

Extending the Method of Fundamental Solutions to Non Homogeneous Elastic Wave Propagation Problems

Svilen S. Valtchev

Center for Computational and Stochastic Mathematics University of Lisbon, Portugal

SIAM - GS15, Stanford University

01/07/2015

Outline:

- Elastic Wave Propagation Problems
- The Classical Method of Fundamental Solutions (MFS)
 - Motivation and numerical formulation.
 - Theoretical and numerical results
- Extending the MFS to Non Homogeneous BVPs
- Numerical Examples
 - PDE with constant frequency
 - Interior wave scattering problem
 - A more general PDE (variable coefficients)

Elastic Wave Propagation Problems

$$\begin{cases} \mathcal{E}\boldsymbol{u} = 0 & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g} & \text{on } \Gamma \end{cases}$$

- Continuous, isotropic elastic medium $\ \Omega \subset \mathbb{R}^d$
- Cauchy-Navier equations of elastodynamics:

 $\mu u_{i,jj} + (\lambda + \mu)u_{j,ji} = \rho \ddot{u}_i, \quad i = 1, \dots, d$

• Search for a time-harmonic solution:

$$\boldsymbol{u}(x,t) = \boldsymbol{u}(x)e^{-i\omega t}$$

$$\mathcal{E}\boldsymbol{u} := \mu \Delta \boldsymbol{u} + (\lambda + \mu) \nabla (\nabla \cdot \boldsymbol{u}) + \rho \omega^2 \boldsymbol{u} = 0$$

 ρ - density, $\lambda,\,\mu$ - Lamé constants, ω - frequency

Compressional wave number $k_p = \omega \sqrt{\frac{\rho}{\lambda + 2\mu}}$ and shear wave number $k_s = \omega \sqrt{\frac{\rho}{\mu}}$

Kupradze tensor (FS)

$$\mathbb{G}_{\omega}(x) = \frac{1}{\rho\omega^2} \begin{bmatrix} k_s^2 \Phi_{k_s}(x)\mathbb{I} + \mathbb{D}(\Phi_{k_s} - \Phi_{k_p})(x) \end{bmatrix} \quad \begin{array}{l} \mathbb{I} = \delta_{ij} \\ \mathbb{D} = \partial_{ij} \end{array}$$

where Φ_{k_p} and Φ_{k_s} are FS for the Helmholtz operators with frequencies k_p and k_s

Motivation for the Method of Fundamental Solutions (MFS)

• Consider the single layer potential (s.l.p.) for the solution of the Dirichlet BVP

$$\boldsymbol{u}(x) = (\mathcal{L}\boldsymbol{\varphi})(x) = \int_{\Gamma} \mathbb{G}_{\omega}(x-y)\boldsymbol{\varphi}(y) \,\mathrm{d}s_y, \quad x \in \Omega$$
 (continuous across Γ)

 \bullet Define a Fredholm BIE of the first kind for the density φ

$$\int_{\Gamma} \mathbb{G}_{\omega}(x-y)\boldsymbol{\varphi}(y) \, \mathrm{d}s_y = \boldsymbol{g}(x), \quad x \in \Gamma$$
 (an ill-posed problem)
(the kernel is singular)

• Consider the s.l.p of u on an auxiliary boundary $\hat{\Gamma} = \partial \hat{\Omega}$ with $\hat{\Omega} \supset \bar{\Omega}$

$$\boldsymbol{u}(x) = (\hat{\boldsymbol{\mathcal{L}}}\boldsymbol{\varphi})(x) = \int_{\hat{\Gamma}} \mathbb{G}_{\omega}(x-y)\boldsymbol{\varphi}(y) \,\mathrm{d}s_y, \quad x \in \bar{\Omega}$$
 (regular integral)

• Approximate the integral by a quadrature rule with weights γ_j and knots $y_j \in \hat{\Gamma}$

$$\boldsymbol{u}(x) \approx \tilde{\boldsymbol{u}}(x) = \sum_{j} \gamma_{j} \mathbb{G}_{\omega}(x - y_{j}) \boldsymbol{\varphi}(y_{j})$$
 (\tilde{u} satisfies the PDE)

