the issue of optimality in reducing the high-frequency error com-
ponents. This optimality can be achieved either by choosing the most suitable damping parameter in the
damped Jacobi method or by switching to another BIM. Understanding these alternatives in order to find
the best possible smoother is the subject of the so-called smoothing analysis of multigrid methods.
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Figure 6.1: Smoothing behaviour of the damped Jacobi method for n = 32 and various values of ω.

6.3 Using Coarser Grids
The above reasoning motivates the use of coarser grids in solving the linear system (6.1). Indeed

• as a coarser grid contains less degrees of freedom, a BIM is cheaper to apply. On a mesh with a
wider grid spacing, a BIM is furthermore faster to converge asymptotically. It might therefore be ad-
vantageous to use coarser grids either to generate good initial guesses or to use them in intermediate
stages of computations on the fine grid;

• as smooth grid vectors can be transfered to a coarser grid without essential loss of information, a
cheap to compute approximation of the error on the coarse grid can be attempted for;

• as smooth grid vectors appear as again oscillatory on coarser grids, a BIM will be effective in remov-
ing the high frequency components of the error.

The use of coarser grids requires both the transfer on grid vectors between grids of different mesh widths
as well as the equivalent the coarse grid equivalent AH of the fine grid operator Ah. These two topics will
be treated in the next two sections.

6.4 Intergrid Transfer Operators
Intergrid transfer operators assure the transfer of vectors between grids of different size. In the discussion
that follows we will consider the domain Ω = (0, 1) × (0, 1) to be discretized by two uniform grids of
meshwidth h and 2h. We denote the set of fine and coarse grid by Gh and GH and their number of
elements by nh and n2h, respectively. As GH ⊂ Gh, we can partition Gh according to Gh = GH ∪GcH ,
where GcH is the complement of GH in Gh.

Restriction The restriction operator denoted by I2h
h (symbols to be read from bottom to top) transfers

grid vectors from the fine (Gh) to coarse (GH ) grids, i.e.,

I2h
h : uh ∈ Rnh → u2h = I2h

h uh ∈ Rn2h . (6.4)
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We distinguish several variants. The injection operator has a stencil given by

I2h
h =

 0 0 0
0 1 0
0 0 0

2h

h

. (6.5)

The half injection operator has a stencil given by

I2h
h =

 0 0 0
0 1/2 0
0 0 0

2h

h

. (6.6)

The full weighting restriction operator performs a weighted averaging of the fine grid nodes. Its stencil is
given by

I2h
h =

1

16

 1 2 1
2 4 2
1 2 1

2h

h

. (6.7)

In this notation the entry in the center corresponds to a coarse grid node that receives weight from itself
and from its nearest neighbors on the fine grid. Using a lexicographic ordering of the grid nodes as before,
the restriction operator can be assembled into a rectangular n2h × nh matrix with full row rank.

Interpolation The interpolation operator Ih2h transfers grid vectors from the coarse to the fine grid, i.e.,

Ih2h : u2h ∈ Rn2h → uh = Ih2hu
2h ∈ Rnh . (6.8)

In the bilinear interpolation data is transformed using the identity operator from GH to Gh and from GH
to GcH using averaging from its (two or four) nearest neighbours. Its stencil is given by

Ih2h =
1

4

 1 2 1
2 4 2
1 2 1

h
2h

. (6.9)

in this notation the entry in the center corresponds to a coarse grid node that gives its weight to itself
and from its nearest neighbors on the fine grid. Using a lexicographic ordering of the grid nodes, the
interpolation operator can be represented by a rectangular nh × n2h matrix with full column rank. The
bilinear interpolation and the full weighting restriction are related by the variational condition that says
that

Ih2h = 4(I2h
h )T , (6.10)

which is useful in theoretical considerations.

6.5 Coarse grid operator
The coarse grid equivalent A2h of the fine grid matrix Ah can be built in two ways.

Rediscretization In the rediscretization approach the matrix A2h is obtained on the coarse mesh in the
same way that the matrixAh is obtained on the fine mesh. In this wayA2h is a five-point discrete Laplacian
with all the properties given in Chapter 3.

91



Galerkin Coarsening In the Galerkin approach the matrix A2h is constructed algebraically using the
relation

A2h = I2h
h AhIh2h , (6.11)

that is motivated by the residual equations on the coarse grid

A2he2h = r2h = I2h
h rh = I2h

h Aheh = I2h
h AhIh2he2h . (6.12)

Using Galerkin coarsening, the matrix A2h is SPD whenever Ah is (explain why). If Ah is the five-point
Laplacian and if I2h

h and Ih2h are the full weighting restriction and bilinear interpolation operators, then
A2h has a nine point stencil

A2h =
1

4h2

 −1/3 −1/3 −1/3
−1/3 8/3 −1/3
−1/3 −1/3 −1/3

 . (6.13)

The matrix A2h is then an irreducible K-matrix, and therefore an M-matrix.

6.6 Two Grid Method
We now have all ingredients to define an iterative two-grid method (TGM). We proceed as in the construc-
tion of the Symmetric SOR(ω) method and define a composite iteration step for the error ek in which this
time the action of a BIM acting as a smoothing is complemented with a defect-correction type iteration as
detailed in Section 5.7. In the latter the coarser grid operator A2h acts as the approximation Â to Ah. To
formalise this idea, the use of of the intergrid transfer operator is required. The resulting algorithm is called
the coarse grid correction (CGC) iteration and is described in Step 2 up to Step 6 in Algorithm 9. It can be
written as a stationary iterative scheme with iteration matrix BCGC given by

ek+1 = BCGCe
k where BCGC = Inh×nh − Ih2h (A2h)−1 I2h

h Ah . (6.14)

This iteration dampens the low frequency components of the error that are hardly affected by the smoother.
Let us denote the iteration matrix corresponding to the (damped Jacobi, Gauss-Seidel or other) smoother
and the number of times this matrix is applied by Sh and ν, respectively, i.e.,

ek+ν = (Sh)νek where Sh = Inh×nh − (Mh)−1Ah . (6.15)

This iteration can be written equivalently for the iterant uk+ν . The divide-and-conquer strategy is imple-
mented by defining the iteration matrix corresponding to the two-grid method as

ek+1 = BTGMek where BTGM (ν1, ν2) = (Sh)ν2BCGC(Sh)ν1 , (6.16)

where ν1 and ν2 represent the number of so-called pre and post-smoothing steps. The post-smoothing is
introduced as adding the correction term eh to the existing approximation ui+

1/3
h (cfr. Algorithm 9) may

introduce high frequency error components, a few post-smoothing steps are usually performed. It may also
assure that BTGM is symmetric is case that Ah is. The speed of convergence of this method is governed
by the spectral radius ρ(BTGM (ν1, ν2)).

6.7 Multigrid Method
The defect correction iteration replaces the fine grid linear system solve by the multiplication of a smoother
and a coarse grid solve with A2h as system matrix. This can somehow be compared with, given a natural
number n, replacing the computation of n factorial by the multiplication of n (the smoother) and n − 1
factorial (the coarse grid solve), i.e., n! = n · (n − 1)!. For large dimensions, solving the linear system
with AH as coefficient matrix can still be computationally expensive in the same way that computing n−1
factorial can be hard for large n. The idea therefore is to apply the two-grid idea to the A2h linear system
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Algorithm 9 A two-grid cycle

1 u
i+1/3
h = Sν1h uih + (Mh)−1fh ν1 presmoothing sweeps

2 rh = fh −Ahui+1/3
h residual computation

3 r2h = I2h
h rh restriction of the residual to G2h

4 e2h = (A2h)−1r2h exact determination of the error on G2h

5 eh = Ih2h e2h prolongation of the error to Gh
6 u

i+2/3
h = ui+

1/3
h + eh correction of the last solution iterate

7 ui+1
h = Sν2h u

i+2/3
h + (Mh)−1fh ν2 postsmoothing sweeps

and to continue this recursion until the coarse linear can be solved with negligible computational cost. This
can be viewed as the equivalent of computing n by n! = n · (n− 1) . . . 3 · 2 · 1 and gives raise to a genuine
multigrid method.

In a genuine multigrid cycle with iteration matrix BMGM a hierarchy of (more than two) grids of
different levels of accuracy is visited during a single iteration ek+1 = BMGMek. Depending on the order in
which the grids are visited during one multigrid iteration, one distinguishes different cycles types. Calling
the two-grid once or twice on each of the coarse grid results in the V -cycle and W -cycle, respectively. In
the F -cycle the sequence of grids is traversed as shown in Figure 6.5.

Multigrid methods are known to be optimal in the sense that the iteration matrix (6.16) can be bounded
in some norm by a constant smaller than one independent of the mesh size h. This implies that the multigrid
convergence is mesh size independent.
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(a) vh,[1] (b) Bvh,[1] (c) B3vh,[1]

(d) vh,[2] (e) Bvh,[2] (f) B3vh,[2]

(g) vh,[5] (h) Bvh,[5] (i) B3vh,[5]

(j) vh,[8] (k) Bvh,[8] (l) B3vh,[8]

Figure 6.2: Effect of doing 1 (middle column) and 3 (third column) damped Jacobi iterations on two low
(first and second row) and two high frequency (third and fourth row) eigenvectors.

(a) eh (b) Beh (c) B3eh

Figure 6.3: Effect of doing 1 (middle column) and 3 (third column) damped Jacobi iterations on linear
combination of low and high frequency error components.
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(b) Error after 5 iterations.
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(c) Error after 10 iterations.

Figure 6.4: Illustration of the smoothing property of the Gauss-Seidel iteration. Figure 6.4(a) shows the
initial error while Figure 6.4(b) and Figure 6.4(c) show the error after 5 and 10 iterations respectively.

(a) 4-grid V-cycle (b) 4-grid W-cycle (c) 4-grid F-cycle

Figure 6.5: Different multigrid cycles for a 4-grid method. = presmoothing, = postsmoothing, ◦ =
exact solution, \ = Restriction, / = Prolongation
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Chapter 7

Krylov Subspace Methods

7.1 Method for Systems with a Symmetric Positive Definite Matrix

7.1.1 Introduction
In the basic iterative methods we compute the iterates by the following recursion:

uk+1 = uk +M−1(f −Auk) = uk +M−1rk

Writing out the first steps of such a process we obtain:

u0,

u1 = u0 + (M−1r0),

u2 = u1 + (M−1r1) = u0 +M−1r0 +M−1(f −Au0 −AM−1r0),

= u0 + 2M−1r0 −M−1AM−1r0,

...

This implies that

uk ∈ u0 + span
{
M−1r0,M−1A(M−1r0), . . . , (M−1A)k−1(M−1r0)

}
.

The subspace Kk(A; r0) := span
{
r0, Ar0, . . . , Ak−1r0

}
is called the Krylov-space of dimension k cor-

responding to matrix A and initial residual r0. A uk calculated by a basic iterative method is an element of
u0 +Kk(M−1A;M−1r0).

In this chapter we shall describe the Conjugate Gradient method. This method minimises the error u− uk

in an adapted norm, without any information about the eigenvalues. In Section 7.1.4 we give theoretical
results concerning the convergence behaviour of the CG method. Since part of the convergence theory is
based on the Chebyshev method, we describe this method in Section 7.1.2

7.1.2 The Chebyshev method
A method to accelerate the convergence of a basic iterative method is the Chebyshev method. Sup-
pose u1, . . . ,uk have been obtained via a basic iterative method, and we wish to determine coefficients
γj(k), j = 0, . . . , k such that

yk =

k∑
j=0

γj(k)uj (7.1)

is an improvement of uk. If u0 = . . . = uk = u, then it is reasonable to insist that yk = u. Hence we
require

k∑
j=0

γj(k) = 1, (7.2)
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and consider how to choose the γj(k) so that the error yk − u is minimized. It follows that ek = Bke0

where ek = uk − u. This implies that

yk − u =

k∑
j=0

γj(k)(uj − u) =

k∑
j=0

γj(k)Bje0. (7.3)

Using the 2-norm we look for γj(k) such that ‖yk−u‖2 is minimal. To simplify this minimisation problem
we use the following inequality:

‖yk − u‖2 ≤ ‖pk(B)‖2‖u0 − u‖2 (7.4)

where pk(z) =
k∑
j=0

γj(k)zj and pk(1) = 1. We now try to minimise ‖pk(B)‖2 for all polynomials

satisfying pk(1) = 1. Another simplification is the assumption that B is symmetric with eigenvalues λi
that satisfy α ≤ λn ≤ . . . ≤ λ1 ≤ β < 1. Using these assumptions we see that

‖pk(B)‖2 = max
λi
|pk(λi)| ≤ max

α≤λ≤β
|pk(λ)|.

So to make the norm of pk(B) small we need a polynomial pk(z) that is small on [α, β] subject to the
constraint that pk(1) = 1. This is a minimisation problem of polynomials on the real axis. The solution
of this problem is obtained by Chebyshev polynomials. These polynomials cj(z) can be generated by the
following recursion

c0(z) = 1,
c1(z) = z,
cj(z) = 2zcj−1(z)− cj−2(z).

