
ARTICLE IN PRESS
1071-5819/$ - se

doi:10.1016/j.ijh

�Correspond
E-mail addr
Int. J. Human-Computer Studies 64 (2006) 974–983

www.elsevier.com/locate/ijhcs
Supporting knowledge-intensive inspection tasks
with application ontologies

Nicole J.J.P. Koenderinka,�, Jan L. Topb, Lucas J. van Vlietc

aAgrotechnology & Food Sciences Group, Wageningen UR, Bornsesteeg 59, 6708 GP Wageningen, The Netherlands
bDepartment of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

cDepartment of Imaging Science & Technology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Received 7 November 2005; received in revised form 12 May 2006; accepted 15 May 2006

Communicated by S. Staab

Available online 18 July 2006
Abstract

One of the major challenges in computer vision is to create automated systems that perform tasks with at least the same competences

as human experts. In particular for automated inspection of natural objects this is not easy to achieve. The task is hampered by large in-

class variations and complex 3D-morphology of the objects and subtle argumentations of experts. For example, in our horticultural case

we deal with quality assessment of young tomato plants, which requires experienced specialists. We submit that automation of such a

task employing an explicit model of the objects and their assessment is preferred over a black-box model obtained from modelling

input–output relations only. We propose to employ ontologies for representing the geometrical shapes, object parts and quality classes

associated with the explicit models. Our main contribution is the description of a method to develop a white-box computer vision

application in which the needed expert knowledge is defined by: (i) decomposing the task of the inspection system into subtasks and (ii)

identifying the algorithms that execute the subtasks. This method describes the interaction between the task decomposition and the

needed task-specific knowledge, and studies the delicate balance between general domain knowledge and task-specific details. As a proof

of principle of this methodology, we work through a horticultural case study and argue that the method leads to a robust, well-

performing, and extendable computer vision system.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Knowledge intensive information processing; Application ontology; Seedling classification; Cognitive vision; CommonKADS
1. Introduction

In horticulture, young plants are sorted on their expected
proficiency to effectively produce quality fruits or vege-
tables. This preselection of seedlings on potential produc-
tivity significantly increases the total yield of the whole
crop. At present, quality grading is a manual, highly labour
intensive and therefore costly process. Some efforts
have been made to automate this process, but so far with
limited success. This inability to automate plant grading
is inherent to the large natural variation between indivi-
dual plants. Things are complicated further due to the com-
plex structure of plants, which requires 3D — rather than
e front matter r 2006 Elsevier Ltd. All rights reserved.

cs.2006.05.004

ing author. Fax: +31 317 47 53 47.

ess: nicole.koenderink@wur.nl (N.J.J.P. Koenderink).
standard 2D — computer vision. The experts who sort the
seedlings are trained to take many different quality factors
into account and to make a balanced decision based on
their experience and expertise.
The problem described above, where both task-specific

and general domain knowledge is needed to successfully
perform a computer vision task, is not unique. Similar
difficulties arise in the automation of e.g. pedestrian
detection, machine repair and surgery simulations. A
possible approach to such complex tasks could be based
on black-box modelling, using for example a neural
network. For the horticultural case, such a network would
have to be trained with representative examples of 3D-
plant images and the quality assigned to them by experts.
The advantage of this method is that only these data sets
are needed to automate the classification task. However,

www.elsevier.com/locater/ijhcs
dx.doi.org/10.1016/j.ijhcs.2006.05.004
mailto:nicole.koenderink@wur.nl

ARTICLE IN PRESS
N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983 975
such an approach has a number of drawbacks. Firstly, the
method is not necessarily applicable in situations outside
the scope of the training set. This limits its robustness for
variations in for example the shape of the leaves or the
precise border between quality classes. Secondly, the
application cannot be easily extended to cover related,
but different data or tasks. In our case, this means the
original application cannot handle other species of plants
or other quality characteristics, let alone support other
tasks (for example robot manipulation). We would have to
provide additional training sets to cover such situations.
This means that the extensibility of such a black-box vision
system is limited. Thirdly, the achieved precision, in the
sense of level of detail, of the system will depend on the
data sets encountered during training, but is not known
explicitly, let alone that it can be adjusted at will. For
example, a black-box cannot implement the rule that
irregularities of a certain type in leaf contours are not to be
considered in certain circumstances. Finally, no problem-
specific means exist to tune the speed of the system, since all

features need to be extracted for a classification of the
object under inspection.