• The approximate solution of the BIE $\hat{\mathcal{L}}arphi=g$ is reduced to the problem:

Find coefficients $oldsymbol{arphi}(y_j)\in\mathbb{C}^d$, such that $\, ilde{oldsymbol{u}}$ satisfies (approximately) the BC

• The Classical Method of Fundamental Solutions

- Solving the Linear System: collocation (if n = m) or least squares (if n > m)
- Regularization is required: Truncates Singular Value Decomposition (**TSVD**)

Theoretical Results (homogeneous BVP)

$$\mathcal{S}_D(\Gamma, \hat{\Gamma}) = \operatorname{span}\{\mathbb{G}_\omega(x-y)|_{x\in\Gamma} : y \in \hat{\Gamma}\}$$

MFS approximation space

• Assume that $\omega > 0$ is not an eigenfrequency for the Dirichlet BVP in Ω

Lemma: The restrictions to Γ of $\mathbb{G}_{\omega}(\cdot - y_1), \ldots, \mathbb{G}_{\omega}(\cdot - y_n)$ are linearly independent.

Theorem [Density result]: For $r \ge 1/2$ the space $\mathcal{S}_D(\Gamma, \hat{\Gamma})$ is dense in $[H^r(\Gamma)]^d$.

Proof:

$$\hat{\mathcal{L}} : [H^{r-1}(\hat{\Gamma})]^d \to [H^r(\Gamma)]^d \qquad \langle \hat{\mathcal{L}}\varphi, \phi \rangle = \langle \varphi, \hat{\mathcal{L}}^* \phi \rangle \qquad \hat{\mathcal{L}}^* : [H^{-r}(\Gamma)]^d \to [H^{-r+1}(\hat{\Gamma})]^d \\ (\hat{\mathcal{L}}\varphi)(x) = \int_{\hat{\Gamma}} \mathbb{G}_{\omega}(x-y)\varphi(y) \, \mathrm{d}s_y \qquad (\hat{\mathcal{L}}^*\phi)(y) = \int_{\Gamma} \overline{\mathbb{G}}_{\omega}(x-y)\phi(x) \, \mathrm{d}s_x$$

- $\boldsymbol{S}_D(\Gamma, \hat{\Gamma})$ is dense in $\mathcal{R}(\hat{\boldsymbol{\mathcal{L}}})$ (discretization argument);
- $[\mathcal{R}(\hat{\mathcal{L}})]^{\perp} = ker(\hat{\mathcal{L}}^{*})$ (bounded linear operators acting between Banach spaces);
- it is sufficient to show that $ker(\hat{\boldsymbol{\mathcal{L}}}^*) = \{0\}.$

• Typical Numerical Behavior of the MFS (circular domain)

- $\Omega = B(0,1) \subset \mathbb{R}^2, \ \hat{\Gamma} = S^1_R \ (R > 1), \ \lambda = 1, \ \mu = 2, \ \rho = 1, \ \omega = 1$
- $g(x) = de^{ik_px \cdot d} + d^{\perp}e^{ik_sx \cdot d}$ with $d = (1,1)/\sqrt{2}$ (P-wave & S-wave)
- Remark: choose n = m for higher accuracy (smooth settings)

- Exponential convergence with n = m
- \bullet Algebraic convergence with R
- Trade-off between accuracy and conditioning

