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Introduction: imaging problem
Goal of the migration: given the propagation model of the 
earth, retrieve the locations and the amplitudes of the 
reflectors



Introduction: physics
Wave equation

f
z
u

y
u

x
uu

v
=

∂
∂−

∂
∂−

∂
∂−− 2

2

2

2

2

2

2

2ω

u is the pressure, f is the source

General form of the wave equation: A(x,v) u(x,xs,v) = f(x,xs)

Data: c(xs,xr) = R(x,xs,xr) u(x,xs)



Introduction: mathematics
Find v* such as:
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Migration-gradient:
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Introduction: migration

For all the shot gathers:
1. Compute the incident field from the source

2. Compute the backpropagated field of the shot gather

3. Cross-corrolate the two fields to obtain the shot migrated 
image

Stack over all the shots the migrated images

Need to solve efficiently the wave equation for a 
large number of shot-receiver positions and a large 
enough domain



High frequency solution: ray method
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τ obeys the Eikonal equation:

Α obeys the transport equation:
• Efficiently solved with a wavefront construction 
algorithm

• The approximation reaches its limits with complex 
earth structure (multipathing, irregular boundaries, 
…)

• Need to go back to the finite-difference solution
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Forward modeling
Time domain

Complexity:
2D: ntO(n2)
3D: ntO(n3)
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Time domain is more appropriate for the modeling 
of one shot and it is achievable in 3D because it is 
parallelizable

Frequency domain

Complexity (direct solver)
2D: nωO(n3)+ nωO(n2log(n))
2D: nωO(n6)+ nωO(n4log(n))



migration
Time domain

Complexity:
2D: nsntO(n2)
3D: nsntO(n3)
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nt = O(n) but nw = O(1)

In 2D: the frequency domain is preferable when ns is large

In 3D: not yet achievable in time domain; impossible in 
frequency domain with direct solver

Frequency domain

Complexity (direct solver)
2D: nωO(n3)+ nsnωO(n2log(n))
2D: nωO(n6)+ nsnωO(n4log(n))



“one-way” finite-difference migration
Paraxial approximation of the wave equation

Choice of a preferred direction, z-direction
Assume not too large lateral variation
Assume not too wide angle propagation from the 
preferred direction

Marching approach:

Complexity in 2D: nsnωO(n2)
Complexity in 3D: nsnωO(n3)
Feasible even in 3D
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Synthetic example no. 1
dipped interface

Interface dip: 40°, 60°, and 80°
Synthetic data, marine type acquisition, cable 
length 2 km
Frequencies from 8 to 20 Hz
One-way migration scheme with 70° Padé
approximation



dip angle models

40° dip

60° dip

80° dip



40° dip angle



60° dip angle



80° dip angle



Synthetic example no. 2:
SEG/EAGE salt model
Data reshot in 2D with a time domain method

velocity



SEG/EAGE salt model

one-way wave-equation



SEG/EAGE salt model

two-way wave-equation (high-pass filtered)



Golf of Mexico data set
Near offset traces

1055 shots of 320 traces, largest offset: ~8 km
For the processing, the data have been divided in 5 sets
For each subset, the model contained 1829 by 881 points with 
a spancing of 10 m (this leads to a sparse matrix of 1.6 106 by 1.6 106).



Velocity model



One-way, 70°



Two-way



Conclusions
One-way wave-equation migration is less 
accurate at steep dips and amplitudes.
In 2D, the two-way wave-equation migration is not 
much more expensive than one-way migration. In 
3D, this is not true.
In 3D, the one-way wave-equation migration is the 
only affordable solution with finite-difference type 
of migration



Conclusions
The 3D time domain “two-way” wave equation 
migration requires a peta flop computer

The challenge:
A 3D iterative Helmholtz solver faster than nsO(n4)
Can we process simultaneous 100’s of right hand 
sides ?
What is the memory requirement when n=1000 ?
How efficient would the parallelization be ?
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