In order to cope with these limitations inherent to black-
box methods, we propose to employ explicit knowledge
about geometrical shapes, plants and plant classification
for the mapping of 3D-images onto quality grades. This
solution will be robust since it is based on general domain
expertise, for example on the biological defects of plants
that are not restricted to a specific case. Therefore, a system
based on explicit domain knowledge can be readily
modified and extended by switching to a different type of
plant or task. Since we can explicitly finetune the
application with respect to the relevant parameters in the
domain model, system precision can be set at any required
value. Moreover, the speed of the system can be improved
by adding domain specific heuristics as e.g. ‘a missing
growth point immediately disqualifies a tomato plant’,
eliminating the need for further time-consuming analysis.

We submit that ontologies (Gruber, 1995) are proper
instruments to encode the required domain knowledge.
However, ontologies are commonly designed to be
application independent and therefore they cannot be used
directly by task-specific applications. For example, the
inclusion of all possible kinds of defects that could occur in
plants would cause unnecessary overhead and complexity
for the application. It would be useful to include some task-
specific ‘short cuts’ for the specific application under
consideration, rather than relying on the general state-
ments of the domain ontology only. In short, an
intermediate application ontology — i.e. a goal-specific
sub-ontology of a general domain ontology, containing
only those concepts and relations that are relevant for the
task at hand that is enriched with task specific knowledge
— is needed to find the balance between general domain
knowledge and specific task details.

In our view, a knowledge-intensive application performs
mappings between a number of models in terms of
application ontologies. This leads to a natural decomposi-
tion of the main task into subtasks. For this we build on
the CommonKADS methodology (Schreiber et al., 1999)
that describes how expert tasks can be modelled. Com-
monKADS was developed as a knowledge engineering
method that makes a distinction between dynamic aspects
of reasoning and static representation of domain knowl-
edge. The decomposition of the inspection task in subtasks
results in a number of elementary steps, each with their
own explicated input and output models.
The observation that the task or goal of an application is

an important factor in the design of a computer vision
application is not new. It has already been expressed by
many authors, e.g. by Granlund (2003). Domain knowl-
edge that is connected to the task performed by the
computer vision system can be expressed in an ontology.
Ontologies are obtaining massive attention from computer
scientists working on the next generation of the web, the
Semantic Web (Berners-Lee, 1997; Antoniou and van
Harmelen, 2004). Ontology languages such as RDF and
OWL have been developed and are maintained by W3C.
Ontologies (Uschold and Gruninger, 1996) are used to
represent domain knowledge, and to derive new facts for
the domain under inspection. The application of ontologies
to represent domain independent knowledge is becoming
more and more common in the field of cognitive vision.
Thonnat (2002) for example, shows two applications of
using explicit expertise for complex image processing.
Hudelot and Thonnat (2003) use ontologies to support
their generic cognitive vision platform, and Maillot et al.
use ontologies in their ‘generic methodology that is not
linked to any application domain’ (Maillot et al., 2003). An
important difference between this ontology-related work in
computer vision and our research, however, is that we are
not interested in using all knowledge from a relevant
domain ontology, but only in that part of the domain

knowledge that is relevant for the task at hand. This sub-
ontology is subsequently enriched with additional task-
specific knowledge. With this approach, we make sure that
no unnecessary domain knowledge can slow down the
application.
As in many modelling problems, finding the proper

balance between generic and specific knowledge is an
essential step in successfully solving the problem. In this
paper, we present an ontology-based method to apply
computer vision in a highly knowledge-intensive environ-
ment. The novelty of our work consists of a method to use
expert knowledge in the form of application ontologies in
the design of a knowledge-intensive computer vision
system. We show how the use of expert knowledge
influences the design of the computer vision system and
we argue that the resulting white-box knowledge-based
computer vision system has advantages over an example-
based black-box system in terms of robustness, extend-
ibility, performance and speed. We illustrate the design
consequences of this method by providing a detailed
description of the methodology for the case study specified

