Generalized Finite Element Methods Stability, Preconditioning and Mass Lumping

Marc Alexander Schweitzer

Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI) Meshfree Multiscale Methods

> Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Numerische Simulation

> > 01. July 2015

Generalized Finite Element Methods

Stability

Preconditioning & Fast Solvers

Variational Mass Lumping

schweitzer@scai.fraunhofer.de

Copyright 2011 Fraunhofer Gesellschaft

Motivation

Why "new" methods?

Complex geometry, mesh generation, time-dependent adaptation of meshes.

Why "new" methods?

- Dramatic change in hardware design.
- Strong scaling / parallel speed-up $S_L(P) = \frac{T_L(1)}{T_L(P)}$
- Floating point operations "for free", memory transfers" expensive".
- Simple global data structures.
- Many operations per data (e.g. higher order methods).

An optimal method

- Simple global data structure.
- Convergence properties independent of regularity of solution *u*.
- Optimal basis functions Φ_i^u .

$$u_N(x) = \sum_{i=1}^N c_i^u \Phi_i^u(x)$$

- Basis functions are solution-dependent.
- Number of basis functions vs. quality of basis functions.

Few data (Dof), many local operations!

Generalized Finite Element Methods

$$-\nabla\kappa\nabla u = f, \quad \rho\ddot{u} = \operatorname{div}\boldsymbol{\sigma}(u) - f$$

Classical Approximation

- Choose atom, dilation & shift
- Study approximation space
- Identify with smoothness space
- PDE regularity results
- hp-adaptive refinement

Complex data, regularity determines convergence.

Optimal Approximation

- Choose PDE
- Local expansion/regularity
- NO dilation & shift
- Application-dependent basis
- Uniform refinement

Simple data, convergence independent of regularity.

Generalized Finite Element Methods

Identify optimal local basis with respect to required global accuracy measure. Merge and solve.

Decomposition of $u \in H^{s}(\Omega)$

 $u = u_{\rm smooth} + u_{\rm jump} + u_{\rm singular}$

Efficient approximation of *u*

- Higher order polynomials for u_{smooth}.
- Discontinuous basis functions for u_{jump}.
- Singular basis functions for u_{singular}.

Localization by partition of unity

Consider a partition of unity (PU) {φ_i} with ω_i := supp(φ_i)

$$u = \sum_{i=1}^{N} \varphi_{i} u = \sum_{i=1}^{N} \left(\varphi_{i} u_{\text{smooth}} + \varphi_{i} u_{\text{jump}} + \varphi_{i} u_{\text{singular}} \right).$$

- Localization of approximation: $u|_{\omega_i} \approx u_i \in V_i(\omega_i) = \operatorname{span}\langle \vartheta_i^k \rangle$.
- Smooth splicing of local spaces

$$V^{\mathsf{PU}} := \sum_{i=1}^{N} \varphi_i V_i(\omega_i) = \sum_{i=1}^{N} \varphi_i (\mathcal{P}^{\mathsf{p}_i} + \mathcal{E}_i).$$

- No compatability restrictions as in FEM
- Approximation by $V_i(\omega_i)$, functions φ_i just "glue".

(local/parallel).

Approximation

PUM error estimate

Let $u \in H^1(\Omega)$, $u^{PU} := \sum_{i=1}^N \varphi_i u_i$ with $u_i \in V_i(\omega_i)$, $supp(\varphi_i) = \omega_i$ where φ_i is a *non-negative* admissible PU then

$$\begin{split} \|u - u^{\mathsf{PU}}\|_{L^{2}(\Omega)} &\leq \sqrt{C_{\infty}} \Big(\sum_{i=1}^{N} \hat{\epsilon}_{i}^{2}\Big)^{1/2} ,\\ \|\nabla(u - u^{\mathsf{PU}})\|_{L^{2}(\Omega)} &\leq \sqrt{2} \Big(\sum_{i=1}^{N} M\Big(\frac{C_{\nabla}}{\operatorname{diam}(\omega_{i})}\Big)^{2} \hat{\epsilon}_{i}^{2} + C_{\infty} \hat{\epsilon}_{i}^{2}\Big)^{1/2} . \end{split}$$

with constants *M*, C_{∞} , and C_{∇} independent of *N*.

Standard choice of local approximation spaces

Local polynomials $\mathcal{P}^{p_i}(\omega_i)$

- Complete polynomials (total degree), or tensor products
- Subspaces: anisotropic products, harmonic polynomials, ...

