Doppler Influence on Waveform Orthogonality in 79GHz MIMO Phase-Coded Automotive Radar

Jeroen Overdevest, Feike Jansen, Faruk Uysal, Senior Member, IEEE and Alexander Yarovoy, Fellow, IEEE

Abstract—Utilization of phase-coded waveforms in automotive MIMO radars for short to medium range applications is studied. Performances of three most-promising binary code families (Gold, APAS and ZCZ sequences) are compared. Design trade-offs of practical implementation of phase-coded waveforms for MIMO radar are analyzed for the first time for a possible future System on Chip implementation. Orthogonality of the waveforms in case of moving targets is analyzed. The implications of the code properties for the Range-Doppler map, as well as the Range-Angular map, are pointed out. Doppler frequency shift impact on such performance indicators as the target peak power and range sidelobe levels in the range-Doppler plane, as well as the range and azimuth sidelobe behavior, and the angular error in the azimuthal plane have been comprehensively studied for the first time. It is shown that the time-staggered transmit scheme with autocorrelation properties only (while introducing azimuthal errors) results in improved performance compared to code division multiplexing with auto- and cross-correlation properties.

Index Terms—Automotive radar, PMCW, binary sequences, waveform orthogonality, Doppler influences

I. INTRODUCTION

AUTOMOTIVE radar plays a crucial role in the reduction of traffic casualties and the realization of autonomous driving due to its robustness and adverse weather tolerance. Frequency-Modulated Continuous Wave (FMCW) radars have matured over the last couple of years while more complex system architectures and enhanced DSP algorithms have become available. These designs feature MIMO architectures, which benefit over conventional radar systems in terms of increased detection probabilities by combining multiple channel outputs, estimation of azimuthal angular information, etc. [1]. Azimuthal angular resolution can be enhanced by increasing the number of transmit and/or receive antennas, which (by fixed distance between antennas) results in an increase of the antenna array aperture size [2, 3]. The demand for higher angular resolution and detection probability increase pushes towards further increase of MIMO transmit channel numbers [4], while the need of shorter measurement time requires the transition from sequential to simultaneous MIMO measurements with mutually orthogonal waveforms transmitted from different channels. Therefore, the need for transmit (quasi-) orthogonal waveforms is enormous in the MIMO radar field.

In FMCW MIMO systems, time-division multiple access (TDMA) or frequency-division multiple access (FDMA) has to be applied to realize simultaneous transmission and avoid cross-correlation among the transmitted waveforms. Recently, an alternative to FMCW modulation has gained attraction in the field of automotive radar, which is called Phase-Modulated Continuous Wave (PMCW) radar [5]–[9]. This modulation type is able to create multiple channel accesses by transmitting coded waveforms simultaneously, thus profiting of the full capacity.

A complete orthogonality study for PMCW radar systems has not been addressed in the currently available literature. In [10, 11], the performance of PMCW waveforms has been simulated using reflections from static targets. However, to get a more realistic view on the performance of the phase-modulated waveforms, analysis needs to be extended towards its main weakness: Doppler intolerance; and how this intolerance influences the orthogonality principles. In the application of automotive, we can address the range of velocities for which the performance of the radar should be attained. The intention of this paper is not to compensation for the Doppler distortions. Doppler compensation for BPSK PMCW has been investigated in the past, which resulted in several algorithms to alleviate its Doppler vulnerability, e.g. based on a recursive MMSE method [12] or multichannel correlators emulating for various Doppler shifts [13]. These would require tremendous computational powers, which currently does not fit industrial needs for a System on Chip solution.