ARTICLE IN PRESS
N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983976
in Section 2. This is followed by an overview of the
proposed method in Section 3. The preliminary results are
illustrated in Section 4. We conclude in Section 5.

2. Case description

We have used the sorting of tomato seedlings in Dutch
horticulture industry as a case study. Tomato seedlings are
sorted on the basis of their expected productivity in terms
of high-quality tomato yield when they are between 10 and
15 days old. At that time, the average plant has two
cotyledons and up to two true leaves (see Fig. 1). The
sorting specialists that assign seedlings to their quality class
work according to guidelines issued by the Netherlands
Inspection Service for Horticulture (Naktuinbouw) (NAK,
1999). These guidelines require the young plants to be
assigned to one of the following four categories:
�
 Plants that are of good quality.

�
 Plants that are of second choice quality.

�
 Plants that are too small.

�
 ‘Abnormal plants’, with an indication of the observed

defect.

The sorting process is complex. This is caused by the
large natural variation between plants and the broad range
of sorting criteria. Seedlings have to be sorted on simple
criteria concerning e.g. leaf area, stem length, and leaf
curvature, but also on more complex issues concerning e.g.
the likelihood that a plant is budless, and the regularity of
the leaf shape. Fig. 1 shows a small sample of seedlings to
be classified. Plant (a) is a typical example of a plant of
good quality, since the plant has two cotyledons and two
true leaves that form more or less a cross. The area of the
true leaves is approximately equal to the area of the
cotyledons and the cotyledons originate from the stem on
the same height at opposite sides. Plant (b) is also a plant
with two cotyledons and two true leaves, but the area of the
Fig. 1. A small sample of to be sorted seedlings. All dis
true leaves is significantly smaller. This plant is classified by
the experts as a second choice plant. Plant (c) has three
cotyledons instead of two, which implies a larger prob-
ability to become budless. Plant (d) is a ‘Siamese twin’; on
one stem, two buds have been growing, each developing
their own cotyledons. Plant (e) is a plant with wrinkled
cotyledons, causing them to have a different shape than
expected. However, this is not sufficient reason to assign
the plant to a lower quality class. Plant (f) has not shun its
seed well enough: the tips of the cotyledons are still stuck
within the seed coat. For plant (g) the same observation
holds. Depending on company policy, these plants will
either be classified as second choice or good quality,
respectively, or as plants with defects. Plant (h) has a
disfigured cotyledon, as has plant (i). Plant (j) is missing
part of a cotyledon. This account of defects covers only a
small amount of the possible defects that occur in
seedlings.
The objective in this case study is to design a computer

vision system that ‘‘assigns the input data (corresponding
to the plants under inspection) to the correct quality class’’.
Note that we are not dealing with a scene analysis problem;
instead, we solely study the 3D model of the object under
inspection. In order to obtain useful 3D input data for such
a computer vision system, we require an image acquisition
method that results in a data set that allows a 3D-
description of the surface of the recorded plant. The data
points may deviate slightly from the real plant surface due
to noise introduced by the image acquisition method.
There are many methods to obtain 3D input data.
Examples are laser range scans (Albamont and Goshtasby,
2003), stereo images (Faugeras and Robert, 1996), etc. The
images in our case study have been created with the Scan
Station (Scanbull Software GmbH, Nürnberg), using
volumetric intersection (Matusik et al., 2000). This method
of image acquisition suffices for illustrating the steps of the
proposed method and to argue the benefits of the resulting
white-box approach.
played seedlings are equally old but vary in quality.