Problem-dependent enrichment $\mathcal{E}_i(\omega_i) = \mathcal{E}|_{\omega_i}$

$$V_{i} = \mathcal{P}^{p_{i}} + \mathcal{E}_{i} = \operatorname{span}\langle\psi_{i}^{t}\rangle + \operatorname{span}\langle\eta_{i}^{s}\rangle = \operatorname{span}\langle\vartheta_{i}^{k}\rangle$$
$$u^{\mathsf{PU}}(x) := \sum_{i=1}^{N}\varphi_{i}(x)u_{i}(x) = \sum_{i=1}^{N}\varphi_{i}(x)\sum_{m=1}^{d_{i}}u_{i}^{m}\vartheta_{i}^{m}(x), \quad \tilde{u} := (u_{i}^{m})_{i,m}$$

Fundamental Goal of PUM

General framework for application-dependent approximation. Higher order approximation independent of regularity of solution.

$$V^{\mathsf{PU}} := \sum_{i=1}^{N} \varphi_i V_i(\omega_i) = \sum_{i=1}^{N} \varphi_i (\mathcal{P}^{p_i} + \mathcal{E}_i) = \sum_{i=1}^{N} (\varphi_i \mathcal{P}^{p_i} + \varphi_i \mathcal{E}_i).$$

Stability & Efficiency

- Selection of local spaces \mathcal{P}^{p_i} and \mathcal{E}_i independent of neighbors.
- Construction of PU φ_i by Shepard approach, moving least squares.
- Adaptivity in p, h and enrichment \mathcal{E}_i straight forward.
- Stability of global basis inherited from local stability (with flat-top).

Selection of the PU - XFEM/GFEM

$$V^{\mathsf{PU}} = \sum_{i=1}^{N} \varphi_i \ V_i = \sum_{i=1}^{N} \varphi_i \ \mathcal{P}^{\mathsf{p}_i} + \sum_{i=1}^{N} \varphi_i \ \mathcal{E}_i$$

Linear FEM as PU

- Consider interval [0, 1] mit $\varphi_{\mathbf{0}}^{\text{FEM}}$, $\varphi_{\mathbf{1}}^{\text{FEM}}$, $V_i = \{1, x\}$.
- Products of functions $\varphi_i^{\text{FEM}} \psi_i^n$ quadratic polynomials.
- Number of functions $\#\{\varphi_i^{\text{FEM}}\psi_i^n\} = 4$.

- Approximation benefits from higher reproducing properties of PU.
- Selection of local spaces not completely local (blending elements).
- Global stability *not* implied by local stability.
- Recently introduced: Stable GFEM (Babuška & Banerjee)

Selection of the PU - Meshfree

- Ensure $\varphi_i \equiv 1$ on $\omega_{i,FT} \subset \omega_i = \text{supp}(\varphi_i)$, $|\omega_{i,FT}| \approx |\omega_i|$.
- Global independence implied by local independence on ω_{i,FT}.
- Supports are *smaller* than in FEM.

- Order of global approximation inherited from local orders.
- Complete independence of local spaces, no compatibility.
- Global stability implied by local stability.

$$\mathcal{K}_{1}^{-1} \Big(\sum_{i=1}^{N} \sum_{m=1}^{d_{i}} (u_{i}^{m})^{2} \Big)^{\frac{1}{2}} \leq h^{-\frac{d}{2}} \| u^{\mathsf{PU}} \|_{L^{2}(\Omega)} \leq \mathcal{K}_{2} \Big(\sum_{i=1}^{N} \sum_{m=1}^{d_{i}} (u_{i}^{m})^{2} \Big)^{\frac{1}{2}}$$

Numer. Math. 118 (2011)

Selection of local enrichments

Enrichments

- Exact enrichments
 - Known singularitites (e.g. $\eta(x) = ||x x_0||^{\alpha}$),
 - Known discontinuities (e.g. $\eta(x) = \cos(\frac{\theta_c}{2})$)
- Approximate enrichments:
 - Singularities $\eta(x) = ||x x_0||^{\beta}$
 - Discontinuities $\eta(x) = H_{\pm}(x c)$
 - Boundary layers $\eta(x) = \exp(1 \operatorname{dist}(x, c))$
 - Radial component of solution
- Numerical enrichments:
 - Cell problems (with/without global-local-approach)
 - Reconstruction of experimental data (or reduced order basis)
 - Eigenfunctions of local problems

Goals

- Optimal fine level approximation: Error minimization.
- Acceptable coarse level approximation: Fast & robust solution.
- Load-balancing in local and global operations.