These polynomials satisfy |cj(z)| ≤ 1 on [−1, 1] but grow rapidly in magnitude outside this interval. As a
consequence the polynomial

pk(z) =
ck

(
−1 + 2 z−αβ−α

)
ck

(
1 + 2 1−β

β−α

)
satisfies pk(1) = 1, since −1 + 2 1−α

β−α = 1 + 2 1−β
β−α , and tends to be small on [α, β]. The last property can

be explained by the fact that

−1 ≤ −1 + 2
z − α
β − α

≤ 1 for z ∈ [α, β] so the

numerator is less than 1 in absolute value, whereas the denominator is large in absolute value since 1 +
2 1−β
β−α > 1. This polynomial combined with (7.4) leads to

‖yk − u‖2 ≤
‖u− u0‖2

|ck
(

1 + 2 1−β
β−α

)
|
. (7.5)

Calculation of the approximation yk by formula (7.1) costs much time and memory, since all the vectors
u0, . . . ,uk should be kept in memory. Furthermore, to calculate yk one needs to add k+ 1 vectors, which
for the model problem costs for k ≥ 5 more work than one matrix vector product. Using the recursion of
the Chebyshev polynomials it is possible to derive a three term recurrence among the yk. It can be shown
that the vectors yk can be calculated as follows:

y0 = u0

solve z0 from Mz0 = f −Ay0 then y1 is given by

y1 = y0 + 2
2−α−β z

0
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solve zk from Mzk = f −Ayk then y(k+1) is given by

y(k+1) =
4− 2β − 2α

β − α

ck

(
1 + 2 1−β

β−α

)
ck+1

(
1 + 2 1−β

β−α

) (yk − y(k−1) +
2

2− α− β
zk
)

+ y(k−1) .

We refer to this scheme as the Chebyshev semi-iterative method associated withMy(k+1) = (M−A)yk+
f . Note that only 4 vectors are needed in memory and the extra work consists of the addition of 4 vectors.
In order that the acceleration is effective it is necessary to have good lower and upper bounds of α and β.
These parameters may be difficult to obtain. Chebyshev semi-iterative methods are extensively analysed in
[75], [28] and [34].

In deriving the Chebyshev acceleration we assumed that the iteration matrix M−1(M − A) is sym-
metric. Thus our simple analysis does not apply to the SOR iteration matrix M−1

ω (Mω − A) because this
matrix is not symmetric. To repair this Symmetric SOR (SSOR) is proposed. In SSOR one SOR step is
followed by a backward SOR step. In this backward step the unknowns are updated in reversed order. For
further details see [26], Section 10.1.5.

Finally we present some theoretical results for the Chebyshev method 1. Suppose that the matrixM−1A
is symmetric and positive definite and that the eigenvalues µi are ordered as follows 0 < µ1 ≤ µ2 . . . ≤ µn.
It is then possible to prove the following theorem:

Theorem 7.1.1 If the Chebyshev method is applied and M−1A is symmetric positive definite then

‖yk − u‖2 ≤ 2

(√
K2(M−1A)− 1√
K2(M−1A) + 1

)k
‖u0 − u‖2.

Proof Since M−1A = M−1(M − (M − A)) = I −M−1(M − A) = I − B we see that the eigenvalues
satisfy the following relation:

µi = 1− λi or λi = 1− µi.
This combined with (7.5) leads to the inequality:

‖yk − u‖2 ≤
‖u− u0‖2

|ck
(

1 + 2 (1−(1−µ1))
(1−µ1)−(1−µn)

)
|
. (7.6)

So it remains to estimate the denominator. Note that

ck

(
1 +

2(1− (1− µ1))

(1− µ1)− (1− µn)

)
= ck

(
µn + µ1

µn − µ1

)
= ck

(
1 + µ1

µn

1− µ1

µn

)
.

The Chebyshev polynomial can also be given by

ck(z) =
1

2

{(
z +

√
z2 − 1

)k
+
(
z −

√
z2 − 1

)k}
[3], p. 180.

This expression can be used to show that

ck

(
1+

µ1
µn

1− µ1
µn

)
> 1

2

(
1+

µ1
µn

1− µ1
µn

+

√(
1+

µ1
µn

1− µ1
µn

)2

− 1

)k
=

= 1
2

(
1+

µ1
µn

+2
√

µ1
µn

1− µ1
µn

)k
= 1

2

(
1+

√
µ1
µn

1−
√

µ1
µn

)k
.

(7.7)

The condition number K2(M−1A) is equal to µn
µ1

. Together with (7.6) and (7.7) this leads to

‖yk − u‖2 ≤ 2

(√
K2(M−1A)− 1√
K2(M−1A) + 1

)k
‖u0 − u‖2.

1These results are used to analyse the converge behaviour of other iterative methods
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2

Chebyshev type methods which are applicable to a wider range of matrices are given in the literature.
In [43] a Chebyshev method is given for matrices with the property that their eigenvalues are contained
in an ellipse in the complex plane, and the origin is no element of this ellipse. For a general theory of
semi-iterative methods of Chebyshev type we refer to [14].

7.1.3 The Conjugate Gradient (CG) method
In this section we assume that M = I , and u0 = 0 so r0 = f . These assumptions are only needed to
facilitate the formula’s. They are not necessary for the CG method itself. Furthermore we assume that A
is symmetric (A = AT ) and positive definite (uTAu > 0 for u 6= 0). This condition is crucial for the
derivation and success of the CG method. Later on we shall derive extensions to non-symmetric matrices.

The first idea would be to construct a vector uk ∈ Kk(A, r0) such that ‖u−uk‖2 is minimal. The first
iterate u1 can be written as u1 = α0r

0 where α0 is a constant which has to be chosen such that ‖u−u1‖2
is minimal. This leads to

‖u− u1‖22 = (u− α0r
0)T (u− α0r

0) = uTu− 2α0(r0)Tu + α2
0(r0)T r0 . (7.8)

The norm given in (7.8) is minimized if α0 =
(r0)Tu

(r0)T r0 . Since u is unknown this choice cannot be de-

termined, so this idea does not lead to a useful method. Note that Au = f is known so using an adapted
inner product implying A could lead to an α0 which is easy to calculate. To follow this idea we define the
following inner product and related norm.

Definition
The A-inner product is defined by (y, z)A = yTAz, and the A-norm by

‖y‖A =
√

(y,y)A =
√
yTAy.

It is easy to show that if A is an SPD matrix, (., .)A and ‖.‖A satisfy the rules for inner product and norm,
respectively. In order to obtain u1 such that ‖u− u1‖A is minimal we note that

‖u− u1‖2A = uTAu− 2α0(r0)TAu + α2
0 (r0)TAr0,

so α0 =
(r0)TAu

(r0)TAr0 =
(r0)T f

(r0)TAr0 . We see that this new inner product leads to a minimisation problem,

which can easily be solved. In the following iterations, we compute uk such that

‖u− uk‖A = min
y∈Kk(A;r0)

‖u− y‖A (7.9)

The solution of this minimisation problem leads to the Conjugate Gradient method 2. First we specify the
CG method, thereafter we summarise some of its properties.

2for another explanation see: http://www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.pdf
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Conjugate Gradient method

u0 = 0 ; r0 = f initialisation
for k = 1, 2, . . . do k is the iteration number

if k = 1 do
p1 = r0

else

βk =
(rk−1)Trk−1

(rk−2)Trk−2
pk is the search direction vector

pk = rk−1 + βkp
k−1 to update uk−1 to uk

end if

αk =
(rk−1)Trk−1

(pk)TApk

uk = uk−1 + αkp
k update iterate

rk = rk−1 − αkApk update residual
end for

The first description of this algorithm is given in [35]. Besides the two vectors uk, rk and matrix A, only
one extra vector pk should be stored in memory. Note that the vectors from a previous iteration can be
overwritten. One iteration of CG costs one matrix vector product and 10 N flops for vector calculations.
If the CG algorithm is used in a practical application the termination criterion should be replaced by one
of the criteria given in Section 5.6.3. In this algorithm rk is computed from rk−1 by the equation rk =
rk−1 − αkApk. This is done in order to save one matrix vector product for the original calculation rk =
f−Auk per iteration. In some applications the updated residual obtained from the CG algorithm can deviate
significantly from the exact residual f −Auk due to rounding errors. It is therefore strongly recommended
to recompute f − Auk after the termination criterion is satisfied for the updated residual and compare the
norm of the exact and updated residual. If the exact residual does no satisfy the termination criterion the
CG method should be restarted with uk as its starting vector.

The vectors defined in the CG method have the following properties:

Theorem 7.1.2

1. span
{
p1, . . . ,pk

}
= span

{
r0, . . . , rk−1

}
= Kk(A; r0), (7.10)

2. (rj)T ri = 0 i = 0, . . . , j − 1 ; j = 1, . . . , k , (7.11)
3. (rj)Tpi = 0 i = 1, . . . , j ; j = 1, . . . , k , (7.12)
4. (pj)TApi = 0 i = 1, . . . , j − 1 ; j = 2, . . . , k (7.13)
5. ‖u− uk‖A = min

y∈Kk(A;r0)
‖u− y‖A. (7.14)

Proof: see [26], Section 10.2.

Some remarks on the properties given in Theorem 7.1.2 are:

- It follows from (7.10) and (7.11) that the vectors r0, . . . , rk−1 form an orthogonal basis ofKk(A; r0).

- In theory the CG method is a finite method. Assume that u ∈ RN . After N iterations the Krylov
subspace is identical to RN . Since ‖u−y‖A is minimized overKN (A; r0) = RN the norm should be
equal to zero and uN = u. However, in practice this property is never utilised for two reasons: firstly
in many applications N is very large so that it is not feasible to perform N iterations; secondly even
if N is small, rounding errors can spoil the results such that the properties given in Theorem 7.1.2
do not hold for the computed vectors.

- The sequence ‖u− uk‖A is theoretically monotonically decreasing, so

‖u− uk+1‖A ≤ ‖u− uk‖A .
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This follows from (7.14) and the fact that Kk(A; r0) ⊂ Kk+1(A; r0). In practice, ‖u−uk‖A is not
easily computed since u is unknown. The norm of the residual is given by ‖rk‖2 = ‖u− uk‖ATA.
This sequence ‖rk‖2 is not necessarily monotonically decreasing. In applications it may occur that
‖rk+1‖2 is larger than ‖rk‖2. This does not mean that the CG process becomes divergent. The
inequality

‖rk‖2 = ‖Auk − f‖2 ≤
√
‖A‖2‖u− uk‖A

shows that ‖rk‖2 is less than the monotonically decreasing sequence√
‖A‖2‖u− uk‖A, so after some iterations the norm of the residual decreases again.

- The search direction vector pj is A-orthogonal or A-conjugate to all pi with index i less than j.
This is the motivation for the name of the method: the search directions or gradients of the updates
are mutually conjugate.

- In the algorithm we see two ratios, one in calculating βk and the other one for αk. If the denominator
is equal to zero, the CG method breaks down. With respect to βk this implies that (rk−2)T rk−2 = 0,
which implies rk−2 = 0 and thus u = uk−2. The linear system is solved. The denominator of αk is
zero if (pk)TApk = 0, so if pk = 0. Using property (7.10) this implies that rk−1 = 0 so, again, the
problem is already solved.
The conclusion is that if the matrix A satisfies Condition 2.1.2 then the CG method is robust.

In the following chapter we shall give CG type methods for more general matrices A, but first we shall ex-
tend the SPD property in such a way that also singular matrices are permitted. If the matrix A is symmetric
and positive semi definite (xTAx ≥ 0) (SPSD) the CG method can be used to solve the linear system
Au = f , provided f is an element of the column space of A (range(A)). This is a natural condition because
if it does not hold there would be no vector u such that Au = f . For further details and references see [38].

7.1.4 The Convergence Behaviour of the CG Method
An important topic is the rate of convergence of the CG method. The optimality property enables one to
obtain easy to calculate upper bounds of the distance between the kth iterate and the exact solution.

Theorem 7.1.3 The iterates uk obtained from the CG algorithm satisfy the following inequality:

‖u− uk‖A ≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k
‖u− u0‖A. (7.15)

Proof
We shall only give a sketch of the proof. It is easily seen that u − uk can be written as a polynomial, say
pk(A) with pk(0) = 1, times the initial residual

‖u− uk‖A = ‖pk(A)(u− u0)‖A.

Due to the minimisation property every other polynomial p̃k(A) with p̃k(0) = 1 does not decrease the error
measured in the A-norm:

‖u− uk‖A ≤ ‖p̃k(A)(u− u0)‖A.

The right-hand side can be written as

‖p̃k(A)(u− u0)‖A = ‖p̃k(A)
√
A(u− u0)‖2 ≤ ‖p̃k(A)‖2‖

√
A(u− u0)‖2 = ‖p̃k(A)‖2‖u− u0‖A

Taking p̃k(A) equal to the Chebyshev polynomial (see, for example, [26]) gives the desired result. 2

Note that the rate of convergence of CG is comparable to that of the Chebyshev method, however it is not
necessary to estimate or calculate eigenvalues of the matrixA. Furthermore increasing diagonal dominance
leads to a better rate of convergence.
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Initially, the CG method was not popular. The reason for this is that the convergence can be slow for sys-
tems where the condition number κ2(A) is very large. On the other hand the fact that the solution is found
in N iterations is also not useful in practice, as N may be very large, and the property does not hold in the
presence of rounding errors. To illustrate this we consider the following classical example:

Example 7.1.4.1 The linear system Au = f is to be solved where N = 40 and f = (1, 0, . . . , 0)T . The
matrix A is given by

A =



5 −4 1
−4 6 −4 1 �

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
1 −4 6 −4 1

� 1 −4 6 −4
1 −4 5


.