Non Homogeneous PDE

• The MFS for nonhomogeneous PDEs

$$\begin{cases} \Delta^{\star} \boldsymbol{u} + \rho \omega^{2} \boldsymbol{u} = \boldsymbol{f} & \text{in } \Omega \\ \boldsymbol{u} = \boldsymbol{g} & \text{on } \Gamma \end{cases} \qquad \tilde{\boldsymbol{u}}(x) = \sum_{r=1}^{p} \sum_{j=1}^{n} \mathbb{G}_{\omega_{r}}(x - y_{j}) \cdot \boldsymbol{a}_{r,j} \\ \tilde{\boldsymbol{u}}(x) = \sum_{r=1}^{p} \sum_{j=1}^{n} \mathbb{G}_{\omega_{r}}(x - y_{j}) \cdot \boldsymbol{a}_{r,j} \\ \mathcal{U} = \{y_{j} \in \hat{\Gamma} : j = 1, \dots, n\} \\ \mathcal{U} = \{y_{j} \in \hat{\Gamma} : j = 1, \dots, n\} \\ \mathcal{U} = \{w_{r} > 0 : r = 1, \dots, p\} \end{cases} \quad \text{DOF} \\ \mathcal{U}_{0} = \{x_{i} \in \Sigma : i = 1, \dots, m_{0}, \bar{\Omega} \subseteq \Sigma \subset \hat{\Omega}\} \\ \mathcal{U}_{1} = \{x_{i} \in \Gamma : i = 1, \dots, m_{1}\} \end{cases} \quad \text{collocation points} \end{cases}$$

 $\dagger \text{ Note that } (\Delta^{\star} + \rho \omega^2) \mathbb{G}_{\omega_r} = \rho(\omega^2 - \omega_r^2) \mathbb{G}_{\omega_r} \text{ since } \Delta^{\star} \mathbb{G}_{\omega_r} = -\omega_r^2 \mathbb{G}_{\omega_r} \text{ (no differentiation)}$

- Solving the Linear System: collocation (if n = m) or least squares (if n > m)
- Regularization is required: Truncates Singular Value Decomposition (TSVD)

• Theoretical Results (density result and error bound)

Theorem [Density result]:
$$S = \text{span} \{ \mathbb{G}_{\omega}(x-y) |_{x \in \Omega} : y \in \hat{\Gamma}, \omega \in \mathbb{R}^+ \}$$
 is dense in $[L^2(\Omega)]^d$.

$$\begin{split} \tilde{\boldsymbol{f}}(x) &= \sum_{r=1}^{p} \sum_{j=1}^{n} \mathbb{G}_{\omega_{r}}(x-y_{j}) \cdot \mathbf{a}_{r,j}, \quad x \in \bar{\Omega} \quad \text{such that} \quad ||\boldsymbol{f} - \tilde{\boldsymbol{f}}||_{[L^{2}(\Omega)]^{d}} \leq \varepsilon_{1} \\ \tilde{\boldsymbol{u}}_{P}(x) &= \sum_{r=1}^{p} \sum_{j=1}^{n} \frac{1}{\rho(\omega^{2} - \omega_{r}^{2})} \mathbb{G}_{\omega_{r}}(x-y_{j}) \cdot \mathbf{a}_{r,j}, \quad x \in \bar{\Omega} \quad \text{satisfies} \quad (\Delta^{\star} + \rho\omega^{2}) \, \tilde{\boldsymbol{u}}_{P} = \tilde{\boldsymbol{f}} \\ & \boldsymbol{u} = \boldsymbol{u}_{P} + \boldsymbol{u}_{H} \quad \approx \quad \tilde{\boldsymbol{u}} = \tilde{\boldsymbol{u}}_{P} + \tilde{\boldsymbol{u}}_{H} \\ \begin{cases} (\Delta^{\star} + \rho\omega^{2}) \, \boldsymbol{u}_{P} = \boldsymbol{f} & \text{in } \Omega \\ \boldsymbol{u}_{P} = \tilde{\boldsymbol{u}}_{P} & \text{on } \Gamma \\ & \boldsymbol{v} \text{ well posedness} \end{cases} \quad \begin{cases} (\Delta^{\star} + \rho\omega^{2}) \, \boldsymbol{u}_{H} = 0 & \text{in } \Omega \\ \boldsymbol{u}_{H} = \boldsymbol{g} - \tilde{\boldsymbol{u}}_{P} & \text{on } \Gamma \\ & \boldsymbol{v} \text{ classical MFS} \end{cases} \\ \|\boldsymbol{u}_{P} - \tilde{\boldsymbol{u}}_{P}\|_{[H^{1}(\Omega)]^{d}} \leq C_{1}\varepsilon_{1} \end{cases} \quad \|\boldsymbol{u}_{H} - \tilde{\boldsymbol{u}}_{H}\|_{[H^{1}(\Omega)]^{d}} \leq \varepsilon_{2} \end{split}$$