ARTICLE IN PRESS

Table 1

Setting the scope and level of detail for the case study

Scope

(1) The maturity stage of the tomato plants is fixed at 12 days.

(2) The growth conditions of the plants are not considered.

(3) The task at hand is performed on the basis of external quality

criteria.

(4) The objective of the task is to obtain plants with a large amount of

high quality fruits.

Level of detail

(5) The species ‘tomato’ is of interest, cultivar specific details are not

considered.

(6) Only properties that are visible with the naked eye are taken into

account.

Table 2

The consequences of the scope and level of detail on the relevancy of

sorting rules

Rules in the sorting application ontology

| A plant with only seedlobes is an abnormal plant.

A plant with only seedlobes may be a high quality but young plant.

| A well developed growth point is an important quality factor.

A thick stem is an important quality factor.

Plants of cultivar X are scrawnier than plants of cultivar Y.

Table 3

The consequences of the scope and level of detail on the selection of

concepts and relations for the plant application ontology

Concepts and attributes in the plant application ontology

| Plant Plant disease properties

Nutrient transport properties

Genotype properties

| Stem | Stem: length

| Stem: thickness

| Leaf | Leaf: area

| Seedlobe | Seedlobe: shape

Seedlobe: colour

N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983 977
3. Overview of the method

Our objective is to design a white-box computer vision
system, i.e. a system that uses explicit, formalised expert
knowledge to perform a visual inspection task. Via a ‘back-
to-front’ (or ‘output-to-input’) design approach the expert
knowledge is used to decompose the task at hand into
subtasks. At the same time, this specific task is the leading
factor in determining which concepts are relevant for each
of the subtasks. This ‘back-to-front’ approach is followed
by a ‘front-to-back’ process that specifies both the
algorithms for each subtask and the additional knowledge
that is to be added to the application ontologies. The
algorithms contain the calculations that have to be
performed to transform the input to the output. The
characteristics of the input are decisive for the choice of the
algorithms. Therefore, the algorithm specification process
acts in the direction that is opposite to the task decom-
position.

3.1. The ‘back-to-front’ design approach

The first step of the design process is to define the scope

and level of detail of the task at hand (see Table 1).
The scope and level of detail of the task are used to

select the concepts, relations, rules and properties
from general domain ontologies and use these to construct
the initial versions of the corresponding application
ontologies. In Tables 2 and 3, part of this process is
illustrated by indicating some concepts and rules that are
selected from the general domain ontologies for the
application ontologies. These selected concepts and rules
are indicated with a check mark. Note that for readability
reasons, the rules in Table 2 are written in natural
language. In reality, these rules are represented and
implemented using SWRL, the Semantic Web Rule
Language (Horrocks et al., 2004). As an example, the first
rule in Table 2 ‘If a plant has only seedlobes, then the plant
is abnormal’, can be represented as follows in SWRL
syntax:
| First true leaf | First true leaf feather

Stem hair Leaf cell
oswrl:Imp rdf:ID ¼ "SeedlobeRule"4

o
swrl:body4

o
swrl:ClassAtom4

o
swrl:classPredicate rdf:resource ¼ "#Plant"/4

o
swrl:argument1 rdf:resource ¼ "#plantVar"/4

o
/swrl:ClassAtom4

o
swrl:DatavaluedPropertyAtom4

o
swrl:propertyPredicate

rdf:resource ¼ "#number_of_seedlobes"/4

o
swrl:argument1 rdf:resource ¼ "#plantVar"/4

o
swrl:argument2 rdf:datatype ¼ "&xsd;#integer"40
o
/rdf:argument24

o
=swrl:DatavaluedPropertyAtom4

o
/swrl:body4

o
swrl:head4

o
swrl:ClassAtom4

o
swrl:classPredicate rdf:resource ¼ "#AbnormalPlant"/4

o
swrl:argument1 rdf:resource ¼ "#plantVar"/4

o
/swrl:ClassAtom4

o
/swrl:head4
o/swrl:Imp4
or as below in a more ‘human readable SWRL-syntax’
(Horrocks et al., 2004):