In the search to promising code sets for PMCW radar, many code families have been explored in the past. Different classes of codes can be distinguished, ranging from binary sequences (Barker, M-sequence, Gold, Kasami [14], etc.), to complementary pairs (Golay [15]) and poly-phase codes [16] (Frank [17], P1-P2-P3-P4 codes [18]). Binary codes having other BPSK constellation than \(\{0, \pi\} \) also exist, such as Golomb codes [19], but are not considered in this paper. Complementary codes, such as Golay codes, show very auspicious auto- and cross-correlation values; however, the sum of the autocorrelation is prone to Doppler sensitivities [20]. While Doppler tolerance improvement of Golay codes have been proposed in [21], its application is limited by the relatively short realizable code lengths as well as small complementary sets. On the other hand, poly-phase codes show better Doppler resilience compared to binary and complementary sequences, but resembles discrete approximations of linear FM transmitted waveforms and thus have comparable performance to FMCW radars [22].

Impact of Doppler frequency shifts on orthogonality of

"Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org."
binary sequences, as well as such performance indicators of the codes such as sidelobe level of target image in the Range-Doppler and Range-Azimuth planes, produced by a MIMO PMCW radar are analyzed in this paper for the first time. Furthermore, different code sets have different peculiarities from implementation in MIMO radar point of view. E.g., most of the codes contain unfavorable characteristics, in terms of either the possibilities in generating a desired code set size and/or code length, or performance. For example, the preferred m-sequences have good autocorrelation properties but its downsides are its relatively high cross-correlation values as well the highly limited realizable set size [14]. Thus, this paper also discusses the design trade offs in PMCW automotive radar which (as for our best knowledge) has never been discussed with such aspects before. As a result of this analysis, we point out the three most promising binary (or bi-phase) sequences: Gold, APAS and ZCZ sequences for automotive radar applications. As performance of preferred m-sequences according to the study performed in [23] is very similar to those of Gold sequences, we omit them from the comparison in this paper.

The rest of the paper is organized as follows. Section II introduces the basic fundamentals and trade-offs of PMCW radar design, as well as the importance of the ambiguity function in phase-coded waveform design. Section III gives a detailed investigation of the three most promising binary sequences and their performance comparison. In Section IV, the transmission schemes that can be used in an automotive radar are explained. For proposed MIMO transmission schemes, Section V discusses the auto- and cross-correlation performance of the received signal under a Doppler-shift. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES

This section summarizes some required fundamentals for a clear understanding on MIMO phase-modulated waveforms. In a PMCW radar, the waveforms are coded using sequences from a certain set, or codebook, referred to as S. Here, $|S|$ denotes the sequence set size. Each codeword, or sequence in S is constructed out of symbols from alphabet such that the sequence is of length L_c. Binary Phase-Shift Keying (BPSK) can be used to modulate the codes from a predefined alphabet according to the phases $\phi(t) \in \{0, \pi\}$ on a single-carrier frequency f_c, resulting in the transmitted radio-frequency (RF) signal

$$s_{RF}(t) = e^{j2\pi f_c t + j\phi(t)} \quad (1)$$

All codes derived from a code family exhibit similar properties in terms of periodic autocorrelation function (PACF) and periodic cross-correlation function (PCCF). The codes determine the radar’s performance in terms of dynamic range and transmit (TX) orthogonality, whose can independently be characterized by theoretical metrics as the periodic autocorrelation function (PACF) and periodic cross-correlation function (PCCF), denoted by R_{xx} and R_{xy} respectively

$$R_{xx}[k] = \sum_{n=0}^{L_c-1} c_x[n]c_x^*[n-k], \quad (2)$$

$$R_{xy}[k] = \sum_{n=0}^{L_c-1} c_x[n]c_y^*[n-k], \quad (3)$$

where c_x and c_y are periodic sequences and, hence, are taken modulo L_c, and c^* denotes the complex conjugate. A single-period of c_x can be used to determine the correlation outputs.