This can be interpreted as a finite difference discretization of the bending beam equation:
u′′′′ = f . The eigenvalues of this matrix are given by:

λk = 16sin4 kπ

82
k = 1, . . . , 40.

The matrix A is symmetric positive definite, so the CG method can be used to solve the linear system. The
condition number of A is approximately equal to (82/π)

4. The resulting rate of convergence given by√
κ2(A)− 1√
κ2(A) + 1

∼= 0.997

is close to one. This explains a slow convergence of the CG method for the first iterations. However after
40 iterations the solution should be obtained. In Figure 7.1 the convergence behaviour is given where the
rounding error is equal to 10−16, [23].
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Figure 7.1: The convergence behaviour of CG.
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This example suggests that CG has only a restricted range of applicability. This idea changed, however,
completely after the publication of [52]. Herein it has been shown that the CG method can be very useful
for a class of linear systems, not as a direct method, but as an iterative method. The problem class orig-
inates from discretized partial differential equations. It appears that it is not the size of the matrix that is
important for convergence but rather the extreme eigenvalues of A.

One of the results which is based on the extreme eigenvalues is given in Theorem 7.1.3. Inequality (7.15)
is an upper bound for the error of the CG iterates, and suggests that the CG method is a linearly convergent
process (see Figure 7.2). However, in practice the convergence behaviour looks like the one given in Fig-
ure 7.3. This is called superlinear convergence behaviour. So, the upper bound is only sharp for the initial
iterates. It seems that after some iterations the condition number in Theorem 7.1.3 is replaced by a smaller
condition number. To illustrate this we give the following example:

log  || x   - x || A

i

i

Figure 7.2: A linear convergent behaviour

A
log  || x   - x ||

i

i

Figure 7.3: A superlinear convergent behaviour

Example 7.1.4.2 The matrix A is from the discretized Poisson operator. The physical domain is a two-
dimensional unit square. The grid used consists of an equidistant distribution of 30 × 30 grid points. The
dimension of A is equal to 900 and the eigenvalues are given by

λk,` = 4− 2cos
πk

31
− 2cos

π`

31
, 1 ≤ k, ` ≤ 30.

Using Theorem 7.1.3 it appears that 280 iterations are necessary to ensure that

‖u− ui‖A
‖u− u0‖A

≤ 10−12.

Computing the solution it appears that the CG iterates satisfy the given termination criterion after 120
iterations. So, for this example the estimate given in Theorem 7.1.3 is not sharp.

To obtain a better insight in the convergence behaviour we have a closer look at the CG method. We have
seen that CG minimises ‖u−uk‖A over the Krylov subspace. This can also be seen as the construction of
a polynomial pk with degree k such that pk(0) = 1 such that

‖u− uk‖A = ‖pk(A)(u− u0)‖A = min
p̃k,

p̃k(0) = 1

‖p̃k(A)(u− u0)‖A .
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Suppose that the orthonormal eigensystem of A is given by:
{
λj ,y

j
}
j=1,...,N

where
Ayj = λjy

j , λj ∈ R, ‖yj‖2 = 1, (yj)Tyi = 0, j 6= i, and 0 < λ1 ≤ λ2 . . . ≤ λN . The initial errors can

be written as u− u0 =
N∑
j=1

γjy
j , which implies that

u− uk =

N∑
j=1

γjpk(λj)y
j . (7.16)

If for instance λ1 = λ2 and γ1 6= 0 and γ2 6= 0 it is always possible to change y1 and y2 into ỹ1 and ỹ2

such that γ̃1 6= 0 but γ̃2 = 0. This, in combination with equation (7.16), implies that if pk(λj) = 0 for all
different λj then uk = u. So if there are only m < N different eigenvalues the CG method stops at most
after m iterations. Furthermore, the upper bound given in Theorem 7.1.3 can be sharpened.

Remark 1.4.1 For a given linear system Au = f and a given u0 (note that u − u0 =
N∑
j=1

γjy
j) the

quantities α and β are defined by:
α = min {λj |γj 6= 0} ,
β = max {λj |γj 6= 0} .

It is easy to show that the following inequality holds:

‖u− uk‖A ≤ 2


√

β
α − 1√
β
α + 1

k

‖u− u0‖A. (7.17)

The ratio β
α is called the effective condition number of A.

It follows from Theorem 7.1.2 that r0, . . . , rk−1 form an orthogonal basis forKk(A; r0). Then, the vectors
r̃i = ri/‖ri‖2 form an orthonormal basis for Kk(A; r0). We define the following matrices

Rk ∈ RN×k and the jth column of Rk is r̃j ,
Tk = RTkARk where Tk ∈ Rk×k.

Ritz matrix Tk can be seen as the projection of A on Kk(A; r0). It follows from Theorem 7.1.2 that Tk is
a tridiagonal symmetric matrix. The coefficients of Tk can be calculated from the αi’s and βi’s of the CG
process. The eigenvalues θi of the matrix Tk are called Ritz values of A with respect to Kk(A; r0). If zi is
an eigenvector of Tk so that Tkzi = θiz

i and ‖zi‖2 = 1 then Rk zi is called a Ritz vector of A. Ritz values
and Ritz vectors are approximations of the eigenvalues and eigenvectors of A and play an important role in
a better understanding of the convergence behaviour of CG. Some important properties are:

- the rate of convergence of a Ritz value to its limit eigenvalue depends on the distance of this eigen-
value to the rest of the spectrum.

- in general the extreme Ritz values converge fastest and their limits are α and β.

In practical experiments we see that, if Ritz values approximate the extreme eigenvalues of A, then the rate
of convergence appears to be based on a smaller effective condition number (the extreme eigenvalues seem
to be absent). We first give an heuristic explanation. Thereafter an exact result from the literature is cited.

From Theorem 7.1.2 it follows that rk = A(u − uk) is perpendicular to the Krylov subspace Kk(A; r0).
If a Ritz vector is a good approximation of an eigenvector yj of A this eigenvector is “nearly” contained in
the subspaceKk(A; r0). These observations combined yield that (A(u−uk))Tyj ∼= 0. The exact solution
and the approximation can be written as

u =

N∑
i=1

(uTyi)yi and uk =

N∑
i=1

((uk)Tyi)yi.
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From (A(u−uk))Tyj = (u−uk)Tλjy
j ∼= 0 it follows that uTyj ∼= (uk)Tyj . So the error u−uk has a

negligible component in the eigenvector yj . This suggests that λj does no longer influence the convergence
of the CG process.

For a more precise result we define a comparison process. The iterates of this process are comparable to
that of the original process, but its condition number is less than that of the original process.

Definition
Let uk be the k-th iterate of the CG process for Au = f . For a given integer k let uj denote the j-th
iterate of the comparison CG process for this equation, starting with u0 such that u− u0 is the projection
of u− uk onto span

{
y2, . . . ,yN

}
.

Note that for the comparison process the initial error has no component in the y1 eigenvector.

Theorem 7.1.4 Let uk be the k-th iterate of CG, and uj the j-th iterate of the comparison process. Then
for any j there holds:

‖u− uk+j‖A ≤ Fk‖u− uj‖A ≤ Fk
‖u− uj‖A
‖u− u0‖A

‖u− uk‖A

with Fk =
θk1
λ1

max
i≥2

|λi − λ1|
|λi − θk1 |

, where θk1 is the smallest Ritz value in the k-th step of the CG process.

Proof: see [69], Theorem 7.1.2.

The theorem shows that from any stage k for which θk1 does not coincide with an eigenvalue λk, the error
reduction in the next j steps is at most a fixed factor Fk worse than the error reduction in the first j steps
of the comparison process in which the error vector has no y1-component. As an example we consider the
case that λ1 < θk1 < λ2 we then have

Fk =
θk1
λ1

λ2 − λ1

λ2 − θk1
,

which is a kind of relative convergence measure for θk1 relative to λ1 and λ2 − λ1. If θk1−λ1

λ1
< 0.1 and

θk1−λ1

λ2−λ1
< 0.1 then we have Fk < 1.25. Hence, already for this modest degree of convergence of θk1 the

process virtually converges as well as the comparison process (as if the y1-component was not present).
For more general results and experiments we refer to [69].
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7.1.5 Exercises
Exercise 7.1.1 Show that (y, z)A = yTAz is an inner product if A is symmetric and positive definite.

Exercise 7.1.2 Give the proof of inequality (7.17).

Exercise 7.1.3 Two properties of A-orthogonal sets are proved.

a) Show that an A-orthogonal set of nonzero vectors associated with a symmetric and positive definite
matrix is linearly independent.

b) Show that if {v1,v2, . . . ,vN} is a set of A-orthogonal vectors in RN and zTvi = 0 for i =
1, . . . , N then z = 0.

Exercise 7.1.4 Define

tk =
(vk)T (f −Auk−1)

(vk)TAvk

and uk = uk−1 + tkv
k, then (rk,vj) = 0 for j = 1, . . . , k, if the vectors vj form an A-orthogonal set. To

prove this, use the following steps using mathematical induction:

a) Show that (r1,v1) = 0.
b) Assume that (rk,vj) = 0 for each k ≤ l and j = 1, . . . , k and show that this implies that

(rl+1,vj) = 0 for each j = 1, . . . , l.

c) Show that (rl+1,vl+1) = 0.

Exercise 7.1.5 Take A =

 1 0 0
0 1 0
0 0 2

 and f =

 2
1
−1

. We solve Au = f .

a) Show that Conjugate Gradients applied to this system should convergence in 1 or 2 iterations (using
the convergence theory).

b) Choose u0 =

 0
0
0

 and do 2 iterations with the Conjugate Gradient method.

Exercise 7.1.6 Suppose thatA is symmetric and indefinite. Give an example that shows that the Conjugate
Gradient method can break down.
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7.2 Preconditioning of Krylov Subspace Methods
We have seen that the convergence behaviour of Krylov subspace methods strongly depends on the eigen-
value distribution of the coefficient matrix. A preconditioner is a matrix that transforms the linear system
such that the transformed system has the same solution but the transformed coefficient matrix has a more
favourable spectrum. As an example we consider a matrix M which resembles the matrix A. The trans-
formed system is given by

M−1Au = M−1f ,

and has the same solution as the original system Au = f . The requirements on the matrix M are the
following:

- M should be SPD,

- the eigenvalues of M−1A should be clustered around 1,

- it should be possible to obtain M−1y at a low cost.

Most of this chapter contains preconditioners for symmetric positive definite systems (Section 7.2.1). For
non-symmetric systems the ideas are analogous. So, in Section 7.3.7 we give some details, which can be
used for non-symmetric systems.

7.2.1 The Preconditioned Conjugate Gradient (PCG) method
In Section 7.1.4 we observed that the rate of convergence of CG depends on the eigenvalues of A. Initially
the condition number λNλ1

determines the decrease of the error. After a number of iterations λN
λ1

is replaced
by the effective condition number λNλ2

etc. So the question arises, whether it is possible to change the linear
system Au = f in such a way that the eigenvalue distribution becomes more favourable with respect to the
CG convergence? This is indeed possible and the approach is known as: the preconditioning of a linear
system. Consider the N × N symmetric positive definite linear system Au = f . The idea behind Pre-
conditioned Conjugate Gradients is to apply the ”original” Conjugate Gradient method to the transformed
system

Ãũ = f̃ ,

where Ã = P−1AP−T , u = P−T ũ and f̃ = P−1f , and P is a nonsingular matrix. The matrixM defined
by M = PPT is called the preconditioner. The resulting algorithm can be rewritten in such a way that
only quantities without a ˜ tilde appear.
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Preconditioned Conjugate Gradient method
u0 = 0 ; r0 = f initialisation
for k = 1, 2, . . . do k is the iteration number

zk−1 = M−1rk−1 preconditioning
if k = 1 do
p1 = z0

else
βk = (rk−1)Tzk−1

(rk−2)Tzk−2 update of pk

pk = zk−1 + βkp
k−1

end if
αk = (rk−1)Tzk−1

(pk)TApk

uk = uk−1 + αkp
k update iterate

rk = rk−1 − αkApk update residual
end for

Observations and properties for this algorithm are:

- it can be shown that the residuals and search directions satisfy:

(rj)TM−1ri = 0 , i 6= j ,

(pj)T (P−1AP−T )pi = 0 , i 6= j .

- The denominators (rk−2)T zk−2 = (zk−2)TMzk−2 never vanish for rk−2 6= 0 because M is a
positive definite matrix.

With respect to the matrix P we have the following requirements:

- the multiplication of P−TP−1 by a vector should be cheap (comparable with a matrix vector product
usingA). Otherwise one iteration of PCG is much more expensive than one iteration of CG and hence
preconditioning leads to a more expensive algorithm.

- The matrix P−1AP−T should have a favourable distribution of the eigenvalues. It is easy to show
that the eigenvalues of P−1AP−T are the same as for P−TP−1A and AP−TP−1. So we can
choose one of these matrices to study the spectrum.