Global stability & local preconditioning

Stability of local approximation spaces

- Orthogonal basis for local enrichment space *E_i*.
- Elimination of \mathcal{P}^{P_i} from enrichment space \mathcal{E}_i .

Local preconditioner

Consider local mass matrix on patch ω_i (i.e. on $\omega_{i,FT}$)

$$(M^{i})_{n,m} := \int_{\omega_{i}, F_{i} \cap \Omega} \vartheta_{i}^{n} \vartheta_{i}^{m} dx \quad \text{für alle } m, n$$
$$M_{i} = \begin{pmatrix} M_{\mathcal{P}, \mathcal{P}}^{i} & M_{\mathcal{P}, \mathcal{E}}^{j} \\ M_{\mathcal{E}, \mathcal{P}}^{i} & M_{\mathcal{E}, \mathcal{E}}^{j} \end{pmatrix} \quad \begin{array}{c} O_{\mathcal{P}}^{T} M_{\mathcal{P}, \mathcal{P}}^{j} O_{\mathcal{P}} = D_{\mathcal{P}} \\ O_{\mathcal{E}}^{T} M_{\mathcal{E}, \mathcal{E}}^{i} O_{\mathcal{E}} = D_{\mathcal{E}} \end{pmatrix}$$

Stable basis for $V_i = \mathcal{P}^{p_i} + \mathcal{E}_i \approx \mathcal{P}^{p_i} \oplus \mathcal{D}_i$ with $\mathcal{D}_i \approx \mathcal{E} \setminus \mathcal{P}^{p_i}$ via

$$\boldsymbol{S}_{i}^{\mathcal{E} \setminus \mathcal{P}} := \left(\begin{array}{cc} \boldsymbol{D}_{\mathcal{P}}^{-1/2} \boldsymbol{O}_{\mathcal{P}}^{\mathsf{T}} & \boldsymbol{0} \\ -\tilde{\boldsymbol{D}}_{\mathcal{D}}^{-1/2} \tilde{\boldsymbol{O}}_{\mathcal{D}}^{\mathsf{T}} \boldsymbol{M}_{\mathcal{E}, \mathcal{P}}^{*} \boldsymbol{D}_{\mathcal{P}}^{-1/2} \boldsymbol{O}_{\mathcal{P}}^{\mathsf{T}} & \tilde{\boldsymbol{D}}_{\mathcal{D}}^{-1/2} \tilde{\boldsymbol{O}}_{\mathcal{D}}^{\mathsf{T}} \tilde{\boldsymbol{D}}_{\mathcal{E}}^{-1/2} \tilde{\boldsymbol{O}}_{\mathcal{E}}^{\mathsf{T}} \end{array} \right)$$

Control of $K_{1,i}$ and $K_{2,i}$ during computation.

(can be done for any norm)

Exact enrichments: Linear fracture mechanics

Goal

Error minimization of finest level (accuracy of SIF)

Displacement discontinuous across crack

$$\mathcal{E}_i = \mathcal{P}^{p_i} \cdot H^C$$

Stress is singular at crack tip (i.e. gradient of displacement)

$$\mathcal{E} = \{\sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\sin\theta\sin\frac{\theta}{2}, \sqrt{r}\sin\theta\cos\frac{\theta}{2}\}.$$