Ideally, to avoid the effect of target masking and cross-influencing of concurrently transmitted waveforms, the PACF and PCCF should hold

$$R_{xx}[k] \neq 0 \quad \text{for mod}(k, L_c) = 0, \quad (4)$$

$$R_{xx}[k] = 0 \quad \text{for mod}(k, L_c) \neq 0, \quad (5)$$

$$R_{xy}[k] = 0 \quad \text{for all } k. \quad (6)$$

However, there are no perfect binary sequences possessing these characteristics. Sarwate [24], Welch [25] and Fang-Tan [26] have defined different lower bounds for different kind of sequences. Let us denote, ψ_a as the maximum sidelobe level of the PACF, whereas ψ_a is used to refer to the maximum value of the PCCF. Here with $\psi_m = \max\{\psi_a, \psi_c\}$, the famous Welch Bound presents a lower bound for binary sequence [25]

$$\psi_m^2 \geq \frac{(|S|-1)L_c^2}{|S|L_c - 1}. \quad (7)$$

Furthermore, in practice, the coded waveforms are acquired together with possible other transmitters’ waveforms in free space, being sampled by the analog-to-digital converter (ADC) after the low noise amplifier (LNA) and down-converter stage, affected by independent noise samples.

A. Trade-offs in PMCW

The theoretical limitation, shown by the inequality of (7), implies that in high-demanding designs trade-offs need to be made among imperfections in correlations values, sequence set size, or the code length. Here, the sequence set size relates to the number of (semi-)orthogonal channel accesses, while the code length influences the maximum unambiguous distance and velocity of a target observed by a radar. The maximum unambiguous distance R_u and maximum unambiguous velocity v_u are defined by, respectively

$$R_u < \frac{cT_cL_c}{2}, \quad (8)$$

$$|v_u| < \frac{\lambda}{4T_cL_c}. \quad (9)$$

where c is speed of light, T_c is the duration of a chip, and λ is the wavelength. Eq. (8) and (9) induce a lower and upper bound on the code length, L_c as follows

$$\frac{2R_u}{cT_c} < L_c < \frac{\lambda}{4v_uT_c}. \quad (10)$$
B. Ambiguity Function

Non-zero relative radial velocities between the source and a possible target causes the waveform to distort. While moving targets cause the wideband waveforms to contract and expand (in time-domain), narrowband waveforms experience a frequency shift of their carrier frequency by the so-called Doppler frequency f_D. The narrowband assumption holds in automotive applications for the predefined specifications of the so-called Short Range Radar (SRR), Medium Range Radar (MRR), and Long Range Radar (LRR) as given in [27]. The conditions for which this narrowband assumption can be taken into account are,

$$\frac{B}{f_c} < 0.1, \quad (11)$$
$$\frac{vT_f}{c} << \frac{c}{2B}, \quad (12)$$

where B denotes the receiver bandwidth, f_c is the carrier frequency, v is the target’s velocity, and $T_f = ML_c/T_c$ is the measurement time of a single frame. After neglecting the high order terms, the Doppler shift is usually be approximated by $f_D = 2\frac{v}{\lambda}$. Thus, we can write the received signal, that is input to the LNA, under the narrowband assumption [2] as

$$r(t) = s_{RF}(t - \tau) = e^{j2\pi f_c t} (1 + e^{j4\pi f_c \frac{R_0}{c}}) e^{-j2\pi f_D t},$$

where $\tau = 2(R_0 + vt)/c$ denotes the round-trip time-delay. In radar, the assumed frequency deviations, as well as time delays, can severely impact the matched filter’s performance. In this paper, we use the narrowband ambiguity function to observe the matched filter performance of each code family, which is determined by

$$\chi(\tau, f_D) = \int_{-\infty}^{\infty} s(t)s^*(t - \tau)e^{-j2\pi f_D t} dt. \quad (14)$$

III. Binary Code Families

This paper considers three encouraging binary code families: the Gold sequence (closely related to Kasami), APAS sequence, and Zero Correlation Zone (ZCZ) sequences.