In order to give more details on the last requirement we note that the iterate uk obtained by PCG satisfies

uk ∈ u0 +Kk(P−TP−1A ; P−TP−1r0), and (7.18)

‖u− uk‖A ≤ 2

(√
κ2(P−1AP−T )− 1√
κ2(P−1AP−T ) + 1

)k
‖u− u0‖A . (7.19)

So a small condition number of P−1AP−T leads to fast convergence. Two extreme choices of P show the
possibilities of PCG. Choosing P = I we have the original CG method, whereas if PTP = A the iterate
u1 is equal to u so PCG converges in one iteration. For a classical paper on the success of PCG we refer to
[44]. In the following pages some typical preconditioners are discussed.

Diagonal scaling A simple choice for P is a diagonal matrix with diagonal elements pii =
√
aii. In [68]

it has been shown that this choice minimises the condition number of P−1AP−T if P is a diagonal matrix.
For this preconditioner it is advantageous to apply CG to Ãũ = f̃ . The reason is that P−1AP−T is easily
calculated. Furthermore diag (Ã) = 1 which saves n multiplications in the matrix vector product.
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Basic iterative method The basic iterative methods use a splitting of the matrix A = M − R. In
the beginning of Section 7.1.3 we showed that the k-th iterate yk from a basic method is an element of
u0 + Kk(M−1A,M−1r0). Using this matrix M in the PCG method we see that the iterate uk obtained
by PCG satisfies the following inequality:

‖u− uk‖A = min
z∈Kk(M−1A;M−1r0)

‖u− z‖A .

This implies that ‖u − uk‖A ≤ ‖u − yk‖A, so measured in the ‖ . ‖A norm the error of a PCG iterate is
less than the error of a corresponding result of a basic iterative method. The extra costs to compute a PCG
iterate with respect to the basic iterate are in general negligible. This leads to the notion that any basic
iterative method based on the splitting A = M −R can be accelerated by the Conjugate Gradient method
so long as M (the preconditioner) is symmetric and positive definite.

Incomplete decomposition This type of preconditioner is a combination of an iterative method and an
approximate direct method. As an illustration we use the model problem MP-1 in 2 dimensions. The
coefficient matrix of this problem A ∈ RN×N is a matrix with at most 5 nonzero elements per row.
Furthermore the matrix is symmetric and positive definite. The nonzero diagonals are numbered as follows:
m is number of grid points in the x-direction.

A =



a1 b1 c1
b1 a2 b2 c2
...

. . . . . . . . . ©/
c1 bm am+1 bm+1 cm+1

. . . ©/
. . . . . . . . . ©/

. . .
©/


(7.20)

An optimal choice with respect to convergence is to take a lower triangular matrix L and a diagonal matrix
D such that M = LD−1LT . However it is well known that the zero elements in the band of A become
non zero elements in the band of L. So the amount of work to construct L is large. With respect to memory
we note that A can be stored in 3N memory positions, whereas L needs m × N memory positions. For
large problems the memory requirements are not easily fulfilled.

If the Cholesky factor L is calculated one observes that the absolute value of the elements in the band of
L decreases considerably if the ”distance” to the non zero elements of A increases. The non zero elements
of L on positions where the elements of A are zero are called fill-in (elements). The observation of the
decrease of fill-in motivates to discard fill-in elements entirely, which leads to an incomplete Cholesky
decomposition of A. Since the Cholesky decomposition is very stable this is possible without break down
for a large class of matrices. The matrix of our model problem is an M -matrix. Furthermore, we give a
notation for the elements of L that should be kept to zero. The set of all pairs of indices of off-diagonal
matrix entries is denoted by

QN = {(i, j)| i 6= j , 1 ≤ i ≤ N , 1 ≤ j ≤ N } .

The subset Q of QN are the places (i, j) where L should be zero. Now the following theorem can be
proved:

Theorem 7.2.1 If A is a symmetric M -matrix, there exists for each Q ⊂ QN (with the property that
(i, j) ∈ Q implies (j, i) ∈ Q), a uniquely defined lower triangular matrix L and a symmetric nonnegative
matrix R with lij = 0 if (i, j) ∈ Q and rij = 0 if (i, j) ∈/Q, such that the splitting A = LD−1LT − R
leads to a convergent iterative process

LD−1LTuk+1 = Ruk + b for each choice u0 ,

where uk → u = A−1f .
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Proof (see [44]; p.151.)

After the matrix L is constructed it is used in the PCG algorithm. Note that in this algorithm multiplications
by L−1 and L−T are necessary. This is never done by forming L−1 or L−T . It is easy to see that L−1 is
a full matrix. If for instance one wants to calculate z = L−1r we compute z by solving the linear system
Lz = r. This is cheap sinceL is a lower triangular matrix so the forward substitution algorithm can be used.

Example 7.2.1.1 We consider the model problem and compute an incomplete Cholesky decomposition:
A = LD−1LT −R where the elements of the lower triangular matrix L and diagonal matrix D satisfy the
following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,

b) lii = dii,

c) (LD−1LT )ij = aij for all (i, j) where aij 6= 0 i ≥ j.

In this example Q0 = {(i, j)| |i− j| 6= 0, 1,m}. If the elements of L are given as follows:

L =



d1

b̃1 d2

. . .
. . . ©/

c̃1 b̃m dm+1

. . . ©/
. . .

. . .
©/


(7.21)

it is easy to see that (using the notation as given in (7.20))

di = ai −
b2i−1

di−1
− c2i−m
di−m

b̃i = bi
c̃i = ci

 i = 1, ..., N . (7.22)

where elements that are not defined are replaced by zeros. For this example the amount of work for
(LD−1LT )−1 times a vector is comparable to the work to compute A times a vector. The combination of
this incomplete Cholesky decomposition process with Conjugate Gradients is called the ICCG(0) method
([44]; p. 156). The 0 means that no extra diagonals are used for fill in. Note that this variant is very cheap
with respect to memory: only one extra vector to store D is needed.

Another successfull variant is obtained by a smaller set Q. In this variant the matrix L has three more
diagonals than the lower triangular part of the original matrix A. This preconditioning is obtained for the
choice

Q3 = {(i, j)| |i− j| 6= 0, 1, 2,m− 2,m− 1,m}
For the formula’s to obtain the decomposition we refer to ([44]; p. 156). This preconditioner combined
with PCG is known as the ICCG(3) method. A drawback is that all the elements of L are different from the
corresponding elements of A so 6 extra vectors are needed to store L in memory.

To give an idea of the power of the ICCG methods we have copied some results from [44].

Example 7.2.1.2 As a first example we consider the model problem, where the boundary conditions are
somewhat different:

∂u
∂x

(x, y) = 0 for
{
x = 0 , y ∈ [0, 1]
x = 1 , y ∈ [0, 1]

,

∂u
∂y

(x, y) = 0 for y = 1 , x ∈ [0, 1] ,

u(x, y) = 1 for y = 0 , x ∈ [0, 1] .
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The distribution of the grid points is equidistant with h = 1
31 . The results for CG, ICCG(0) and ICCG(3)

are plotted in Figure 7.4.

From inequality (7.19) it follows that the rate of convergence can be bounded by

ρ =

√
κ2(P−1AP−T )− 1√
κ2(P−1AP−T ) + 1

. (7.23)

To obtain a better insight in the fast convergence of ICCG(0) and ICCG(3) the eigenvalues ofA, (L0L
T
0 )−1A

and (L3L
T
3 )−1A are computed and given in Figure 7.5. For this result given in [44] a small matrix of order

n = 36 is used, so all eigenvalues can be calculated.
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Figure 7.4: The results for the CG, ICCG(0) and ICCG(3) methods, compared with SIP (Strongly Implicit
Procedure) and SLOR (Successive Line Over Relaxation method)

The eigenvalues as given in Figure 7.5 can be substituted in formula (7.23). We then obtain

ρ = 0.84 for CG ,
ρ = 0.53 for ICCG(0) ,
ρ = 0.23 for ICCG(3) ,

(7.24)

which explains the fast convergence of the PCG variants.

In our explanation of the convergence behaviour we have also used the notion of Ritz values. Applying
these ideas to the given methods we note the following:

- For CG the eigenvalues of A are more or less equidistantly distributed. So if a Ritz value has con-
verged we only expect a small decrease in the rate of convergence. This agrees with the results given
in Figure 7.4, the CG method has a linear convergent behaviour.

- For the PCG method the eigenvalue distribution is completely different. Looking to the spectrum
of (L3L

T
3 )−1A we see that λ36 = 0.446 is the smallest eigenvalue. The distance between λ36 and

the other eigenvalues is relatively large which implies that there is a fast convergence of the smallest
Ritz value to λ36. Furthermore, if the smallest Ritz value is a reasonable approximation of λ36

the effective condition number is much less than the original condition number. Thus superlinear
convergence is expected. This again agrees very well with the results given in Figure 7.4.
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Figure 7.5: The eigenvalues of A, (L0D
−1
0 LT0 )−1A and (L3D

−1
3 LT3 )−1A.

So, the faster convergence of ICCG(3) comes from a smaller condition number and a more favourable
distribution of the internal eigenvalues.

Finally, the influence of the order of the matrix on the number of iterations required to reach a certain
precision was checked for both ICCG(0) and ICCG(3). Therefore several uniform rectangular meshes have
been chosen, with mesh spacings varying from ∼ 1/10 up to ∼ 1/50. This resulted in linear systems
with matrices of order 100 up to about 2500. In each case it was determined how many iterations were
necessary, to reduce the∞ norm of the residual vector below some fixed small number ε. In Figure 7.6 the
number of iterations are plotted against the order of the matrices for ε = 10−2, ε = 10−6 and ε = 10−10.
It can be seen that the number of iterations, necessary to get the residual vector sufficiently small, increases
only slowly for increasing order of the matrix. The dependence of κ2(A) for this problem is O( 1

h2 ). For
ICCG preconditioning it can be shown that there is a cluster of large eigenvalues of (L0D

−1
0 LT0 )−1A in the

vicinity of 1, whereas the small eigenvalues are of order O(h2) and the gaps between them are relatively
large. So also for ICCG(0) the condition number isO( 1

h2 ). Faster convergence can be explained by the fact
that the constant in front of 1

h2 is less for the ICCG(0) preconditioned system than forA and the distribution
of the internal eigenvalues is much better. Therefore, superlinear convergence sets in after a small number
of iterations.

The success of the ICCG method has led to many variants. In the following we describe two of them
MICCG(0) given in [33] (MICCG means Modified ICCG) and RICCG(0) given in [4] (RICCG means
Relaxed ICCG).

MICCG In the MICCG method the MIC preconditioner is constructed by slightly adapted rules. Again
A is split as follows A = LD−1LT −R, where L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,

b) lii = dii,

c) rowsum (LD−1LT )=rowsum(A) for all rows and (LD−1LT )ij = aij for all (i, j) where aij 6=
0 i > j .

Consequence of c):LD−1LT

 1
...
1

 = A

 1
...
1

 so (LD−1LT )−1A

 1
...
1

 =

 1
...
1

. This means that if

Au = f and u and/or f are slowly varying vectors, this incomplete Cholesky decomposition is a very good
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approximation for the inverse of A with respect to u and/or f .
Using the same notation of L as given in (7.21) we obtain

di = ai − (bi−1 + ci−1)
bi−1

di−1
− (bi−m + ci−m)

ci−m
di−m

b̃i = bi
c̃i = ci

 i = 1, .., N (7.25)

It can be proved that for this preconditioning there is a cluster of small eigenvalues in the vicinity of 1 and
the largest eigenvalues are of order 1

h and have large gap ratio’s. So the condition number is O(1/h).

In many problems the initial iterations of MICCG(0) converge faster than ICCG(0). Thereafter for both
methods superlinear convergence sets in. Using MICCG the largest Ritz values are good approximations
of the largest eigenvalues of the preconditioned matrix. A drawback of MICCG is that due to rounding
errors components in eigenvectors related to large eigenvalues appear again after some iterations. This
deteriorates the rate of convergence. So if many iterations are needed ICCG can be better than MICCG.

In order to combine the advantages of both methods the RIC preconditioner is proposed in [4], which is
an average of the IC and MIC preconditioner. For the details we refer to [4]. Only the algorithm is given:
choose the average parameter α ∈ [0, 1] then di, b̃i and c̃i are given by:

di = ai − (bi−1 + αci−1) bi−1

di−1
− (αbi−m + ci−m) ci−mdi−m

b̃i = bi
c̃i = ci

 i = 1, ..., N (7.26)

However, the question how to choose α remains? In Figure 7.7 which is copied from [71] a typical conver-
gence behaviour as function of α is given. This motivates the choice α = 0.95, which leads to a very good
rate of convergence on a wide range of problems.
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Figure 7.7: Convergence in relation to α

Diagonal scaling The above given preconditioners IC, MIC and RIC can be optimised with respect to
work. One way is to look at the explicitly preconditioned system:

D1/2L−1AL−TD1/2y = D1/2L−1f (7.27)

Applying CG to this system one has to solve lower triangular systems of equations with matrix LD−1/2.
The main diagonal of this matrix is equal to D1/2. It saves time if we can change the system in such a way
that the main diagonal is equal to the identity matrix. One idea is to replace (7.27) by

D1/2L−1D1/2D−1/2AD−1/2D1/2L−TD1/2y = D1/2L−1D1/2D−1/2f .
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with Ã = D−1/2AD−1/2 , L̃ = D−1/2LD−1/2 and f̃ = D−1/2f we obtain

L̃−1ÃL̃−Ty = L̃f̃ . (7.28)

Note that L̃ii = 1 for i = 1, ..., N . PCG now is the application of CG to this preconditioned system.