Enrichment zone & exact solution

Exact enrichments: Linear fracture mechanics

Error Mognitude 2e-06 4e-06 6e-06

	J	dof	N	eL∞	$\rho_L \infty$	e/2	ρ1 2	e _H 1	$\rho_H 1$	
	with respect to Ω									
	4	1748	256	7.044-3	0.90	3.425-3	1.00	3.677_2	0.56	
•	5	6836	1024	2.349_3	0.81	9.265_4	0.96	1.795_2	0.53	
	6	26996	4096	7.999-4	0.78	2.410_4	0.98	8.893_3	0.51	
	7	107252	16384	2.751-4	0.77	6.121 ₅	0.99	4.508_3	0.49	
	8	427508	65536	9.501_5	0.77	1.535_5	1.00	2.215_3	0.51	
	9	1686716	262144	3.273-5	0.78	3.820-6	1.01	9.948-4	0.58	
gales mady Ag	with respect to E ₁									
	4	236	16	5.745-2	0.53	3.112_2	0.66	1.050_1	0.56	
-	5	528	36	1.915_2	1.36	7.083 ₃	1.84	4.028_2	1.19	
	6	1448	100	6.521_3	1.07	1.594_3	1.48	1.434_2	1.02	
	7	4632	324	2.243_3	0.92	3.639_4	1.27	5.082_3	0.89	
	8	16376	1156	7.747_4	0.84	8.482_5	1.15	1.802_3	0.82	
	9	61368	4356	2.670-4	0.81	2.020-5	1.09	6.441-4	0.78	
	with respect to E ₂									
	4	56	4	6.977 ₂	-	5.785 ₂	-	9.873 ₂	-	
	5	236	16	2.327-2	0.76	1.435_2	0.97	5.154_2	0.45	
	6	528	36	7.923 ₃	1.34	3.201 ₃	1.86	1.984_2	1.19	
	7	1448	100	2.725 ₃	1.06	6.776_4	1.54	7.085 ₃	1.02	
	8	4632	324	9.410_4	0.91	1.449_4	1.33	2.518_3	0.89	
	9	16376	1156	3.242-4	0.84	3.227-5	1.19	8.986_4	0.82	
	with respect to E ₃									
	5	56	4	3.072-2	-	2.693-2	-	4.728_2	-	
	6	236	16	1.046_2	0.75	6.846 ₃	0.95	2.523_2	0.44	
	7	528	36	3.597 ₃	1.33	1.476 ₃	1.91	9.733_3	1.18	
	8	1448	100	1.242-3	1.05	2.967-4	1.59	3.481_3	1.02	
	9	4632	324	4.279-4	0.92	6.060 ₅	1.37	1.244-3	0.88	
. 04	$e := \ u - u_j^{PU}\ ,$					$\rho := \log(\frac{e_l}{e_{l-1}}) / \log(\frac{dof_l}{dof_{l-1}})$				
1e-05	Opt	imal: _{PL2}	$= \frac{2}{2}, \rho_{H^1}$	$=\frac{1}{2}$		cla	assical (h^{γ}) via $d \cdot \rho$	$\gamma = \gamma$	

schweitzer@scai.fraunhofer.de

Hydraulic fracture

Quadratic polynomials, tip enrichment zone, Heaviside & signed distance enrichment.

schweitzer@scai.fraunhofer.de

More examples

schweitzer@scai.fraunhofer.de

Copyright 2011 Fraunhofer Gesellschaft

Multilevel solver

Smoothing operator

Overlapping block-relaxation on $V_{i,k}$ -blocks.

Transparent construction

Construction is directly applicable to any choice of enrichment.

Sequence of PUM spaces $V_k^{\text{PU}} \not\supseteq V_{k-1}^{\text{PU}}$

$$V_{k}^{\mathsf{PU}} := \sum_{i=1}^{N_{k}} \varphi_{i,k} V_{i,k} = \sum_{i=1}^{N_{k}} \varphi_{i,k} (\mathcal{P}^{\mathsf{p}_{i,k}} + \mathcal{E}_{i,k}) = \sum_{i=1}^{N_{k}} \varphi_{i,k} (\mathcal{P}^{\mathsf{p}_{i,k}} \oplus \mathcal{D}_{i,k})$$
from sequence of patches $\omega_{i,k}$ ($\omega_{i,k-1} \supseteq \omega_{i,k}$), e.g. PUs $\varphi_{i,k}$.

Interlevel transfer: Local L²-projection

Block-diagonal prolongation:
$$V_{j,k-1} \to V_{i,k}$$
 (exact for $V_{j,k-1}$)
 $\widetilde{\Pi}_{k-1}^{k} := (\widetilde{M}_{k}^{k})^{-1}(\widetilde{M}_{k-1}^{k}), \quad \widetilde{\omega}_{i,k} := \omega_{i,k} \cap \Omega$
 $(\widetilde{M}_{k}^{k})_{n,m}^{i} := \langle \vartheta_{i,k}^{m}, \vartheta_{i,k}^{n} \rangle_{L^{2}(\widetilde{\omega}_{i,k})} \quad (\widetilde{M}_{k-1}^{k})_{n,m}^{i} := \langle \vartheta_{j,k-1}^{m}, \vartheta_{i,k}^{n} \rangle_{L^{2}(\widetilde{\omega}_{i,k})}$

Solver efficiency: Polynomials

Poisson problem with linear approximation spaces.