A. Gold Sequence

Gold codes are nowadays implemented in telecommunication (CDMA) and satellite communications (GPS). This type of application takes advantage of the fact that large sets of sequences can be generated with relatively good cross-correlation properties [28]. Also, the sets can be easily constructed using only two preferred m-sequences. The Gold sequence is of length $L_c = 2^n - 1$ and is generated from two preferred m-sequences that are circularly shifted and modulo-2 added. However, the number of shift registers n must satisfy $\text{mod}(n, 2) = 1$ or $\text{mod}(n, 4) = 2$ [28]. The resulting Gold code set of period L_c, of a selected preferred m-sequence pair \mathbf{a} and \mathbf{b}, can mathematically be represented as

$$S_G(\mathbf{a}, \mathbf{b}) = \{\mathbf{a} \otimes D^l \mathbf{b} \} \quad \text{with} \quad l = 0, 1, \ldots, L_c - 1. \quad (15)$$

The operator D represents a shift to the periodic sequence by l positions to the right. Then, the set size contains \mathbf{a}, \mathbf{b} and $(2^n - 2)$ shifted versions of \mathbf{b}, therefore, resulting in a sequence set size is equal of $|S_G| = 2^n + 1$.

B. Almost Perfect Autocorrelation Sequence (APAS)

In 1992, Wolfmann was first to generate a binary sequence whose autocorrelation properties were perfect autocorrelation function except for one lag, known as the Almost Perfect Autocorrelation Sequences (APAS) [29]. He created the sequences up to the size of 100 based on an exhaustive search, which can be found in the appendix of [29]. In [30], Pot and Bradley...
TABLE I: Characteristics of three algorithms for generating ZCZ sequences

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Triplet ((L_c, S_Z, Z_{CZ}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[34]</td>
<td>((2^{m_0} L_0, 2^{m_1} + 1))</td>
</tr>
<tr>
<td>[35]</td>
<td>((2^{m+1}, 2^{m+1}, 2^{m+1} L_0 + 1))</td>
</tr>
<tr>
<td>[36]</td>
<td>((2^{r+2} - n, 2n, 2^r))</td>
</tr>
</tbody>
</table>

demonstrate an algorithm that can generate APAS sequences of longer lengths, which is based on \(p\)-ary \([31]\) m-sequences. The sequence of interest was deeply analyzed by Van Thillo et al., whereas the following properties have been concluded of the \(L_c\)-sized APAS sequences \([32]\):

1) Periodic autocorrelation function has an \(L_c\)-amplitude peak for the in-phase value. The out-of-phase values are zero for all non-zero shifts are zero, except for two lags, at \(\pm L_c/2\), where two negative peaks are found.
2) The zero-autocorrelation zone is therefore \(L_c/2 - 1\).
3) The amplitude of the negative peaks is measured to be \(-L_c + 4\).
4) The sequence length must be a multiple of 4. Also, \(L_c/2 - 1\) must be a prime power e.g. of the form \(L_c/2 - 1 = p^r\) with \(p\) prime and \(r\) a positive integer.
5) The sequence set size is given by

\[
|S_A| = \begin{cases}
\frac{N}{2}, & \text{if } \text{mod}(N/2 - 1, 4) = 1 \\
\frac{N}{4}, & \text{if } \text{mod}(N/2 - 1, 4) = 3
\end{cases}
\]

where \(\phi(n)\) refers to Euler’s totient function \([33]\).

C. Zero Correlation Zone (ZCZ) Sequence

ZCZ sequences are binary sequences with special correlation properties. For both the PACF and PCCF, the ZCZ sequences are designed such that the PACF/PCCF have zero correlation values in a specified zone \((Z_{CZ})\). Generally, a ZCZ sequence is defined using a triplet notation \((L_c, |S_Z|, Z_{CZ})\), where \(L_c\) refers to the code length, \(S_Z\) notes the sequence set size, and \(Z_{CZ}\) defines the width of the zero-correlation zone.

\[
Z_{CZ} = \max\{|Z_{CZ}: R_x,y[k]=0\}, \text{where} \ \{(k)\leq Z_{CZ} \text{ and } x\neq y\} \\
\text{or} \ \{(0<|k|\leq Z_{CZ} \text{ and } x=y)\}.
\]

