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1. Introduction

The Helmholtz problem is defined as follows

− ∆u − k2u = f, in Ω,

Boundary condition on Γ = ∂Ω,

where:

• k = k(x, y, z) is the wavenumber

• for ”solid” boundaries: Dirichlet/Neumann
• for ”fictitious” boundaries: Sommerfeld du

dn
− iku = 0
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The resulting system

Efficient solution of a linear system,

Ax = b.

Properties: large, sparse, 3 dimensional heterogeneous Helmholtz
problems

Solution methods:
• direct solution methods (Gaussian elimination)
• multigrid
• Preconditioned Krylov methods
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Application: geophysical survey, hard Marmousi Model
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Application: optical storage
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2. Multigrid (standard geometric version)

• Smoothing method reduces high frequency components of an
error between numerical approximation and exact discrete
solution

• Coarse grid correction handles the low frequency error
components.

• Components are easily defined for elliptic equations, like
−uxx − uyy = f

• Problematic for the Helmholtz equation −uxx − uyy − k2u = f :

• Depending on k2, gives rise to both smoothing and coarse grid
correction difficulties.

C. Vuik, September 24, 2004 7 – p.7/21



Delft University of Technology

Smoothing

• For k2 > λ̃
1,1
h , the smallest eigenvalue of the Laplace operator, the

matrix has positive and negative eigenvalues.

⇒ Jacobi iteration with underrelaxation does not converge, but since
its smoothing properties are satisfactory, the convergence will
deteriorate gradually for k2 increasing.

• By the time k2 approaches 150, standard multigrid diverges. The
Jacobi relaxation now diverges for smooth eigenfrequencies with

λ̃
`,m
h < k2.

⇒ Consequently, multigrid will still converge as long as the coarsest
level used is fine enough to represent these smooth
eigenfrequencies.

• The coarsest level limits the convergence: When k2 gets larger
more variables need to be represented on the coarsest level for
standard multigrid convergence.
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Coarse grid correction

• Discrete eigenvalues close to the origin on a fine grid may
undergo a sign change after discretization on a coarser grid.

⇒ Then, the coarse grid correction does not give a convergence
acceleration, but a severe convergence degradation (or even
divergence) instead.

• In Elman et al. (2001) multigrid is combined with Krylov subspace
iteration methods. GMRES is proposed as a smoother and as a
cure for the problematic coarse grid correction. This method is,
however, not trivial to implement.

• Standard multigrid will also fail for k2-values very close to
eigenvalues. In that case subspace correction techniques should
be employed.

• For the reasons mentioned above we develop a preconditioner
that is not based on a regular splitting of the Helmholtz operator.
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3. Krylov methods

Conjugate Gradient Method

A is Symmetric Positive Definite (SPD)

• A = AT ,

• xT Ax > 0, for x 6= 0.

The A-inner product is defined by (y, z)A = yT Az,

and the A-norm by ‖y‖A =
√

(y, y)A =
√

yT Ay.

Krylov subspace: Kk(A; r0) = span{r0, Ar0, ..., A
k−1r0}

The Conjugate Gradient Method computes a solution such that

‖x − xk‖A = min
y∈Kk(A;r0)

‖x − y‖A
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Conjugate Gradient Method Convergence

The xk obtained from CG satisfy the following inequality:

‖x − xk‖A ≤ 2

(√
K2(A) − 1√
K2(A) + 1

)k

‖x − x0‖A.

Alog  || x   - x ||

i

i
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Superlinear Convergence Examples
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Krylov methods for general matrices

Properties of the CG method:

• based on the Krylov subspace: Kk(A; r0)

• the error is minimal in some norm (optimality)
• short recurrences

For general matrices, there is no method with all these properties!

CGNR
Apply CG to the normal equations: AT Ax = AT b

Drawbacks:

slow convergence, bad behavior with respect to rounding errors
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BiCG methods

No optimality

BiCG
r0, ..., rk−1 is a basis for Kk(A; r0) and s0, ..., sk−1 is a basis for
Kk(A; s0). The sequences {ri} and {si} are bi-orthogonal.

Drawbacks:

breakdown possible, AT is used, weak behavior with respect to round-

ing errors
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BiCG methods (faster variants)

No optimality

CGS
Two times as fast, AT is not used.

Bi-CGSTAB
More stable than CGS

Drawbacks:

breakdown possible, weak behavior with respect to rounding errors
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GMRES type methods (GCR)

Long recurrences, several variants available.

Suppose that A is diagonalizable so that A = XDX−1 and let

ε(k) = min
p∈Pk

p(0)=1

max
λi∈σ

|p(λi)|

Then the residual norm of the k-th iterate satisfies:

‖rk‖2 ≤ K(X)ε(k)‖r0‖2

where K(X) = ‖X‖2‖X
−1‖2. If furthermore all eigenvalues are

enclosed in a circle centered at C ∈ R with C > 0 and having radius R

with C > R, then

ε(k) ≤

(
R

C

)k

.
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Illustration of the theorem
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Convergence of GMRES

GMRES has also superlinear convergence.

But eigenvalue information can be useless for nonnormal matrices.

• a set of eigenvalues
• a non-increasing sequence

Claim: there exists a matrix A and a right-hand-side vector b such

that A has the specified eigenvalues and if GMRES is applied to the

corresponding system the norm of the residuals are equal to the non-

increasing sequence.
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Convergence of GMRES for a real spectrum
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Convergence of GMRES for a real spectrum
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Convergence of GMRES for a complex spectrum
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Convergence of GMRES for a complex spectrum
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Convergence of GMRES for a complex spectrum
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4. Conclusions

• Direct solution methods are not feasible for 3D problems

• The standard geometric Multigrid methods is not applicable

• The spectrum of the preconditioned matrix is important for the
convergence of Krylov methods

• Negative and positive eigenvalues lead to slow convergence

• Eigenvalues clustered around 1 lead to fast convergence
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