Solver efficiency: Approximate enrichments

Explicit dynamics

Model problem & Central differences in time

$$u_{tt}(x,t) = \Delta u(x,t) \quad (x,t) \in \Omega \times (0,T)$$
$$(\cdot, t_{n+1}) = (\delta t)^2 \Delta u(\cdot, t_n) + 2u(\cdot, t_n) - u(\cdot, t_{n-1}) =: f(\cdot) \quad \text{in } \Omega.$$

Galerkin in space

и

Given $f \in L^2(\Omega)$ find $u^h \in V^h \subset L^2(\Omega)$ such that for all $v^h \in V^h$

$$\langle f - u^h, v^h \rangle_{L^2(\Omega)} = 0$$

Mass matrix problem

Let
$$\hat{f} = (f_i)$$
, $M = (M_{i,j})$ where $f_i = \langle f, \phi_i \rangle_{L^2(\Omega)}$, $M_{i,j} = \langle \phi_j, \phi_i \rangle_{L^2(\Omega)}$

$$M\tilde{u}=\hat{f}$$

L^2 -projection onto V^{PU}

Global L^2 -projection onto V^{PU}

$$\Pi_{L^{2}(\Omega)}: L^{2}(\Omega) \rightarrow V^{\mathsf{PU}}, \quad f \mapsto u^{h}, \quad M\tilde{u} = \hat{f}$$

Consistent mass matrix

$$M = (M_{(i,n),(j,m)}), \quad M_{(i,n),(j,m)} = \langle \varphi_j \vartheta_j^m, \varphi_i \vartheta_i^n \rangle_{L^2(\Omega)},$$

Moment-vector

$$\hat{f} = (f_{(i,n)}), \quad f_{(i,n)} = \langle f, \varphi_i \vartheta_i^n \rangle_{L^2(\Omega)}.$$

Re-interpretation of moments

$$f_{(i,n)} = \langle f, \varphi_i \vartheta_i^n \rangle_{L^2(\Omega)} = \int_{\Omega} f \varphi_i \vartheta_i^n \, dx = \int_{\Omega \cap \omega_i} f \varphi_i \vartheta_i^n \, dx$$

$$= \langle f | \varphi_i | \vartheta_i^n \rangle_{L^2(\Omega \cap \omega_i)} = \langle f, \vartheta_i^n \rangle_{L^2(\Omega \cap \omega_i, \varphi_i)}$$

$$^2(\Omega \cap \omega_i, \varphi_i) := \{ u \in L^2(\Omega) : \| u \|_{L^2(\Omega \cap \omega_i, \varphi_i)}^2 := \int_{\Omega \cap \omega_i} \varphi_i | u |^2 \, dx < \infty \}$$

 L^2 -projection onto V^{PU} : The Local Perspective

$$L^{2}(\Omega \cap \omega_{i}, \varphi_{i}) := \{ u \in L^{2}(\Omega) : \|u\|_{L^{2}(\Omega \cap \omega_{i}, \varphi_{i})}^{2} := \int_{\Omega \cap \omega_{i}} \varphi_{i} |u|^{2} dx < \infty \}$$

Local L^2 -projection onto V^{PU}

$$\bar{\Pi}_{L^{2}(\Omega)}: L^{2}(\Omega) \to V^{\mathsf{PU}}, \quad f \mapsto \bar{u}, \quad \bar{M}\tilde{\bar{u}} = \hat{f}$$

Localized mass matrix

$$\bar{M} = (\bar{M}_{(i,n),(j,m)}), \quad \bar{M}_{(i,n),(j,m)} = \begin{cases} 0 & i \neq j \\ \langle \vartheta_i^m | \varphi_i | \vartheta_i^n \rangle_{L^2(\Omega \cap \omega_i)} & i = j \end{cases}$$

- Construction is independent of local spaces (enrichments, order)
- Consistent right-hand side f̂
- Block-diagonal matrix \overline{M}
- Symmetric positive definite \bar{M}

Consistent vs. Lumped Mass Matrix

Lemma

The approximation $\bar{u} \in V^{PU}$ obtained by local projection $\bar{\Pi}_{L^2(\Omega)}$ satisfies

$$\|f-\bar{u}\|_{L^2(\Omega)} \leq \sqrt{C_{\infty}} \Big(\sum_{i=1}^N \hat{\epsilon}_i^2\Big)^{1/2}.$$

Moreover, the operator $\overline{M} - M$ is symmetric positive semi-definite.