Plantð?plantVarÞ ^ hasSeedlobesð?plantVar; 0Þ

! AbnormalPlantð?plantVarÞ:

Next, we use an iterative approach to find the subtasks and
(when necessary) additional application ontologies that
play a role in the computer vision algorithm. Expert
knowledge helps to define: (i) a subtask that delivers the
required output; (ii) the application ontology correspond-
ing to this subtask and (iii) the required input for the

ARTICLE IN PRESS

(2) (1)

Fig. 2. The purpose, task and scope influence the contents of the application ontologies. The output of the task is produced by a subtask, which input is

the output of the predecessing subtask.

Fig. 3. The decomposition of the task in subtasks and the corresponding application ontologies.

1Due to readability reasons, we do not present the formal representation

of the ontologies here.

N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983978
subtask. The input of this subtask is at the same time the
output of the predecessing subtask. The process of
identifying the subtasks and application ontologies is
repeated until the input data of the specific subtask
correspond to the input data for the overall task.

In Fig. 2, this sequential process is illustrated for part of
our case study, in Fig. 3 a complete decomposition of the
task in subtasks and application ontologies is shown. We
see that the classification subtask leads to the input of plant
parts and corresponding parameters, that are obtained
from a plant model. The plant model is connected to a
(domain-specific) set of 3D geometrical shapes. This
subtask uses the knowledge that e.g. a stem looks like a
thin cylinder, a leaf looks like a 2D surface, and a plug
looks like a thick cylinder. The relevant 3D shapes are
defined in a geometrical application ontology. As a last
step, a subtask is defined that finds geometrical structures
in a 3D point cloud by segmenting this point cloud. Note
that although in this process the task consists of a linear
concatenation of subtasks, in other processes subtasks may
occur in parallel.

As a result of this ‘back-to-front’ design process, we have
now identified three application ontologies. The sorting
application ontology contains three ingredients: (a) the
identified sorting rules; (b) the imported plant ontology,
since it needs the plant parts and corresponding parameters
that are defined in the plant ontology; and (c) concepts
denoting the various possible quality types. In the next
section we show how these rules are applied to support the
relevant subtask. The plant application ontology and the
geometrical application ontology are depicted in Figs. 4
and 5.1 In both figures, the concepts in the application
ontologies that have been identified in the design process
are depicted as shaded boxes, the ontologies will be
enriched with the non-shaded boxes in the algorithm
specification process (see Section 3.2).

3.2. The ‘front-to-back’ algorithm specification process

The ‘back-to-front’ design approach results in a
coarse set-up of the computer vision system in terms of
subtasks and application ontologies. The next step is to
specify the algorithms, inferences in CommonKADS
terminology, that are needed by the computer vision
system to move from one model to the next. The
algorithms may lead to additional needed concepts in
the application ontology. The process of identifying
the algorithms and the additional knowledge in the
application ontologies can be repeated for all subtask
consecutively.
We illustrate the algorithm specification process for the

various subtasks in our case study. In the case study, the
first subtask is the segmentation of the point cloud into
geometrical shapes. The algorithms in this subtask are
based on the Recover-and-Select approach of Leonardis

ARTICLE IN PRESS

Fig. 4. The geometrical application ontology. The shaded boxes are the concepts that have been created in the ‘back-to-front’ approach. The other

concepts have been added as a result of the algorithm specification.

Fig. 5. Schematical representation of the plant application ontology.