Eisenstat implementation In this section we restrict ourselves to the IC(0), MIC(0) and RIC(0) precon-
ditioner. We have already noted that the amount of work of one PCG iteration is approximately twice as
large as for a CG iteration. In [15] it is shown that much of the extra work can be avoided. If CG is applied
to (7.28) products of the following form are calculated: vj+1 = L̃−1ÃL̃−Tvj . For the preconditioners
used, the off-diagonal part of L̃ is equal to the off-diagonal part of Ã. Using this we obtain:

vj+1 = L̃−1ÃL̃−Tvj = L̃−1(L̃+ Ã− L̃− L̃T + L̃T )L̃−Tvj (7.29)
= L̃−Tvj + L̃−1(vj + (diag (Ã)− 2I)L̃−Tvj)

So vj+1 can be calculated by a multiplication by L̃−T and L̃−1 and some vector operations. The saving
in CPU time is the time to calculate the product of A times a vector. Now one iteration of PCG costs
approximately the same as one iteration of CG.

General stencils In practical problems the stencils in finite element methods may be larger or more
irregularly distributed than in finite difference methods. The same type of preconditioners can be used.
However, there are some differences. We restrict ourselves to the IC(0) preconditioner. For the five point
stencil we see that the off-diagonal part of L is equal to the strictly lower triangular part of A. For general
stencils this property does not hold. Drawbacks are: All the elements of L should be stored, so the memory
requirements of PCG are twice as large as for CG. Furthermore, the Eisenstat implementation can no longer
be used. This motivates another preconditioner constructed by the following rules:

ICD (Incomplete Cholesky restricted to the Diagonal).
A is again splitted as A = LD−1LT −R and L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j

b) lii = dii, i = 1, ..., N

c) lij = aij for all (i, j) where aij 6= 0 i > j
(LD−1LT )ii = aii i = 1, ..., N .

This enables us to save memory (only the diagonalD should be stored) and CPU time (since now Eisenstat
implementation can be used) per iteration. For large problems the rate of convergence of ICD is worse than
for IC. Also MICD and RICD preconditioners can be given.
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7.2.2 Exercises
Exercise 7.2.1 Derive the preconditioned CG method using the CG method applied to Ãũ = f̃ .

Exercise 7.2.2 a) Show that the formula’s given in (7.22) are correct.
b) Show that the formula’s given in (7.25) are correct.

Exercise 7.2.3 a) Suppose that ai = 4 and bi = −1. Show that lim
i→∞

di = 2 +
√

3, where di is as

defined in (7.22).
b) Do the same for ai = 4, bi = −1 and ci = −1 with m = 10, and show that lim

i→∞
di = 2 +

√
2.

c) Prove that the LD−1LT decomposition (7.22) exists if ai = a, bi = b, ci = c and A is diagonally
dominant.

Exercise 7.2.4 A practical exercise
Use as test matrices:

[a, f ] = poisson(30, 30, 0, 0,′ central′)

a) Adapt the matlab cg algorithm such that preconditioning is included. Use a diagonal preconditioner
and compare the number of iterations with cg without preconditioner.

b) Use the formula’s given in (7.22) to obtain an incomplete LD−1LT decomposition of A. Make a
plot of the diagonal elements of D. Can you understand this plot?

c) Use the LD−1LT preconditioner in the method given in (a) and compare the convergence behaviour
with that of the diagonal preconditioner.
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7.3 Krylov Subspace Methods for General Matrices
In Section 7.1 we have discussed the Conjugate Gradient method. This Krylov subspace method can
only be used if the coefficient matrix is symmetric and positive definite (SPD). In this section we discuss
Krylov subspace methods for general matrices. For these matrices we consider various iterative methods.
It appears that there is no method which is the best for all cases. This is in contrast with the symmetric
positive definite case. In Section 7.3.6 we give some guidelines for choosing an appropriate method for a
given system of equations.

7.3.1 Iterative Methods for General Matrices
In this section we consider iterative methods to solve Au = f where the only requirement is that A ∈
RN×N is nonsingular. In the SPD case we have seen that CG has the following three nice properties:

- the approximation uk is an element of Kk(A; r0),

- optimality, the A-norm of the error is minimal,

- short recurrences, only the results of one foregoing step are necessary; work and memory do not
increase for an increasing number of iterations.

It has been shown in [18] that it is impossible to obtain a Krylov method, which has these properties for
general matrices. So either the method has an optimality property but long recurrences, or no optimality
and short recurrences, or it is not based on Kk(A; r0). Some surveys on general iteration methods have
been published: [7], [26] Section 10.4, [20], [55], [30], and [5].

It appears that there are essentially three different classes of methods to solve non-symmetric linear sys-
tems, while maintaining some kind of orthogonality between the residuals:

1. Solve the normal equations ATAu = AT f with Conjugate Gradients.

2. Construct a basis for the Krylov subspace by a 3-term bi-orthogonality relation.

3. Make all the residuals explicitly orthogonal in order to have an orthogonal basis for the Krylov
subspace.

These classes form the subject of the following sections. An introduction and comparison of these classes
is given in [45].

7.3.2 CG Applied to the Normal Equations
The first idea is to apply CG to the normal equations

ATAu = AT f , (7.30)

or
AATy = f with u = ATy. (7.31)

When A is nonsingular ATA is symmetric positive definite and CG can be used. This method is denoted
by the CGNR (Conjugate Gradient Normal Residual) method. All properties and theoretical results for
CG can be used. There are, however, some drawbacks. First of all, the rate of convergence now depends
on κ2(ATA) = κ2(A)2. In many applications κ2(A)2 is extremely large. Hence, the convergence of CG
applied to (7.30) is very slow. Another difference is that the convergence of CG applied toAu = f depends
on the eigenvalues of A whereas the convergence of CG applied to (7.30) depends on the eigenvalues of
ATA, which are equal to the singular values of A squared.

Per iteration a multiplication with A and AT are necessary, so the amount of work per iteration is approx-
imately two times as much as for the CG method. Furthermore, in several (FEM, parallel) applications
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Av is easily obtained but ATv is not, due to an unstructured grid and the corresponding data structure.
Finally, not only the convergence depends on κ2(A)2 but also the behaviour due to rounding errors. To
improve the numerical stability it is suggested in [6] to replace inner products like pTATAp by (Ap)TAp.
Another improvement is the LSQR (Least Squares QR) method proposed in [47]. This method is based on
the application of the Lanczos method to the auxiliary system(

I A
AT 0

)(
r
u

)
=

(
f
0

)
.

LSQR is a very robust algorithm. It uses reliable stopping criteria and estimates for the error and the
condition number of A.

7.3.3 Bi-CG Type Methods
In this type of method we have that uk is an element ofKk(A; r0), short recurrences but we do not have an
optimality property. We have seen that CG is based on the Lanczos algorithm. The Lanczos algorithm for
non-symmetric matrices is called the Bi-Lanczos algorithm. Bi-CG type methods are based on Bi-Lanczos.
In the Lanczos method we look for a matrix Q such that QTQ = I and

QTAQ = T tridiagonal .

In the Bi-Lanczos algorithm we construct a similarity transformation X such that

X−1AX = T tridiagonal .

To obtain this matrix we construct a basis r0, ..., rk−1, which are the residuals, for Kk(A; r0) such that
rj⊥Kj(AT ; s0) and s0, ..., sk−1 form a basis for Kk(AT ; s0) such that sj⊥Kj(A; r0), so the sequences
{rk} and {sk} are bi-orthogonal. Using these properties and the definitions Rk = [r0...rk−1], Sk =
[s0...sk−1] the following relations can be proved [72]:

ARk = RkTk + αkr
keTk , (7.32)

and
STk (Auk − f) = 0 .

Using (7.32), r0 = f and uk = Rky we obtain

STk RkTky = s0r
T
0 e1. (7.33)

Since STk Rk is a diagonal matrix with diagonal elements (rj)T sj , we find if all these diagonal elements
are nonzero,

Tky = e1 , uk = Rky .

This algorithm fails when a diagonal element of STk Rk becomes (nearly) zero, because these elements are
used to normalise the vectors sj (compare [26] §9.3.6). This is called a serious (near) break down. The
way to get around this difficulty is the so-called look-ahead strategy. For details on look-ahead we refer
to [50], and [21]. Another way to avoid break down is to restart as soon as a diagonal element gets small.
This strategy is very simple, but one should realize that at a restart the Krylov subspace that has been built
up, is thrown away, which destroys possibilities for faster (superlinear) convergence.

Bi-CG (Bi-Conjugate Gradient) As has been shown for Conjugate Gradients, the LU decomposition of
the tridiagonal system Tk can be updated from iteration to iteration. It leads to a recursive update of the
solution vector, which avoids saving all intermediate r and s vectors. This variant of Bi-Lanczos is usually
called Bi-Conjugate Gradients, or shortly Bi-CG [19]. Of course, one can in general not be sure that an LU
decomposition (without pivoting) of the tridiagonal matrix Tk exists, and if it does not exist a serious break
down of the Bi-CG algorithm will occur. This break down can be avoided in the Bi-Lanczos formulation
of this iterative solution scheme. The algorithm is given below.
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Bi-CG method
u0 is an initial guess; r0 = f −Au0;
r̂0 is an arbitrary vector, such that (r0)Tr̂0 6= 0 ,
e.g., r̂0 = r0

ρ0 = 1 p̂0 = p0 = 0
for i = 1, 2, ...

ρi = (r̂i−1)Tri−1 ; βi = (ρi/ρi−1) ;
pi = ri−1 + βip

i−1 ;
p̂i = r̂i−1 + βip̂

i−1 ;
vi = Api

αi = ρi/(p̂
i)Tvi;

ui = ui−1 + αip
i

ri = ri−1 − αiv
i

r̂i = r̂i−1 − αiA
Tp̂i

end for

Note that for symmetric matrices Bi-Lanczos generates the same solution as Lanczos, provided that s0 =
r0, and under the same condition, Bi-CG delivers the same iterates as CG, for symmetric positive defi-
nite matrices. However, the Bi-orthogonal variants do so at the cost of two matrix vector operations per
iteration. The method has been superseded by CGS and Bi-CGSTAB.

CGS (Conjugate Gradient Squared) The bi-conjugate gradient residual vectors can be written as rj =
Pj(A)r0 and r̂j = Pj(A

T )r̂0, where Pj is a polynomial of degree j such that Pj(0) = 1. Due to the
bi-orthogonality relation it follows that

(rj)T r̂i = (Pj(A)r0)T (Pi(A
T )r̂0) = (Pi(A)Pj(A)r0)T r̂0 = 0 , for i < j.

The iteration parameters for bi-conjugate gradients are computed from innerproducts like above. Sonneveld
observed in [61] that one can also construct the vectors rj = P 2

j (A)r0, using only the latter form of the
innerproduct for recovering the bi-conjugate gradients parameters (that implicitly define the polynomial
Pj). By doing so, neither the vectors r̂j have to be formed, nor is it necessary to multiply by the matrix
AT . The resulting CGS [61] method works well in general for many non-symmetric linear problems. It
often converges faster than Bi-CG (about twice as fast in some cases). However, CGS usually shows a very
irregular convergence behaviour. This behavior can even lead to cancellation and a spoiled solution [71].

The following scheme carries out the CGS process for the solution of Au = f , with a given preconditioner
M (to be discussed next):
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Conjugate Gradient Squared method
u0 is an initial guess; r0 = f −Au0;
r̃0 is an arbitrary vector, such that
(r0)Tr̃0 6= 0 ,
e.g., r̃0 = r0 ; ρ0 = (r0)T r̃0 ;
β−1 = ρ0 ; p−1 = q0 = 0 ;
for i = 0, 1, 2, ... do

wi = ri + βi−1q
i ;

pi = wi + βi−1(q
i + βi−1p

i−1) ;
p̂ = M−1pi ;
v̂ = Ap̂ ;
αi =

ρi
(r̃0)T v̂

;

qi+1 = wi − αiv̂ ;
ŵ = M−1(wi + qi+1)
ui+1 = ui + αiŵ ;
if ui+1 is accurate enough then quit;
ri+1 = ri − αiAŵ ;
ρi+1 = (r̃0)Tri+1 ;
if ρi+1 = 0 then method fails to converge!;
βi =

ρi+1
ρi ;

end for

In exact arithmetic, the αj and βj are the same as those generated by Bi-CG. Therefore, they can be used
to compute the Petrov-Galerkin approximations for eigenvalues of A.