Choose ε_1 and ε_2 such that $C_1\varepsilon_1 + \varepsilon_2 \leq \varepsilon$

$$\|oldsymbol{u}- ilde{oldsymbol{u}}\|_{[H^1(\Omega)]^d} \leq \|oldsymbol{u}_P- ilde{oldsymbol{u}}_P\|_{[H^1(\Omega)]^d} + \|oldsymbol{u}_H- ilde{oldsymbol{u}}_H\|_{[H^1(\Omega)]^d} \leq arepsilon$$

• Numerical Example #1 (*known exact solution*)

• Parametric domain: $z(t) = 4e^{it} + 0.7e^{-4it}, t \in [0, 2\pi];$

•
$$\lambda = 2, \ \mu = 2, \ \omega = 2, \ \rho = 1;$$

• $\boldsymbol{u}(x) = \left\{ \begin{array}{l} i\cos(x_1 - x_2) - \sin(x_1 - x_2) \\ i\exp(-x_1^2) + \cos(x_1 + x_2) \end{array} \right\};$

•
$$\Gamma = 2.5 \times \Gamma, n = 40, \Sigma = 1.3 \times \overline{\Omega}, m_0 = 974, m_1 = 140.$$

• Numerical Example #1 (*cont.*) – Convergence

- Error decreases with the number of collocation points (m_0, m_1)
- Error decreases with the number of source points (n)
- Error decreases with the distance between Γ and $\hat{\Gamma}$
- Condition number of the linear system increases with m_0, m_1, n and p
- Error decreases with the number of test frequencies (p)

The choice of W is of the utmost importance
 W₁ = {i : i = 1, 2, ..., p}
 W_{1/2} = {i/2 : i = 1, 2, ..., p}

Highly accurate numerical results may be achieved only by varying all the parameters simultaneously. Parameters $\hat{\Gamma}$, Σ , m_0 , m_1 , n, p are interdependent.

Like in MFS

• Numerical Example #1 (cont.) – Higher Accuracy

PDE residuals $R_i^{\Omega} = f(x_i) - (\Delta^* + \rho \omega^2) \tilde{u}(x_i), \quad x_i \in \mathcal{X}_0$

BC residuals $R_i^{\Gamma} = g(x_i) - \tilde{u}(x_i), \quad x_i \in \mathcal{X}_1$

Least squares functional $J = \frac{1}{2} \left(\sum_{i=1}^{m_0} \left[R_i^{\Omega} \right]^2 + \alpha \sum_{i=1}^{m_1} \left[R_i^{\Gamma} \right]^2 \right) \quad \alpha$ - penalty coefficient

 α - relative weight of the boundary residuals with respect to the interior residuals

$$\begin{bmatrix} \rho(\omega^2 - \omega_1^2) \boldsymbol{B}(\omega_1, \mathcal{X}_0, \mathcal{Y}) & \dots & \rho(\omega^2 - \omega_p^2) \boldsymbol{B}(\omega_p, \mathcal{X}_0, \mathcal{Y}) \\ \alpha \ \boldsymbol{B}(\omega_1, \mathcal{X}_1, \mathcal{Y}) & \dots & \alpha \ \boldsymbol{B}(\omega_p, \mathcal{X}_1, \mathcal{Y}) \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1,1} \\ \vdots \\ \mathbf{a}_{p,n} \end{bmatrix} = \begin{bmatrix} \mathbf{f}(\mathcal{X}_0) \\ \alpha \ \mathbf{g}(\mathcal{X}_1) \end{bmatrix} \quad \text{Least squares} \\ \text{Regularization} \end{bmatrix}$$