N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983 979
et al. (1990) and an adaptation of the four segmentation
algorithms for laser range images as described by Hoover
et al. (1996).
(1)
 Using a PCA-analysis, we divide the points of the 3D
point cloud into ‘planar points’, i.e. points that are in a
relatively planar environment, and ‘line-like points’.
(2)
 A correction step is made by a knn classifier to reassign
falsely classified points to the correct class based on a
majority vote.
(3)
 The line-like points are grouped into line-like regions
based on proximity of the points.
(4)
 For each region the best fitting geometrical shape
suitable for linelike points is determined.

ARTICLE IN PRESS
N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983980
(5)
Fig.

colo
The planar points are grouped into regions based on
proximity of the points.
(6)
 Neighbouring planar regions are joined based, amongst
other things, on the number of close neighbouring
points.
(7)
 The best fitting geometrical shape, which is suitable for
planar points, is selected from the geometrical applica-
tion ontology and assigned to the corresponding planar
region.
The result of this procedure is a geometrical model of the
plant, consisting of a set of geometrical shapes, such as
thick cylinders, thin cylinders, paraboloids and surfaces.

The process described above has an impact on the
contents of the geometrical application ontology. The PCA
analyser, for example, requires information on coordinates

and the neighbourhood of a point to classify those points as
either linelike points or planar points. The other subtasks
require additional concepts, relations or attributes in the
geometrical application ontology as well. The adapted
geometrical application ontology is depicted in Fig. 4,
where the non-shaded boxes indicate the information that
is added to this application ontology.

The second subtask in our case study is the transforma-
tion of the geometrical model to the plant model:

Assign the points represented by the various geometrical
shapes to the ‘pseudo plant parts’ plug body, plug head, leaf,
leaf or stem part:
(1)
 The points belonging to the thick truncated cylinder are
assigned as ‘plug body’.
(2)
 The truncated paraboloid is assigned as ‘plug head’.

(3)
 The bounded surfaces are assigned as leaves.

(4)
 The thin truncated cylinders are assigned as ‘leaf or

stem part’.
The result of this procedure is a set of plant parts
corresponding to the plant under inspection.
6. The decision tree based on five sorting rules. Based on the decision for

urs of the arrows) and make a final decision on the class to which the pla
The algorithms in the subtask described above introduce
a number of additional concepts into the plant application
ontology. The concepts plug body and plug head are defined
as subparts of plug. The concept leaf or stem part is added
as a superclass of leaf and stem. These concepts are
indicated as non-shaded boxes in Fig. 5.
The third subtask in our case study is to connect the

individual plant parts in order to create a single plant
model:
(1)
each

nt m
The points from ‘pseudo-plant parts’ where these parts
touch are identified based on their minimum mutual
distance.
(2)
 Instances of the class joint are defined, containing these
points and connecting two objects.
The underlying algorithms require the relation is-con-

nected-to to be added to the plant application ontology. It
is left out in Fig. 5 for reasons of clarity, but would be
shown as a recursive relation between instances of the plant
part classes.
The fourth subtask consists of the calculation of plant

parameters, such as leaf area, stem length, etc. For each plant
parameter, a specific algorithm is used. For brevity reasons,
we suffice by mentioning: (A) calculation of leaf area with
surface triangulation; (B) calculation of stem length; (C)
calculation of stem thickness; (D) determining whether a
seedlobe has one or more defects (which are listed in the
plant application ontology); and (E) counting the number of
feathers of a true leaf. These algorithms need no additional
information in the plant application ontology.
The final subtask in our case study is the classification of

the plant model. We need a two-step approach for this.
First we need to create a decision tree:
(1)
 Define for each rule an algorithm with which the
consequent of the rule head can be reached, based on
the antecedent of the rule body.
rule, we assign an ‘at best’ value to the plant model (indicated by the

odel belongs.

ARTICLE IN PRESS
N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983 981
(2)
Fig.

corr
Create a decision tree: based on the defined rules, the
frequency of application on an average data set, and
the decisiveness of the rules. At present this decision
tree is created by hand. In the future, this process may
be automated.
Creating the decision tree needs to be done only once. In
Fig. 6, part of the resulting decision tree is shown for the
five sorting rules mentioned above. Then, for each plant,
the appropriate path through the decision tree is taken. On
this path, only those rules that assist in assigning the plant
to its proper quality class are encountered and only the
corresponding plant parameters are calculated.