Bi-CGSTAB (Bi-CG Stabilized) Bi-CGSTAB [72] is based on the following observation. Instead of
squaring the Bi-CG polynomial, we can construct another iteration method, by which iterates uk are gen-
erated so that rk = P̃k(A)Pk(A)r0 with another kth degree polynomial P̃k. An obvious possibility is to
take for P̃k a polynomial of the form

Qk(x) = (1− ω1x)(1− ω2x)...(1− ωkx) ,

and to select suitable constants ωj ∈ R. This expression leads to an almost trivial recurrence relation for
the Qk. In Bi-CGSTAB, ωj in the jth iteration step is chosen as to minimise rj , with respect to ωj , for
residuals that can be written as rj = Qj(A)Pj(A)r0.
The preconditioned Bi-CGSTAB algorithm for solving the linear system Au = f , with preconditioning M
reads as follows:
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Bi-CGSTAB method
u0 is an initial guess; r0 = f −Au0;
r̄0 is an arbitrary vector, such that (r̄0)T r0 6= 0, e.g., r̄0 = r0 ;
ρ−1 = α−1 = ω−1 = 1 ;
v−1 = p−1 = 0 ;
for i = 0, 1, 2, ... do

ρi = (r̄0)Tri ; βi−1 = (ρi/ρi−1)(αi−1/ωi−1) ;
pi = ri + βi−1(p

i−1 − ωi−1v
i−1) ;

p̂ = M−1pi ;
vi = Ap̂ ;
αi = ρi/(r̄

0)Tvi ;
s = ri − αiv

i ;
if ‖s‖ small enough then

ui+1 = ui + αip̂ ; quit;
z = M−1s ;
t = Az ;
ωi = tTs/tTt ;
ui+1 = ui + αip̂ + ωiz ;
if ui+1 is accurate enough then quit;
ri+1 = s− ωit ;

end for

The matrix M in this scheme represents the preconditioning matrix and the way of preconditioning [72].
The above scheme in fact carries out the Bi-CGSTAB procedure for the explicitly postconditioned linear
system

AM−1y = f ,

but the vectors yi has been transformed back to the vectors ui corresponding to the original systemAu = f .
Compared to CGS two extra innerproducts need to be calculated.

In exact arithmetic, the αj and βj have the same values as those generated by Bi-CG and CGS. Hence, they
can be used to extract eigenvalue approximations for the eigenvalues of A.

An advantage of these methods is that they use short recurrences. A disadvantage is that there is only a
semi-optimality property. As a result of this, more matrix vector products are needed and no convergence
properties can be proved. In experiments we see that the convergence behaviour looks like CG for a large
class of problems. However, the influence of rounding errors is much more significant than for CG. Small
changes in the algorithm can lead to instabilities. Finally, it is always necessary to compare the norm of
the updated residual to the exact residual ‖f −Auk‖2. If ”near” break down had occurred in the algorithm
these quantities may differ by several orders of magnitude. In such a case the method should be restarted.

7.3.4 GMRES Type Methods
These methods are based on uk is an element of Kk(A; r0), long recurrences, but have certain optimality
properties. The long recurrences imply that the amount of work per iteration and the required memory
grow for an increasing number of iterations. Consequently, in practice one cannot afford to run the full
algorithm, and it becomes necessary to use restarts or to truncate vector recursions. In this section we
describe GMRES and GCR.

GMRES In this method, Arnoldi’s method is used for computing an orthonormal basis {v1, ...,vk} of
the Krylov subspace Kk(A; r0). The modified Gram-Schmidt version of Arnoldi’s method can be de-
scribed as follows [57]:
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GMRES method
Choose u0 and compute r0 = f −Au0 and v1 = r0/‖r0‖2,

for j = 1, ..., k do:
vj+1 = Avj

for i = 1, .., j do:
hij := (vj+1)Tvi , vj+1 := vj+1 − hijv

i ,
end for
hj+1,j := ‖vj+1‖2 , vj+1 := vj+1/hj+1,j

end for
The entries of upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

In GMRES (General Minimal RESidual method) the approximate solution uk = u0 + zk with zk ∈
Kk(A; r0) is such that

‖rk‖2 = ‖f −Auk‖2 = min
z∈Kk(A;r0)

‖r0 −Az‖2. (7.34)

As a consequence of (7.34) it appears that rk is orthogonal to AKk(A; r0), so rk⊥Kk(A;Ar0). If A is
symmetric the GMRES method is equivalent to the MINRES method (described in [46]). For the matrix
H̄k it follows that AVk = Vk+1H̄k where the N × k matrix Vk is defined by Vk = [v1, ...,vk]. With this
equation it is shown in [57] that uk = u0 + Vky

k where yk is the solution of the following least squares
problem:

‖βe1 − H̄ky
k‖2 = min

y∈Rk
‖βe1 − H̄ky‖2, (7.35)

with β = ‖r0‖2 and e1 is the first unit vector in Rk+1. GMRES is a stable method and break down does
not occur. If hj+1,j = 0 then uj = u so this is a ”lucky” break down (see [57]; Section 3.4).

Due to the optimality (see inequality (7.34)) convergence proofs exist [57]. If the eigenvalues of A are real
and positive, the same bounds on the norm of the residual can be proved as for the CG method. For a more
general eigenvalue distribution we shall give one result in the following theorem. Let Pk be the space of
all polynomials of degree less than k and let σ = {λ1, ..., λN} represent the spectrum of A.

Theorem 7.3.1 Suppose that A is diagonalisable so that A = XDX−1 and let

ε(k) = min
p∈Pk
p(0)=1

max
λi∈σ

|p(λi)|

Then the residual norm of the k-th iterate satisfies:

‖rk‖2 ≤ K(X)ε(k)‖r0‖2 (7.36)

where K(X) = ‖X‖2‖X−1‖2. If furthermore all eigenvalues are enclosed in a circle centred at C ∈ R
with C > 0 and having radius R with C > R, then

ε(k) ≤
(
R

C

)k
. (7.37)

Proof: see [57]; p. 866.

Note that K(X) can be very large. In such a case bound (7.36) is not usefull [32]. For GMRES we see
in many cases a superlinear convergence behaviour comparable to CG. The same type of results have been
proved for GMRES [73]. As we have already noted in the beginning, work per iteration and memory re-
quirements increase for an increasing number of iterations. In this algorithm the Arnoldi process requires
k vectors in memory in the k-th iteration. Furthermore 2k2 ·N flops are needed for the total Gram Schmidt
process. To restrict work and memory requirements one stops GMRES after m iterations, forms the ap-
proximate solution and uses this as a starting vector for a following application of GMRES. This is denoted
by the GMRES(m) procedure (not restarted GMRES is denoted by full GMRES). However, restarting de-
stroys many of the nice properties of full GMRES, for instance the optimality property is only valid inside
a GMRES(m) step and the superlinear convergence behaviour is lost. This is a severe drawback of the
GMRES(m) method [17].
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GCR Slightly earlier than GMRES, the GCR method was proposed in [16] (Generalized Conjugate
Residual method). The algorithm is given as follows:

GCR algorithm
Choose u0, compute r0 = f −Au0

for i = 1, 2, ... do
si = ri−1 ,
vi = Asi ,
for j = 1, ..., i− 1 do

α = (vj)Tvi ,
si := si − αsj , vi := vi − αvj ,

end for
si := si/‖vi‖2 , vi := vi/‖vi‖2
β = (vi)Tri−1 ;
ui := ui−1 + βsi ;
ri := ri−1 − βvi ;

end for

The storage of si and vi costs twice as much memory as for GMRES. The rate of convergence of GCR and
GMRES is comparable. However, there are examples where GCR may break down. So, when comparing
full GMRES and full GCR the first one is to be preferred in many applications.
When the required memory is not available GCR can be restarted. However, another strategy is possible
which is known as truncation. An example of this is to replace the j-loop by

for j = i−m, ..., i− 1 do

Now 2m vectors are needed in memory. Other truncation variants to discard search directions are possible.
In general, we see that truncated methods have a better convergence behaviour, especially if superlinear
convergence plays an important role. If restarting or truncation is necessary truncated GCR is in general
better than restarted GMRES. For convergence results and other properties we refer to [16].

7.3.5 Hybrid Methods
The most popular methods are the the Bi-CG-type methods and the GMRES-type methods. However, both
classes have their drawbacks. In this section we consider two hybrid methods, combinations of Krylov
methods, which have an optimality property and which recurrences are reasonably short. We consider the
methods: IDR(s) from the Bi-CG-type class and GMRESR from the GMRES-type class.

IDR(s) (Induced Dimension Reduction) The IDR method has already been proposed in 1980 [77]. Anal-
ysis of IDR reveals a close relation with Bi-CG. It has been shown that the iteration polynomial constructed
by IDR is the product of the Bi-CG polynomial with another, locally minimising polynomial. Sonneveld’s
observation that the Bi-CG polynomial could be combined with another polynomial without transpose-
matrix-vector multiplications led to the development first of CGS and later of Bi-CGSTAB.

Over the years, CGS and Bi-CGSTAB have completely overshadowed IDR, which is now practically for-
gotten, except perhaps as the predecessor of CGS. This is unfortunate since, although there is a clear
relation between CG-type methods and the original IDR method, the underlying ideas are completely dif-
ferent. This suggests that by exploiting the differences new methods may be developed.

Bi-CG, CGS, and Bi-CGSTAB are essentially based on the computation of two mutually biorthogonal
bases for the Krylov subspaces based on A and AT . The ”S”-part in CGS and the ”STAB”-part in Bi-
CGSTAB are different ways of making more efficient use of the AT -related information. The finiteness
of these methods (in exact arithmetic) comes from the finiteness of any basis for finite dimensional space.
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The IDR method, on the other hand, generates residuals that are forced to be in subspaces of decreasing
dimension and at the end a 0-dimensional space remains, which imply that the residual is the zero vector.

IDR(s) describes a recently developed class of methods [63], which generalises the Induced Dimension
Reduction idea further. Where in IDR only a subspace of dimension 1 is used to reduce the space which
contains the residual vector, IDR(s) uses an s-dimensional subspace. For modestly large choices of s,
(s ≤ 10) a robust and efficient method is obtained. The method is at least as fast as Bi-CGSTAB but for
hard problems it can be 4-10 times faster. Furthermore, it has been shown that the convergence of IDR(s)
is only slightly slower than that of full GMRES [62].

GMRESR (GMRES Recursive) Another hybrid method is the GMRESR proposed in [74] and further
investigated in [76]. This method consists of an outer and inner loop. In the inner loop one approximates
the solution of a linear system by GMRES to find a good search direction. Thereafter in the outer loop the
minimal residual approximation using these search directions is calculated by a GCR approach.

GMRESR algorithm
Choose u0 and m, compute r0 = f −Au0

for i = 1, 2, ... do
si = Pm,i−1(A)ri−1 ,
vi = Asi ,
for j = 1, ..., i− 1 do

α = (vj)Tvi ,
si := si − αsj , vi := vi − αvj ,

end for
si := si/‖vi‖2 , vi := vi/‖vi‖2
β = (vi)Tri−1 ;
ui := ui−1 + βsi ;
ri := ri−1 − βvi ;

end for

The notation si = Pm,i−1(A)ri−1 indicates that one applies one iteration of GMRES(m) to the system
As = ri−1. The result of this operation is si. For m = 0 we have just GCR, whereas for m → ∞
one outer iteration is sufficient and GMRESR reduces to GMRES. For the amount of work we refer to
[74], where optimal choices of m are also given. In many problems the rate of convergence of GMRESR
is comparable to full GMRES, whereas the amount of work and memory is much less. In the following
picture we visualise the strong point of GMRESR in comparison with GMRES(m) and truncated GCR. A
search direction is indicated by vi. We see for GMRES(3) that after 3 iterations all information is thrown

v1v2v3 restart v1v2v3 restart GMRES(3)

v1v2v3bv4v5v6c ... GCR truncated with 3 vectors
→

v̂1v̂2v̂3 v̂1v̂2v̂3 ...
↓ ↓ GMRESR with GMRES(3) as

condense condense innerloop.
v1 v2

Figure 7.8: The use of search directions for restarted GMRES, truncated GCR and full GMRESR.

away. For GCR(3) a window of the last 3 vectors moves from left to right. For GMRESR the information
after 3 inner iterations is condensed into one search direction so information does not get lost.
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Also for GMRESR, restart and truncation variants are possible [76]. In the inner loop other iterative
methods can be used. Several of these choices lead to good iterative methods. In theory, we can call the
same loop again, which motivates the name GMRES Recursive. A comparable approach is the FGMRES
method given in [54]. Herein the outer loop consists of a slightly adapted GMRES algorithm. FGMRES
and GMRESR are comparable in work and memory. However, FGMRES can not be truncated. Therefore,
we prefer the GMRESR method.

7.3.6 Choice of Iterative Method
For non-symmetric matrices it is difficult to decide which iterative method should be used. All the methods
treated here have their own type of problems for which they are winners. Furthermore the choice depends
on the computer used and the availability of memory. In general CGS and Bi-CGSTAB are easy to imple-
ment and reasonably fast for a large class of problems. If break down or bad convergence occurs, GMRES
like methods may be preferred. Finally LSQR always converges but can take a large number of iterations.