The last decades several algorithms have been developed for construction of optimal ZCZ sequence set. The random variables in these algorithms are again \(L_c\), \(|S_Z|\) and \(Z_{CZ}\). Binary ZCZ sequences have been proven by Tang-Fan \([26]\) to be upper bounded by

\[
|S_Z|(Z_{CZ} + 1) \leq L_c,
\]

where equality implies optimality, Table I lists three different algorithms from \([34]–[36]\) having a different triplet, which have been implemented. We found that the algorithm from \([36]\) can provide the most flexible triplet; w.r.t the code length, zero-correlation zone and the number of possible channel accesses. Therefore, in this paper the ZCZ sequences are generated using this algorithm.

D. Performance comparison of Gold, APAS and ZCZ

IV. PMCW MIMO TX SCHEMES

Generally, in continuous wave radar the periods are repeated to a predefined dwell time to suffice the velocity resolution. In PMCW, the codes are repeated \(K_T\) times with a duty cycle of 100% to retain the periodic correlation characteristics. However, the MIMO transmission is part of the design space and can be used to utilize the enhanced code properties while transmitting with \(K_T\) antennas. In this section, we explain our design strategies that strive for maximum performance by enhancing the best correlation characteristics of each code family.
A. Code Division Multiplexing

The trivial transmission scheme, that has also been used in CDMA systems, is code division multiplexing with a simultaneous starting time, \(t_m \), for all the transmitting elements. In this scheme, as shown in Fig. 2(a), each antenna radiates a unique code

\[
\begin{align*}
{s_1}(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_1(l) \text{rect}(\frac{t-t_m-L_c}{T_c}) \\
{s_2}(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_2(l) \text{rect}(\frac{t-t_m-L_c}{T_c}) \\
&\vdots \\
{s_K_T}(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_{K_T}(l) \text{rect}(\frac{t-t_m-L_c}{T_c}).
\end{align*}
\]

(18)

As \(s_1(t), \ldots, s_N(t) \) are simultaneously transmitted and received, the cross-correlation properties of the transmitted codes \(c_1(t), \ldots, c_N(t) \) deeply determine the severeness of coexistence. This MIMO transmission technique has been used for the Gold and ZCZ Sequence.

Fig. 2: Different MIMO Transmit schemes for phases coded automotive radar.

(a) Code division multiplexing (CDM).

(b) Time-division multiplexing (TDM).

B. Time Division Multiplexing

In [10], a different MIMO transmission scheme was proposed where a single sequence was transmitted by \(K_T \) transmit elements in a time-staggered fashion (see Fig. 2(b)). Although other techniques like outer-coding also exist [10], we have restricted ourselves to the time-staggered TDM. It was specifically designed for sequences having excellent autocorrelation properties, like APAS, and hence worse cross-correlation properties. Each antenna in the array starts transmitting at a different time instant, resulting in the time-staggered profile that could be written as

\[
\begin{align*}
s_1(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_1(l) \text{rect}(\frac{t-t_m-L_c}{T_c}) \\
s_2(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_2(l) \text{rect}(\frac{t-t_m-L_c}{T_c}) \\
&\vdots \\
s_{K_T}(t) &= \sum_{m=0}^{M-1} \sum_{l=0}^{L_c-1} c_{K_T}(l) \text{rect}(\frac{t-t_m-L_c}{T_c}).
\end{align*}
\]

(19)

where \(\tau_A \) is the artificially induced inter-element delay. The autocorrelation function contains \(L_c/2-1 \) zero-output values, which leads to a minimum delay of

\[
\tau_A \geq \frac{L_c}{2K_T}
\]

(20)

showing the dependency on the number of transmit elements. Here, \(\tau_A \) is configured such that it exceeds the round-trip time corresponding to the required maximum distance.

