
Object	Oriented	Scientific	Programming	with	C++	(wi4771tu)	

Motivation	
MATLAB,	 Python	&	 Co.	 are	 very	 good	 tools	 for	 developing	 prototypes	 and	 for	 testing	
new	 scientific	 ideas	 'within	 a	minute'.	 Their	mathematical	 notation	 and	 the	wealth	 of	
excellent	add-ons	addressing	all	types	of	mathematical	problems	make	it	easy	to	imple-
ment	numerical	 algorithms	without	 struggling	with	 technical	details.	 For	 instance,	 the	
solution	of	a	linear	system	of	equations	in	MATLAB	is	as	easy	as	typing	x=A\b.	
	
The	downside	of	this	programmers'	comfort	zone	is	threefold:		

• Firstly,	 you	hardly	 know	what	 your	 code	 is	 doing	 'under	 the	hood'	 so	 that	 you	
have	to	trust	the	add-on	providers	that	their	routines	are	implemented	correctly.	
Even	 then	you	 cannot	be	 totally	 sure	 that	 you	 are	using	 these	 toolboxes	 in	 the	
correct	way	and	they	won't	tell	you.		

• Secondly,	 it	 is	 wishful	 thinking	 that	 you	 can	 exploit	 the	 full	 power	 of	 modern	
computers	 by	 naively	 calling	 some	 'parallelised'	 or	 'CUDA-enabled'	 black-box	
routines.	Doing	so,	you	can	be	lucky	if	the	code	still	produces	correct	results	and	
is	not	slower	than	before.		

• Thirdly,	 if	 you	 start	 using	 low-level	 programming	 techniques	 such	 as	 loops,	
branching,	etc.	then	the	nature	of	interpreted	programming	language	strikes	back	
making	your	code	impractically	slow.		

	
If	you	already	encountered	one	or	more	of	these	problems	then	it	is	time	to	learn	scien-
tific	programming	in	a	programming	language	like	C,	C++	or	Fortran,	which	allow	you	to	
express	your	algorithms	in	low-level	but	still	human-readable	notation	and	transform	it	
into	hardware-optimised	machine	code	using	a	compiler.	Starting	with	the	right	choice	
of	development	tools,	solving	a	linear	system	of	equations	in	C++	is	as	easy	as	typing	
	

SparseMatrix<double> A(n,n); 
Vector<double> x(n), b(n); 
ConjugateGradient<SparseMatrix<double> > cg; 
cg.compute(A) 
x=cg.solve(b); 

	
But	this	time,	you	have	full	control	over	all	internals	(here:	use	of	a	sparse	matrix	with	
double-precision	floating	point	data	and	an	iterative	conjugate	gradient	solver)	and	can	
adjust	them	to	your	particular	needs	(like	the	absolute	tolerance).	

Mission	of	the	course	
This	course	is	not	a	typical	C++	programming	course	that	aims	at	discussing	all	aspects	
of	the	programming	language	at	length,	including	legacy	techniques	that	lead	to	hardly-
readable	codes.	It	is	about	object-oriented	design	concepts	and	practical	aspects	of	mod-
ern	scientific	programming	thereby	using	C++	as	a	vehicle	only.		
	
This	 course	 follows	 a	 pragmatic	 problem-oriented	 approach.	 Starting	 from	 a	 concrete	
problem	description	 like	 'How	to	design	and	develop	an	efficient	linear	solver	for	Ax=b?',	
only	those	aspects	of	the	programming	language	will	be	introduced	and	discussed	that	
are	really	needed	to	master	the	problem	at	hand	or	make	its	implementation	much	more	



flexible	and	efficient.	We	explicitly	focus	on	the	recent	language	standard	C++11,	which	
introduced	 several	 very	 powerful	 and	 easy	 to	 use	 concepts	 for	modern	 scientific	 pro-
gramming	and	overcomes	many	of	the	drawbacks	and	pitfalls	of	previous	standards.	
	
The	second	aim	of	this	course	is	to	demonstrate	a	possible	workflow	for	efficient	code	
development	using	established	tools	for	editing,	refactoring,	compiling,	debugging,	and	
profiling	the	code.	Scientific	codes	for	practical	use	are	quickly	becoming	too	complex	to	
edit	them	in	a	standard	text	editor,	compile	the	source	code	'by	hand'	manually	figuring	
out	 the	 inter-file	 dependencies	 and	 identify	 bugs	 and	 efficiency	 bottlenecks	 just	 from	
visual	inspection.	We	will	introduce	and	utilise	several	software	tools	like	CodeLite	and	
CMake	(possibly	also	Valgrind	if	time	permits)	that	simplify	these	tasks.	

Audience	and	prerequisites	
The	 course	 is	meant	 for	master	 students	 from	disciplines	 such	 as	 (but	not	 limited	 to)	
Applied	Mathematics,	 Aerospace	 Engineering,	 Civil	 Engineering	 and	 Geosciences,	who	
are	interested	in	learning	modern	scientific	programming	in	C++,	e.g.,	as	preparation	for	
a	master	project	work	that	involves	a	significant	programming	part.	Rudimentary	back-
ground	in	linear	algebra	and,	possibly,	numerical	mathematics	is	required	to	follow	the	
problem-oriented	teaching	approach.	Furthermore,	good	knowledge	of	at	least	one	pro-
gramming	language	like	MATLAB,	Python,	C/C++	or	Java	is	mandatory	since	this	course	
is	not	meant	as	an	introduction	to	the	basics	of	programming.	

Course	schedule	
The	course	consists	of	a	weekly	lecture	(Tuesdays	10:30-12:30	in	EWI-lecture	hall	J)	and	
a	mandatory	weekly	lab	session	(Fridays	13:30-17:30	in	DW-PC4	(first	floor).	

ECTS	points	
Successful	participation	will	be	assessed	by	practical	assignments	for	each	session	(1/3	
of	 the	 final	 grade)	 and	 a	 programming	 project	 (2/3	 of	 the	 final	 grade)	 that	 can	 and	
should	be	done	in	groups	of	2-3	students.	The	course	gives	3	ECTS.	

Further	information	
For	further	information	about	this	course	please	check	the	TU	Delft	Course	browser	
http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=41034	
or	contact	Dr.	Matthias	Möller	(m.moller@tudelft.nl).	