Conservation $u = \Pi f = \overline{\Pi} f = \overline{u}$

For all $\tilde{w} \in \ker(\bar{M} - M)$ holds

$$\|w\|_{L^2(\Omega)}^2 = \tilde{w}^T M \tilde{w} = \tilde{w}^T \bar{M} \tilde{w}.$$

If $w \in L^2(\Omega)$ such that $w|_{\Omega \cap \omega_i} \in V_i$ then $\tilde{w} \in \ker(\overline{M} - M)$.

Further Properties

Interpretation: Classical FEM

Linear FEM space $V^{\text{FE}} = V^{\text{PU}} = \text{span}\langle \phi_i \rangle$ if $V_i = \text{span}\langle 1 \rangle$. Thus,

$$\bar{M}_{i,i} = \int_{\Omega} \phi_i \ dx = \int_{\Omega} \sum_{j=1}^{N} \phi_j \phi_i \ dx = \sum_{j=1}^{N} \int_{\Omega} \phi_j \phi_i \ dx = \sum_{j=1}^{N} M_{i,j}.$$

Application to GFEM/XFEM

 \overline{M} always invertible if local basis stable with respect to $L^2(\Omega \cap \omega_i, \varphi_i)$.

Convergence: Discontinuous Galerkin

As $\varphi_i \to \chi_{\omega_i}$ we find \overline{M} and M become the consistent mass matrix of the resulting discontinuous space $V = \sum_{i=1}^{N} \chi_{\omega_i} V_i$

Time-Stepping Results: Properties

Conservation

$$(\bar{M} - M)x = \lambda x$$
, $\ker(\bar{M} - M) \supseteq \mathcal{P}^p$

Critical time-step

$$Kx = \lambda Mx, \quad Kx = \lambda \overline{M}x,$$

Stability limit on time-step:

$$\delta t_{\text{critical}} \leq \frac{2}{\sqrt{\lambda_{\max}}},$$

Preconditioner

$$Mx = \lambda \overline{M}x, \quad \dim\{x : \lambda = 1\}$$

schweitzer@scai.fraunhofer.de

Copyright 2011 Fraunhofer Gesellschaft

Time-Stepping Results: Properties

SCA

Time-Stepping Results: Properties

Singular solution: Enrichment, p = 3 and $\alpha = 1.1, 1.5, 1.9$ (top to bottom) 🔰 Fraunhofer

Dispersion error - Linear Approximation

- Dispersion properties with lumped mass comparable to consistent mass.
- Results with lumped mass less sensitive to location of wave.
- Acceptable accuracy of \leq 5% error in phase velocity with \approx 6 linear patches (small overlap) per wavelength.

Dispersion error - Cubic Approximation

Acceptable accuracy attained with single cubic patch (small overlap) per wavelength.

Elastic Wave 2D: Cubic Approximation, t = 0.1, 0.4, 0.68

Fraunhofer

schweitzer@scai.fraunhofer.de

Copyright 2011 Fraunhofer Gesellschaf

Snapshot comparison at T = 4

Software framework PaUnT

- CAD interface
- Polynomials of arbitrary degree
- User-definable enrichment functions
- Automatic construction of well-conditioned basis
- Multilevel solver, Newton solver, interfaces to external solvers
- Implicit & explicit time stepping schemes (consistent/lumped mass)
- Data export: VTK, Matlab
- Post-Processing: ParaView Plugin

Upcoming event

Eighth International Workshop Meshfree Methods for Partial Differential Equations

DEDICATION:	To the memory of Ted Belytschko					
DATE:	SEPTEMBER 7-9, 2015					
LOCATION:	BONN, GERMANY					
SPONSORS:	Sonderforschungsbereich 1060					
	Hausdorff Center for Mathematics					
ORGANIZERS:	Ivo Babuška (University of Texas at Austin, USA)					
	Jiun-Shyan Chen (University of California, San Diego, USA)					
	Wing Kam Liu (Northwestern University, USA)					
	Antonio Huerta (Universitat Politècnica de Catalunya, Spain)					
	Harry Yserentant (Technische Universität Berlin, Germany)					
	Michael Griebel (Rheinische Friedrich-Wilhelms-Universität Bonn, Germany)					
	Marc Alexander Schweitzer (Rheinische Friedrich-Wilhelms-Universität Bonn, Germany)					