The definition of rules in SWRL is needed to link the
parameters from the plant ontology to the algorithms that
are used for the classification of the plant. Note that for the
actual calculation of the quality class a decision tree is
more efficient than a rule engine, since only some
parameters of a plant have to be calculated to reach a
decision on its quality class.

4. Discussion

We have described a method that explicitly uses expert
knowledge in the design of a knowledge-intensive computer
vision system. We have illustrated each step with a
horticultural case study. In the introduction of this paper,
we argue that a white-box computer vision system set up in
this way is robust, extendible, precise and fast. We can
illustrate these claims with the case study used for the proof
of principle.

In order to get an impression of the robustness of the
proposed method, we note that robustness means that with
a small variation on the input data, the output as obtained
7. The three input point clouds are first transformed into labeled point c

esponding quality class.
by the application is still correct. We have displayed in Fig.
7 three images of different looking tomato plants. We see a
plant with cotyledons that have grown together (left), a
plant with very small true leaves (middle) and a plant with
relatively large true leaves (right). Using the algorithm
described in Section 3, the input point cloud is segmented
(middle row) and plant parts are assigned to subsets of the
point cloud. Using the sorting rules that are described in
Section 3, the first plant is assigned to the class of second
choice plants, the second plant is assessed as a first choice
plant and the third plant is again a high quality plant. The
algorithms developed in the proof of principle already
show that plants with a large variety in morphology can be
described and assessed using the knowledge contained in
the application ontologies and the created task decom-
position. This is an indication of the robustness of the
white-box computer vision system developed with the
described method.
Extensibility is the second property that we illustrate. A

vision application is extensible, when it can be easily
adapted to a related task. Our case study deals with
assigning tomato seedlings to the correct quality class. In
this paragraph, we show the influence of slight changes to
the task of the computer vision system on the application
ontologies and subtasks. This is again illustrated with our
case study.
(1)
loud
When the task changes from ‘assessing 3D point clouds
representing tomato seedlings to quality classes’ to
‘assessing 3D point clouds representing bell pepper

seedlings to quality classes’, the input data partly have a
different morphology (see Fig. 8). The relevant shape
differences are: (i) the true leaves of a bell pepper have a
less wayward shape than those of a tomato plant; and
s, according to the plant model. Thereafter, they are assigned to the

ARTICLE IN PRESS

Fig. 8. The image on the left is a tomato plant of good quality. The image in the middle is a high quality bell pepper plant. The image on the right is a bell

pepper plant with cotyledons that are ‘glued’ together.

N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983982
(ii) the colour of a bell pepper plant is darker than that
of a tomato. We can easily change (or replace) the
application-specific tomato plant ontology to an
application-specific bell pepper ontology by adapting
the two shape differences. The geometrical application
ontology does not change by this change in plant
ontology.
(2)
 When the task changes to sorting bell pepper seedlings,
we notice that most sorting criteria remain the same.
One additional quality assessment criterion is identi-
fied: ‘‘if the true leaves of a bell pepper plant are ‘glued’
together, the plant is assigned to the ‘low quality’ class’’
(see Fig. 8c). In that case, no other plant characteristics
need to be determined. The sorting ontology can easily
be extended by adding the additional rule. The decision
tree that is used in the last subtask needs to be adapted
accordingly.
We have described how the computer vision system can be
adapted easily to cover closely related tasks, applying some
minor explicit modifications.