In [76] some easy to obtain parameters are specified to facilitate a choice. Firstly, one should have a crude
idea of the total number of iterations (mg) using full GMRES. Secondly, one should measure the ratio f

f =
the CPU time used for one preconditioned matrix vector product

the CPU time used for a vector update

Note that f also depends on the hardware used. Under certain assumptions, given in [76], Figure 7.9 is
obtained. This figure gives only qualitative information. It illustrates the dependence of the choice on f
and mg. If mg is large and f is small, Bi-CGSTAB is the best method. For large values of f and small
values of mg the GMRES method is optimal and for intermediate values GMRESR is the best method. In
[5] a flowchart is given with suggestions for the selection of a suitable iterative method.
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Figure 7.9: Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR.

7.3.7 Preconditioning for General Matrices
The preconditioning for non-symmetric matrices goes along the same lines as for symmetric matrices.
There is a large amount of literature for generalization of the incomplete Cholesky decompositions. In
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general, it is more difficult to prove that the decomposition does not break down or that the resulting pre-
conditioned system has a spectrum which leads to fast convergence. Since symmetry is no longer an issue
the number of possible preconditioners is larger. Furthermore, if we have an incomplete LU decomposition
of A, we can apply the iterative methods from 7.3.4 to the following three equivalent systems of equations:

U−1L−1Au = U−1L−1b , (7.38)

L−1AU−1y = L−1b , u = U−1y , (7.39)

or
AU−1L−1y = b , u = U−1L−1y . (7.40)

The rate of convergence is approximately the same for all variants. When the Eisenstat implementation is
applied one should use (7.39). Otherwise, we prefer (7.40) because in that case the stopping criterion is
based on ‖r‖2 = ‖b−Auk‖2 whereas for (7.38) it is based on ‖U−1L−1rk‖2, and for (7.39) it is based on
‖L−1rk‖2.
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7.3.8 Exercises

Exercise 7.3.1 Show that the solution
(

y
u

)
of the augmented system

(
I A
AT 0

)(
y
u

)
=

(
f
0

)
is such that u satisfies ATAu = AT f .

Exercise 7.3.2 Take the following matrix (
2 −1
−1 2

)
.

a) Suppose that GCR is applied to the system Au = f . Show that GCR converges in 1 iteration if
u− u0 = cr0, where c 6= 0 is a scalar and r0 = f −Au0.

b) Apply GCR for the choices f =

(
1
1

)
and u0 =

(
0
0

)
.

c) Do the same for u0 =

(
1
0

)
.

Exercise 7.3.3 In the GCR algorithm the vector rk is obtained from vector updates. Show that the relation
rk = f −Aui is valid.

Exercise 7.3.4 Prove the following properties for the GMRES method:

• AVk = Vk+1Ĥk,

• uk = u0 + Vky
k, where yk is obtained from (7.35).

Exercise 7.3.5 Figure 7.9 can give an indication which solution method should be used. Give advice in
the following situations:

• Without preconditioning Bi-CGSTAB is the best method. What happens if preconditioning is added?

• We use GMRESR for a stationary problem. Switching to an instationary problem, what are good
methods?

• We use GMRES. After optimising the matrix vector product, which method is optimal?

Exercise 7.3.6 A practical exercise
For the methods mentioned below we use as test matrices:

[a, f ] = poisson(30, 30, 100, 0,′ central′)

and
[a, f ] = poisson(30, 30, 100, 0,′ upwind′)

a) Adapt the matlab cg algorithm such that it solves the normal equations. Apply the algorithm to both
matrices.

b) Implement Bi-CGSTAB from the lecture notes. Take K = I (identity matrix). Apply the algorithm
to both matrices.

c) Implement the GCR algorithm from the lecture notes. Apply the algorithm to both matrices.
d) Compare the convergence behaviour of the three methods.
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Chapter 8

Iterative methods for eigenvalue
problems

8.1 Introduction
In many technical problems eigenvalues play an important role. For example eigenvalues give information
of physical properties like eigenmodes, or eigenvalues are used to analyse and/or enhance mathematical
methods for the solution of a physical problem.
As examples of the first kind we mention the following:

- eigenvalues are important to obtain eigenfrequencies of a construction,

- characteristic properties of a fluid flow problem are defined using eigenvalues,

- if a bifurcation occurs eigenvalues and eigenvectors can be used to calculate a solution after the
bifurcation point.

Examples of the second kind are:

- estimation of the 2-norm of a matrix (or its inverse),

- to predict and understand the convergence behaviour of an iterative method,

- as a check of a discretization method. In general the matrices are so large that it is not easy to check
their contents. However a small number of extreme eigenvalues can give sufficient information to
decide wether the obtained discretization is correct or not,

- the choice of the time step for stable time integration methods.

In the remainder of this section we give some general information about eigenvalue problems.

The mathematical eigenvalue problem for a linear system of equations can be defined as follows: find
λ ∈ CI and v ∈ CI n such that Av = λv and v 6= 0.
Some references for the theory on this type of problems are [26]; Chapter 7, 8, 9, [78], [8], [9] and [48].
Again the symmetric eigenvalue problem is much easier than the unsymmetric eigenvalue problem (com-
pare the situation for linear systems). This observation not only holds from a computational point of view
but also for the theory of the eigenvalue problem. All methods to solve the eigenvalue problem are of an
iterative nature. We distinguish between two different classes of methods. In the first class of methods
the matrix A is transformed to a condensed form (computational costs O(n3)) and the iteration process
is applied to the condensed matrix (costs O(n2)). As an example of these methods we mention the QR
method. This class of methods is used in the public domain linear algebra software library LAPACK and is
described in [26]; Chapter 7, 8. Drawback of these methods are that the matrix A should be given explic-
itly, and in general a large amount of memory is required. It is advised to use these methods for matrices
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with relatively small dimensions (say n < 200). In the second class the iteration is applied to the original
matrix. A clear advantage is that the matrix A does not have to be available. The only requirement is that
one is able to calculate matrix vector-products. It is advised to use this type of methods only if a small
number of eigenvalues is wanted or the matrix A can not be easily formed.
In Section 8.2 we consider the classical power method. Krylov subspace methods are described in Sec-
tion 8.3 for symmetric matrices and Section 8.4 for unsymmetric matrices.

8.2 The Power method
The Power method is the classical method to compute the largest few eigenvalues of a matrix. The method
is motivated by the property that if we multiply a vector by a matrix, the contribution of the eigenvector
corresponding to the largest eigenvalue (in absolute value sense) increased more than the contribution of
the other eigenvectors. If the vector is multiplied a large number of times by the matrix, the contribution
of this eigenvector will dominate, so the resulting iteration vector will approximate this eigenvector. So we
arrive at the following algorithm.

The Power method
q0 ∈ CI n is given
for k = 1, 2, ...

zk = Aqk−1

qk = zk/‖zk‖2
λ(k) = q̄Tk−1zk

endfor

It is easy to see that if qk−1 is an eigenvector corresponding to λj then

λ(k) = qTk−1Aqk−1 = λjq
T
k−1qk−1 = λj‖qk−1‖22 = λj .

In order to derive the convergence behaviour of the Power method we assume that the n eigenvalues are
ordered such that |λ1| > |λ2| ≥ ... ≥ |λn| and the eigenvectors by v1, ...,vn so Avi = λivi. Each
arbitrary start vector q0 can be written as:

q0 = a1v1 + a2v2 + ...+ anvn

and if a1 6= 0 if follows that

Akq0 = a1λ
k
1(v1 +

n∑
j=2

aj
a1

(
λj
λ1

)k
vj) . (8.1)

Using this equality we conclude that

|λ1 − λ(k)| = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)
, and also (8.2)

the angle between span {qk} and span {v1} is of order |λ2

λ1
|k.

These formula’s (8.1) and (8.2) can be used to obtain the following observations. First it is important that
a1 6= 0 so the starting vector should have a non-zero component in the v1-vector. Due to rounding errors
this is in general no problem because if q0 has no component in the v1 direction such a component is cre-
ated during the computation. However, a large component in the start vector leads to a faster convergence.
Secondly we see that the convergence depends on |λ2

λ1
|. So applying the Power method to A − cI the rate

130



of convergence is equal to |λ2−c
λ1−c |. This property shows that the Power method is not shift invariant. Fur-

thermore, it can be used to increase the convergence speed. Finally if c is chosen carefully we can compute
other eigenvalues. For example: suppose λi ∈ R i = 1, ..., n then the choice c ∼= λ1 leads to the fact that
the in norm largest eigenvalue of A− λ1I is equal to λn. So also the smallest eigenvalue can be computed
by the Power method. Thirdly we see that the Power method is a linearly converging method. This implies
that the following stopping criterion can be used:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)|

, (8.3)

and stop if r̃
1−r̃

|λ(k+1)−λ(k)|
|λ(k+1)| ≤ ε .

This stopping criterion leads to |λ1 − λ(k+1)| ≤ ε.

Note that there is a problem if |λ1| = |λ2|, which is the case for instance if λ1 = λ̄2. A vector q0 which
has a nonzero component in v1 and v2 can be written as

q0 = a1v1 + a2v2 +

n∑
j=3

ajvj .

The component in the direction of v3, ...,vn will vanish in the Power method, but qk will not tend to a
limit. In [78], pp. 579-582 a method is given to obtain the eigenvalues λ1 and λ2 from the last three iterates.
However when the imaginary part of λ1 is small the obtained results have a poor accuracy.

The inverse Power method
We have seen that small eigenvalues can be computed by a correct shift of the matrix. However, in general
the differences between small eigenvalues are much less then the differences between the large eigenvalues.
So convergence to the smallest eigenvalue is very slow. A remedy for this is to apply the Power method to
the inverse matrix A−1. It is easily seen that the eigenvalues of A−1 are 1

λi
. So the smallest eigenvalue of

A is the largest eigenvalue ofA−1. This leads to a much faster rate of convergence. As an example suppose

λ1 = 1000 , λn−1 = 1.1 and λn = 1 .

The rate of convergence of the Power method applied to

A− 1000I is equal to
|1.1− 1000|
|1− 1000|

= 0.99989

whereas application to

A−1 leads to
1

1.1
1
1

= 0.909 .

In order to compute zk = A−1qk−1 one solves the zk from the linear system

Azk = qk−1,

by Gaussian elimination, or an iterative solver. In general the inverse Power method costs less work than
the Power method applied to the shifted matrix.

Orthogonal iteration
A straightforward generalization of the power method is ”orthogonal iteration” which can be used to com-
pute more than one eigenvalue. Let p be an integer less than n, and Q0 ∈ CI n×p an orthogonal matrix.
Compute a sequence of matrices {Qk} where Qk ∈ CI n×p as follows:

for k = 1, 2, ...
Zk = AQk−1
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orthonormalize the columns of Zk such that
QkRk = Zk , Rk ∈ Rk×k is an upper triangular matrix,

and Q̄TkQk = I .
endfor

This can be used to approximate the p largest eigenvalues. For more details we refer to [26]; Section 7.3.2.

8.3 A Krylov subspace method for symmetric matrices
Symmetry simplifies the real eigenvalue problem Av = λv in two ways. It implies that all eigenvalues are
real and that there is an orthogonal basis of eigenvectors. It can be shown that ifA is a real n×n symmetric
matrix then there exists a real orthogonal matrix S such that

STAS = diag (λ1, ..., λn) .

The iterative method considered in this section is known as the Lanczos method [40], [26]; Chapter 9.
The relation between the Power method and the Lanczos method is comparable to the relation between
basic iterative methods for linear systems and the CG method. We have seen that in the Power method one
calculates q0, Aq0, A

2q0, ... and sees that the vector Akq0 tends to the eigenvector corresponding to the
largest eigenvalue. In the Power method only one vector is used. To explain the properties of the Lanczos
method we first define the Rayleigh quotient

r(y) =
yTAy

yTy
, y 6= 0 .

It is easily seen that min
y∈Rn

r(y) = λn the smallest eigenvalue and max
y∈Rn

r(y) = λ1 the largest eigenvalue.

In the Lanczos method the approximations after k iterations are θ(k)
1 of λ1 and θ(k)

k of λn. They satisfy the
following (in)equalities

θ
(k)
1 = max

y∈Kk(A;q0)
r(y) ≤ λ1

and
θ

(k)
k = min

y∈Kk(A;q0)
r(y) ≥ λn .

These (in)equalities imply that θ(k)
1 is always closer to λ1 than the approximation of the Power method.

Furthermore, Lanczos gives an approximation of the smallest eigenvalue. The rate of convergence of θ(k)
1

to λ1 and θ(k)
k to λn is comparable. The Lanczos method involves partial tridiagonalizations of the matrix

A. Information of A’s extremal eigenvalues tends to emerge long before the tridiagonalisation is complete.
This makes the Lanczos algorithm particularly useful in situations where a few of A’s largest or smallest
eigenvalues are desired. Unfortunately, roundoff errors make the Lanczos method somewhat difficult to
use in practice. The central problem is a loss of orthogonality among the Lanczos vectors that the iteration
produces. Some ideas are given to repair orthogonality. We start by the specification of the Lanczos
algorithm:
Choose a starting vector q1 where ‖q1‖2 = 1

Lanczos method
r0 = q1 ; β0 = 1 ; q0 = 0 initialisation

for j = 1, 2, . . . do iteration
qj = rj−1/βj−1 normalisation of q
αj = qTj Aqj
rj = (A− αjI)qj − βj−1qj−1 new direction

orthogonal to
βj = ‖rj‖2 previous q.

end for
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Thereafter we form the tridiagonal symmetric matrix Tj as follows

Tj =



α1 β1 0

β1 α2
. . .