V. Doppler Tolerance

Waveform orthogonality has been analyzed by performing simulations in the MATLAB environment with the radar parameters shown in Table II. In this study, a model of the PMCW transceiver is used that does not include any non-linear effects, and, therefore, has a comparable front-end setup and digital signal processing flow as presented in [10, Fig. 1]. For simplicity, we have chosen for a Multiple Input Single Output (MISO) setup, as the number of receive array elements does not influence the Doppler distortions of the waveform. The simulated radar contains 16 transmit elements, hence this section entails the orthogonality effects for 16 channel accesses. From Table II, the reader can derive that the processing gain for each of the three code family setups has been equalized, while having similar a receiver noise bandwidth, which enables us to compare noise power levels, as well as the powers of eventual artifacts.

A. In Range-Doppler map

Fig. 3 shows the Range-Doppler (range-velocity) output for a single static target at \(R_0 = 20 \text{ m} \), while the other case presents the output for a moving target with 40m/s. In fact, the two main consequences of the Doppler effect, which are caused due to imperfections in the autocorrelation and non-orthogonality, are:

1) Decrease in Target peak power: All inspected code families show a similar effect with respect to a target’s peak power when it is affected by Doppler. The degradation in peak power for increasing relative velocities impairs exponentially as \(L_c \) increases (see Fig. 4(a)), showing the Doppler intolerance of BPSK phase-coded waveforms. The absolute peak power determines the ability to detect targets from noise/interference. Regarding the Signal-to-Noise (SNR) reduction caused by Doppler distortions, the Gold sequence with \(L_c = 2047 \) is
TABLE II: MRR MIMO System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Gold</th>
<th>ZCZ</th>
<th>APAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of transmit antennas</td>
<td>K_T</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Number of receive antennas</td>
<td>K_R</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MIMO Multiplexing scheme</td>
<td></td>
<td>CDM</td>
<td>CDM</td>
<td>TDM</td>
</tr>
<tr>
<td>Code length</td>
<td>L_c</td>
<td>2047</td>
<td>4096</td>
<td>5184</td>
</tr>
<tr>
<td>Chip duration</td>
<td>T_c</td>
<td>3.33 ns</td>
<td>3.33 ns</td>
<td>3.33 ns</td>
</tr>
<tr>
<td>Duration of period</td>
<td>T_T</td>
<td>6.82 µs</td>
<td>13.65 µs</td>
<td>17.28 µs</td>
</tr>
<tr>
<td>Number of periods</td>
<td>M</td>
<td>1465</td>
<td>732</td>
<td>578</td>
</tr>
<tr>
<td>Number of FFT points in Doppler processing</td>
<td>N_{FFT}</td>
<td>2048</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Total duration of a single transmit frame</td>
<td>T_T</td>
<td>9.996 ms</td>
<td>9.99 ms</td>
<td>10.00 ms</td>
</tr>
<tr>
<td>Range resolution</td>
<td>ΔR</td>
<td>0.5 m</td>
<td>0.5 m</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>R_{max}</td>
<td>1022.8 m</td>
<td>2046.6 m</td>
<td>81.0 m</td>
</tr>
<tr>
<td>Maximum zero-correlation distance</td>
<td>R_{zc}</td>
<td>64 m</td>
<td>64 m</td>
<td>81.0 m</td>
</tr>
<tr>
<td>Velocity resolution</td>
<td>Δv</td>
<td>0.19 m/s</td>
<td>0.19 m/s</td>
<td>0.19 m/s</td>
</tr>
<tr>
<td>Maximum velocity</td>
<td>v_m</td>
<td>139.0 m/s</td>
<td>69.49 m/s</td>
<td>55.15 m/s</td>
</tr>
</tbody>
</table>

least effected. In this case, the peak power degrades with a maximum of 1dB up to 80m/s.

2) Increase in Range sidelobes: Secondly, the Doppler reflections causes artifacts within the target’s range cut. The ideal properties of the autocorrelation function of the APAS sequence are lost. In Fig. 4(b), one can observe that the TDM configuration of the APAS sequence performs best in peak-to-(range)-sidelobe ratio. While its target peak degrades the fastest, its peak-to-sidelobe ratio performs relatively well, meaning that its sidelobes do not come up as fast compared to the other configurations. The autocorrelation properties of the APAS hence perform better in the presence of Doppler than the auto- and cross-correlations of the ZCZ sequence. The Gold sequence retains near-similar range sidelobe levels as mainly its theoretically-defined inherent range sidelobes are rather high.