α	$\varepsilon^\Omega_\infty$	$\varepsilon^{\Gamma}_{\infty}$	$\varepsilon^{PDE}_{\infty}$
1	6.8073×10^{-7}	3.6926×10^{-7}	8.8277×10^{-6}
50	1.7285×10^{-7}	1.6129×10^{-8}	7.9281×10^{-6}
100	8.5050×10^{-8}	8.4475×10^{-9}	6.6461×10^{-6}
150	6.2990×10^{-8}	6.0600×10^{-9}	5.6295×10^{-6}
200	3.5755×10^{-7}	4.4197×10^{-9}	6.6751×10^{-6}

Numerical Example #2 (interior wave scattering)

•
$$g(x) = -u^{inc}(x) = -Re[\mathbb{G}_{\omega}(x-S)e_1]$$
 with $S = (0, -0.7)$;

•
$$f(x) = {\sin(x_1 + x_2); \cos(x_1 + x_2)};$$

•
$$\lambda = 2, \ \mu = 2, \ \rho = 1, \ \omega = 10;$$

•
$$\hat{\Gamma} = 2.5 \times \Gamma, n = 50, \Sigma = 1.3 \times \bar{\Omega}, m_0 = 1228, m_1 = 300, p = 28$$

• Numerical Example #3 (more general PDEs)

$$\Delta^{*} \boldsymbol{u} + a \, \boldsymbol{u} = \boldsymbol{f} \quad \text{in } \Omega$$

$$\boldsymbol{u} = \boldsymbol{g} \quad \text{on } \Gamma$$

$$\boldsymbol{a}(x) = 2 + \sin(x_{1} + x_{2})$$

$$\boldsymbol{a}(x) = 2 + \sin(x_{1} + x_{2})$$

$$\boldsymbol{a}(x) = \left\{ \begin{array}{l} i \cos(x_{1} - x_{2}) - \sin(x_{1} - x_{2}) \\ i \exp(-x_{1}^{2}) + \cos(x_{1} + x_{2}) \right\};$$

$$\boldsymbol{a}(x) = \left\{ \begin{array}{l} i \cos(x_{1} - x_{2}) - \sin(x_{1} - x_{2}) \\ i \exp(-x_{1}^{2}) + \cos(x_{1} + x_{2}) \right\};$$

$$\boldsymbol{a}(x) = \left\{ \begin{array}{l} i \cos(x_{1} - x_{2}) - \sin(x_{1} - x_{2}) \\ i \exp(-x_{1}^{2}) + \cos(x_{1} + x_{2}) \right\};$$

$$\boldsymbol{a}(x) = \left\{ \begin{array}{l} i \cos(x_{1} - x_{2}) - \sin(x_{1} - x_{2}) \\ i \exp(-x_{1}^{2}) + \cos(x_{1} + x_{2}) \right\};$$

$$\boldsymbol{b}(x) = \left\{ 0.5 \times \Gamma, n = 50, \Sigma = 1.2 \times \bar{\Omega}, m_{0} = 1910, m_{1} = 150; M_{1} + M_{2} + M_$$

- Carlos J. S. Alves, Nuno F. M. Martins and Svilen S. Valtchev, Extending the method of fundamental solutions to non homogeneous elastic wave problems, submitted, 2015.
- Pedro R. S. Antunes, Svilen S. Valtchev, A meshfree numerical method for acoustic wave propagation problems in planar domains with corners and cracks, J Comput. Appl. Math, 234, pp. 2646-2662, 2010.
- Svilen S. Valtchev, Asymptotic analysis of the method of fundamental solutions for acoustic wave propagation, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol. 1281, pp. 1179-1182, 2010.
- Svilen S. Valtchev, Nilson C. Roberty, A time-marching MFS scheme for heat conduction problems, Eng. Analysis Bound. Elements, 32, pp. 480-493, 2008.
- Carlos J. S. Alves, Svilen S. Valtchev, A Kansa Type Method Using Fundamental Solutions Applied to Elliptic PDEs, Advances in Meshfree Techniques, Computational Methods in Applied Sciences, vol. 5, Springer, 2006.
- Carlos J. S. Alves, Svilen S. Valtchev, Numerical comparison of two meshfree methods for acoustic wave scattering, Eng. Analysis Bound. Elements, 29, pp. 371-382, 2005.