. . . . . . . . .

0
. . . . . . βj−1

βj−1 αj


.

This matrix is called the Ritz matrix. The eigenvalues of Tj : θ
(j)
1 , ..., θ

(j)
j are called Ritz values and are

approximations of the eigenvalues of A.
With respect to work we note that the Lanczos method costs one matrix vectorproduct per iteration and
5 vector operations. The memory requirements are 5 vectors in memory. Therafter the eigenvalues of Tj
have to be calculated. Note that Tj is in general much smaller than A and has only three non zero elements
per row. So this eigenvalue problem is always solved by a QR like method ([26]; Section 8.2) for instance
by a call to a LAPACK subroutine. The Lanczos vector qj has several nice properties. In the following
theorem it is proved that the vectors q1, ...,qj form an orthonormal basis for Kj(A;q1).

Theorem 8.3.1 Let A ∈ Rn×n be symmetric and assume q1 ∈ Rn satisfies ‖q1‖2 = 1. Then the Lanczos
algorithm runs until j = m where m is the number of independent vectors in Kn(A;q1). Moreover for
j ∈ [1,m] we have

AQj = QjTj + rje
T
j , (8.4)

where Qj = [q1, ...,qj ] has orthonormal columns that span Kj(A;q1).

Proof: see [26]; Section 9.1.3.

The Lanczos results can also be used to obtain an approximation of the eigenvectors of A. In order to
do this all Lanczos vectors should be kept in memory. Suppose that θ(j)

i is an eigenvalue of Tj and its
corresponding eigenvector is denoted by si where ‖si‖2 = 1. The vector yi = Qjsi is called the Ritz
vector and is an approximation of the eigenvector of A belonging to the eigenvalue approximated by θ(j)

i .
Heuristically this can be seen as follows: suppose ‖rjeTj ‖2 in (8.4) is small then

AQj ∼= QjTj

so
Ayi = AQjsi ∼= QjTjsi = Qjθ

(j)
i si = θ

(j)
i yi .

It can be shown that ‖Ayi − θ(j)
i yi‖2 = |βj | |(si)j | where (si)j denotes the final element of the vector si

([26]; Section 9.13). This equation can be used to obtain the following error bound:

min
µ∈λ(A)

|θ(j)
i − µ| ≤ |βj | |(si)j | i = 1, ..., j . (8.5)

It is much cheaper to check this bound than forming yi and compute ‖Ayi − θ(j)
i yi‖2. So (8.5) can be

used as a cheap stopping criterion.

In [26]; Section 9.1.4 some theoretical results are given on the convergence behaviour of the extremal Ritz
values. Suppose λ1 is the largest eigenvalue of A than it is proved that the largest Ritz value θ1 converges
to λ1. The speed of convergence depends on the so called gap-ratio

ρ1 =
(λ1 − λ2)

(λ2 − λn)
. (8.6)
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The value of ρ1 measures the distance of λ1 to the rest of the spectrum divided by the distance of λ2 to λn.
A large gap ratio leads to a fast convergence of θ1 to λ1.
It can be shown that the Lanczos algorithm is shift invariant. If it is applied to

Ã = A− cI the new matrix T̃j is equal to T̃j = Tj − cI .

So all the results are only shifted and the convergence speed remains the same. This is a clear difference
with the Power method. This is in agreement with the fact that the gap ratio is shift invariant:

ρ̃1 =
λ̃1 − λ̃2

λ̃2 − λ̃n
=
λ1 − c− (λ2 − c)
λ2 − c− (λn − c)

=
λ1 − λ2

λ2 − λn
= ρ1 .

If the smallest eigenvalues of a matrix A are wanted it is a good idea to apply the Lanczos method to the
inverse system

A−1v = µv .

This can lead to a much better gap ratio. Note that µ = 1
λ . Suppose we have an example where λ1 =

1000, λn−1 = 1.1 and λn = 1. The gap ratio for the smallest eigenvalue is equal to

ρn =
|λn − λn−1|
|λn−1 − λ1|

=
0.1

1000
= 10−4

so the iteration takes very long to obtain a good approximation. For the inverse problem we want to
calculate the largest eigenvalue

µ1 = 1 , µ2 =
1

1.1
, ..., µn =

1

1000

the gap ratio is now equal to

ρ̃1 =
|µ1 − µ2|
|µ2 − µn|

=
1− 1

1.1
1

1.1 −
1

1000

' 0.1

which is much larger than for the original matrix. A drawback is again that one has to solve a linear system
of equations in every iteration.

The convergence of Ritz values to interior eigenvalues is not so good. Moreover theoretical results for this
convergence are not sharp. In general the same behaviour as the for CG method applied to linear systems
is observed. So if the Ritz value θ1 is close to λ1, the method behaves as if the eigenvalue λ1 is absent. So
once λ1 has been approximated, θ2 converges faster to λ2.
With respect to rounding errors we note that equation (8.4) holds to working precision. However loss of
orthogonality of the computed vectors qj appears if one of the Ritz values converges to an eigenvalue. One
remedy is to orthogonalize each newly computed Lanczos vector against its predecessors. This leads to the
complete reorthogonalization Lanczos method. However, such an orthogonalization requires many vector
operations. This makes the method unpractical if many iterations are necessary. To decrease the costs, a
selective orthogonalization procedure is proposed [26]; Section 9.2.4. In this algorithm the new Lanczos
vector is not orthogonalised against all its predecessors, but only against the much smaller set of converged
Ritz vectors. For details we refer to [49], [59] and [37].

8.4 Krylov subspace methods for unsymmetric matrices
Arnoldi
A generalization of the Lanczos method to unsymmetric matrices is the Arnoldi method [2] and [26]; p.499.
In this method the matrixA is transformed to an upper Hessenberg matrix by an orthogonal transformation.
An upper Hessenberg matrix has the following nonzero pattern: The relation between Lanczos and Arnoldi
is comparable to the relation between CG and GMRES for linear systems. The Arnoldi method has the
same nice properties with respect to convergence as the Lanczos method. A drawback is that for Lanczos
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Figure 8.1: The nonzero structure of an upper Hessenberg matrix

only 5 vector operations are necessary during computation, whereas for Arnoldi the number of vector
operations is proportional to the number of iterations.
The Arnoldi algorithm is given by: choose a starting vector q1 where ‖q1‖2 = 1.

Arnoldi method

r = q1 ; β = 1 initialisation
for j = 1, 2, . . . iteration

qj = r/β ; normalisation
r = Aqj ;
for i = 1, ..., j modified Gram Schmidt orthogonalization

hij = qTi r
r = r− hijqi

end for
β = ‖r‖2
if j < n

hj+1,j = β
end if

end for

After the iteration is stopped one can form the Hessenberg matrix Hj as follows

Hj =


h11 . . . . . . h1j

h21
. . .

...
. . . . . .

...
O hjj−1 hjj

 .

Hj is the Ritz matrix, θi the Ritz value. In the same way as for Lanczos we have if Hjsi = θisi then Qjsi
is an approximation of the corresponding eigenvector.

If the matrix A is symmetric the matrix Hj becomes tridiagonal so we get the same results as using the
Lanczos method. Many of the properties of the Lanczos method can be generalized to the Arnoldi method.
In general it is a stable method with respect to rounding errors. There is no break down possible, only
the case β = 0 can occur, but then an invariant subspace is obtained and all eigenvalues can be calculated
(Assuming that q0 has nonzero components in all eigenvector directions). A drawback of this method is the
fact that due to the modified Gram Schmidt orthogonalization the amount of work increases quadratically.
Restarting the Arnoldi method prevents this, however in such a case the good convergence properties are
lost. The rate of convergence can be much different from Lanczos, because complex eigenvalues can
occur. If all the eigenvalues are real than the convergence behaviour of Arnoldi is comparable to Lanczos.
In the general case of complex eigenvalues we see again that the Ritz values converging to the extreme
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eigenvalues are converging much faster than the interior ones.

Bi-Lanczos
To get rid of the Gram Schmidt process another generalization is proposed: Bi-Lanczos. It is possible to
reduce A to tridiagonal form using a general similarity transformation. However, this leads to an unstable
procedure ([78]; pp. 388-405). In the Bi-Lanczos procedure two vector sequences are produced xj and yj ,
which have the property that they are bi-orthogonal:
if Xj = [x1, ...,xj ] , Yj = [y1, ...,yj ] we have XTY = I . The Bi-Lanczos method runs as follows:
choose starting vectors x1,y1 such that xT1 y1 = 1.

Bi-Lanczos
j = 0 , β0 = 1 , x0 = 0 , r0 = x1 , y0 = 0 , p0 = y1

while βj 6= 0
∧
rTj pj 6= 0

γj = rTj pj/βj
xj+1 = rj/βj ; yj+1 = pj/γj
j := j + 1
αj = yTj Axj ; rj = (A− αjI)xj − γj−1xj−1 ,

βj = ‖rj‖2 ; pj = (A− αjI)Tyj − βj−1yj−1 ,
end while

The tridiagonal Ritz matrix Tj is formed by:

Tj =


α1 γ1

β1 α2 γ2 O
. . . . . . . . .

O
. . . . . . γj−1

βj−1 αj

 .

The amount of work per iteration is equal to two matrix vector products one with A and the other with AT .
Furthermore, 12 vector operations are needed. To circumvent stability problems the look ahead Lanczos
procedures are developed per iteration [21]. However, many open questions remain as there are: how to
implement complete or selective orthogonalization, which stop criterion can be used, multiple eigenvalues
etc.

8.5 The generalized eigenvalue problem
In practical finite element eigenvalue problems one also wants to solve generalized eigenvalue problems.
In such a problem one has to solve the following problem: for A,B ∈ Rn×n given, compute λ ∈ C and
v ∈ Cn where v 6= 0 such that

Av = λBv . (8.7)

In finite element problems A may be the stiffness matrix and B the mass matrix. For theoretical properties
and QR like methods we refer to [26]; Section 7.7. If A and B are symmetric and B also positive definite
we refer to [26]; Section 8.7.2. If B−1 exists (8.7) can be transformed to

B−1Av = λv (8.8)

so iteration methods can be applied to (8.8).
There are also iterative methods which are suited to be applied to (8.7) directly. For these methods we refer
to: [25] and [70].
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8.6 Exercises
Exercise 8.6.7 The Power method can be used to approximate the largest eigenvalue λ1. In this exercise
two methods are given to estimate the eigenvalue λ2 if λ1 and eigenvector v1 are known.

a) Take q0 = (A− λ1I)q, where q is an arbitrary vector. Show that the Power method applied to this
starting vector leads to an approximation of λ2 (Annihilation Technique).

b) Take A is symmetric and show that if the Power method is applied to the matrix

B = A− λ1

vT1 v1
v1v

T
1

one gets an approximation of λ2. What is the amount of work per iteration using B (Hotelling
Deflation).

Exercise 8.6.8 Suppose that A ∈ Rn×n is skew-symmetric.

a) Derive a Lanczos-like algorithm for computing a skew-symmetric tridiagonal matrix Tm such that

AQm = QmTm,

where m = dim{K(A;q1, n)} and QTmQm = Im.
b) Show that if m is equal to the dimension of the smallest invariant subspace for A that contains q1.

Exercise 8.6.9 Suppose A ∈ Rn×n is symmetric and that we wish to compute its largest eigenvalue. Let
η be an approximate eigenvector and set

α =
ηTAη

ηT η
, z = Aη − αη.

a) Show that there is an eigenvalue of A in the interval [α− δ, α+ δ], where δ = ‖z‖2/‖η‖2.
b) Consider η̄ = aη + bz and show how to determine a and b such that ā = η̄TAη̄/η̄T η̄ is maximal.
c) Compare this with the first two iterations of Lanczos.

Exercise 8.6.10 A practical exercise
A bending beam with a force P on top (see Figure 8.2) can be described by the following equation:

EI
d2w

dx2
= Pw, w(0) = w(L) = 0.

The solution of this equation is w(0) = 0. For certain values of P , there is also a non-trivial solution. The
smallest value of such a P is: P = EIπ2

L2 .

We can also approximate the smallest value of P by the smallest eigenvalue of

A =
EI

h2


2 −1 0 · · · · · · 0
−1 2 −1 0 · · · · · ·
0 −1 2 −1 0 · · ·

. . . . . . . . . . . . . . .

 ,

where A ∈ Rn×n and h = L
n+1 . Take n = 100, EI = 10 and L = 2.

a) Compute an approximation of P by doing 50 iterations of the inverse Power method applied to A.
b) Do 10 iterations with the Lanczos method and form T10.
c) Compute the eigenvalues of Tj using the ’eig’ command of Matlab.
d) Compare the convergence of the inverse Power method and the Lanczos method.
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Figure 8.2: Bending beam configuration

138



Bibliography

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–
41, 2001.

[2] W.E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.
Quart. Appl. Math., 9:17–29, 1951.

[3] O. Axelsson. Iterative solution methods. Cambridge University Press, Cambridge, 1994.

[4] O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods.
Numer. Math., 48:479–498, 1986.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition. 1994.
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