B. In Range-Angular map

The reception of angular information from phase-modulated waveforms is discussed in this section. The assumption of the virtual Uniform Linear Array (ULA) has been taken into consideration. Let us assume that omnidirectional transmitters are deployed. Therefore, the received signal from L targets can be defined as

$$s_R(t) = \sum_{l=1}^{L} \beta_l a_R(\theta_l) a_T^T(\theta_l) s_{RF}(t - \tau_l).$$ (21)

with $s_{RF}(t)$ being the $N \times 1$ transmit modulated symbol vector, and $a_R(\theta)$ and $a_T(\theta)$ being the transmit and receive steering vector, respectively given by:

$$a_T(\theta) = \left[e^{j2\pi d_T \sin(\theta)}, \ldots, e^{j2\pi d_T (K_T - 1) \sin(\theta)} \right]^T,$$ (22)

$$a_R(\theta) = \left[e^{j2\pi d_R \sin(\theta)}, \ldots, e^{j2\pi d_R (K_R - 1) \sin(\theta)} \right]^T.$$ (23)

with d_T and d_R being the inter-element distance between the transmit antennas and the receive antennas, and K_T and K_R being the number of transmit and receive antenna elements. In coherent MIMO radar, it is possible to retrieve angular information of the reflected signals by stacking the measurement data of the receive antennas, and creating a virtual antenna array. In the case of orthogonal channels, we can write the $a_R(\theta)a_T^T(\theta)$ product as a diagonal matrix, which we can vectorize. Therefore, this product can be rewritten as the Kronecker product of both vectors

$$a_V(\theta) = a_T(\theta) \otimes a_R(\theta).$$ (24)

Using prior knowledge from the array dimensions from (24), we are able to retrieve the incident angle of the reflected waveforms by performing a spectral analysis [37]. Eventually,
the angular spectrum is presented in Fig. 6 for static targets, as well as moving targets.

Below, we give a comparison on the performance of the phase-coded waveforms in the angular domain.

First of all, we address the (FFT) processing gain that can be achieved by taking a FFT over the spatial samples in order to retrieve angular information from the phase rotations of the virtual array geometry. The maximum achievable processing gain can then be denoted as

$$ G_{P,\text{ang}} = 10 \log_{10}(K_v) + L_{\text{win}} = 9.63 \text{ dB}, $$

where $K_v = K_T = 16$ denotes the number of virtual antenna elements, and

$$ L_{\text{win}} = \frac{1}{N} \sum_{n=0}^{N-1} \left| w[n] \right|^2 $$

accounts for the coherent processing loss induced by the windowing. For example, the Chebyshev window causes an -2.40 dB SNR loss for $K_v = 16$. By this windowing, the sidelobe level of -80 dB is achieved.

The effects of Doppler in the range-azimuth plane can be explained by following metrics.

1) Increase in Range sidelobes: Analogous to the range-Doppler domain, Doppler-affected binary phase-coded waveforms show decreased peak-to-sidelobe levels in the range-Angular domain for increasing target velocity (see Fig. 5(a)). Basically, the nonidealities in the angular domain is a direct consequence of the range sidelobes which arose in the range-Doppler domain. The Doppler effects disrupt the orthogonality condition for the virtual array, as the $a_R(\theta) \alpha_T^2(\theta)$ product contains non-diagonal terms and cannot be defined as the Kronecker product of (24). Therefore, the Doppler induced non-orthogonal waveforms for the APAS and ZCZ family show artifacts in Fig. 6(b)-6(c), showing a specific family sensitivity pattern. The Gold sequence is inherently non-orthogonal, hence the Gold code’s angular spectrum, shown in Fig. 6(a), is imperfect and shows a noise-like behaviour.

2) Error in Angular estimation: For the APAS sequence, the artifacts are directed only in the beam that corresponds to the width of the main lobe. In this case, the energy of the artifact is higher compared to the case for the ZCZ sequence and is also present before the target’s location. Besides, in contrast to the Gold and ZCZ sequences that are transmitted concurrently using CDM, the APAS sequence incorrectly estimates the
target’s angular position in the presence of Doppler. The error is linearly dependent on the target’s velocity, as illustrated in Fig. 5(b). This phenomenon is because a nonconcurrent transmission scheme is applied, which does not take account for the position changes during the sequential TX activations for moving targets. The received signal at antenna 1 is a summed version of time-staggered transmitted waveforms

\[
s_{Rx, 1}(t) = \sum_{n=1}^{N_R} s_{RF}(t - \tau_{A,n} - \tau_{d,n}) e^{j2\pi(n-1)d_1 \sin(\theta)/\lambda},
\]

with \(n \) denoting the \(n^{th} \) of the transmit array, \(\tau_{A,n} \) the time-staggered induced delay and \(\tau_{d,n} \) the round-trip delay. For moving targets, unfortunately \(\tau_{d,n} \) changes over time as targets are non-stationary. To solve this issue, displacement compensation for moving targets can be implemented. A similar technique can then be applied as proposed in [38] that compensates for motion in TDMA FMCW MIMO radar systems.

ACKNOWLEDGMENT

The authors of this paper would like to thank NXP Semiconductors for providing auspicious facilities to the first author, as most of his results were obtained in their office in Eindhoven.

VI. CONCLUSION

In this paper, we have investigated the orthogonality characteristics and such performance indicators as side-lobe levels of target images in Range-Doppler and Range-Azimuth planes of phase-modulated waveforms for automotive radar applications. Particularly, the three most-promising binary code families (Gold, APAS, and ZCZ sequences) have been compared in their performance for short to medium range automotive radar setups. Novel insights on how the radar performance is effected for the selected MIMO transmit schemes have been gained, while including the inherent code properties.

This paper starts with a theoretical analysis on the code family’s inherent correlation properties, including the ambiguity function. Then, we show that target velocity degrades the code inherent correlation performance (decreases peak power and rises side lobes). This degradation becomes more severe with code length increase. Secondly, each code family is found to be sensitive to Doppler in a different way, depending how the bits in the codes are structured. The sensitivity due to Doppler can be stated as: the Gold sequences seem to be negligibly effected, while the APAS and ZCZ sequences show significant degradations with respect to losses in peak power and increasing range sidelobes, thus causing SNR reduction. On the other side, in case of the APAS sequence, the target’s velocity bin contains less apparent range sidelobes as the peak-to-sidelobe ratio outperforms those of the Gold and ZCZ sequence. Therefore, we can claim that the time-staggered transmit scheme with autocorrelation properties only (while introducing azimuthal errors) results in improved performance compared to code division multiplexing with auto- and cross-correlation properties.

The overall conclusion is that the Doppler shifts reduces the detection performance to a certain extent for phase-coded radar systems in both the Range-Doppler and Range-Angular maps. Still, the resilience to the interference and the hardware imperfections should also be studied to identify the best available phase code for automotive radar applications.

APPENDIX A

PERIODIC AUTO- AND CROSS-CORRELATION FUNCTIONS

Fig. 7 presents the PACF and PCCF of the Gold sequence, APAS, and ZCZ sequences.

REFERENCES

Fig. 6: Range-Angular Map: Sensitivity comparison for the (a) Gold (2047), (b) APAS (5184), and ZCZ (4096). The left figures show the angular spectrum output for a static target, while the rightmost figures show the angular spectrum output for a moving target with 40 m/s.

Fig. 7: PACF (top) and PCCF (bottom) of Gold(1023), APAS(1020), and ZCZ(1024), respectively.