The third advantage of the white-box approach is the
possibility to make a deliberate adjustment of the required
precision of the application. Precision is defined as the
degree of detail in one of the models that is needed to make
a decision that is appropriate for the task at hand. In our
proof of principle description of the tomato seedling case
(Section 3), we show that in the sorting application
ontology an exact expert-based description of the relevant
quality features is given. We can change the accuracy of the
computer vision system at will by adding or removing more
or less refined sorting criteria and changing the algo-
rithm(s) that calculate the corresponding parameters. The
quality of a seedling is for e.g. determined by considering
the leaf area of a plant. Since the corresponding criterion
asks for a total area that is either more or less than 50% of
the average leaf area, the leaf area need not be determined
with very high accuracy. Should this criterion be replaced
with a stricter rule, e.g. asking for a division of the leaf area
in bins corresponding to 10% steps, then only part of the
application needs to be changed; an adjustment of the
algorithm that calculates the leaf area suffices. Therefore,
the white-box approach allows us to choose exactly the
precision that is required to successfully perform the task at
hand and adapt the application locally.
The fourth aspect that we mentioned in the introduction

of this paper is the speed of the computer vision algorithm.
This feature is closely related to the chosen precision of the
application. In general, when the precision of the computer
vision system is set to a higher level, the speed of the system
will decrease. In our white-box system, we can make an
argued decision on the balance between speed and
precision. It is possible to leave out certain rarely invoked
rules, of which the parameters require much calculation
power, in order to speed up the system. The use of
heuristics indicated by domain expert helps to make a
balanced decision.
5. Conclusion

We have demonstrated the design of a 3D computer
vision system based on a combination of vision technology
and knowledge engineering methods. Our approach con-
trasts with the traditional black-box methods applied in
vision that typically use machine learning techniques such
as neural networks and genetic algorithms. We submit that
the proposed method can be used for any knowledge-
intensive object inspection task. Raw camera data, in the
form of e.g. point clouds, triangulated laser range data, or
voxels, are mapped to a carefully defined set of simple
geometrical shapes. These shapes then transform into a
model of the object under inspection, e.g. a plant, a person,
or a car, but again only into objects that can possibly exist
in this specific task context. The object in turn is mapped to
an assessment class, such as quality, price level, style, again
specifically selected for this task. In short, we combine
numerical methods with a conceptual (qualitative) ap-
proach. The latter is to ‘set the stage’ for numerical
computations. We have argued that our approach leads to

ARTICLE IN PRESS
N.J.J.P. Koenderink et al. / Int. J. Human-Computer Studies 64 (2006) 974–983 983
a robust, extensible and sufficiently precise and fast
computer vision system.

By introducing the notion of application ontology, the
proposed method is useful for the development of any

knowledge-intensive application. The design process fol-
lows firstly the ‘back to front’ approach in which the scope
and level of detail of the knowledge needed are set, a
decomposition into subtasks is made, and the appropriate
application ontologies are identified and constructed.
Finding suitable generic domain ontologies that may serve
as basis for the application ontologies is not a trivial task
presently, but clearly more and more domain ontologies
and ontology descriptions have come to light recently. In
the second process, application-specific ontologies are
extended on the basis of the requirements of the specific
algorithmic processes. Moreover, task specific heuristics
can be added to the process.

How to set and exploit the trade-off between general
domain knowledge and task-specific knowledge remains a
central question in our research. Another ongoing issue is
how to systematically embed application ontologies in the
software application. Technically spoken, the instances or
individuals in the application-specific ontologies constitute
the different models or states of the transformation
process. Every step in the final task decomposition needs
some reasoning, either qualitative or quantitative, to map
one state to the next. We expect that (semantic) web
services can provide the required mechanisms, in particular
if they are properly connected to domain ontologies with
e.g. a mechanism as described in Korotkiy and Top (2005).

Acknowledgements

This work is supported by the DutchMinistry of Economic
affairs (IOP Beeldverwerking, IBV02010), the DutchMinistry
of Agriculture, Nature and Food Quality (DLO 391), and
Plantum (Glasgroentegroep). Thanks are also due to S.
Groot, J. Noordam and F. Golbach for useful discussions
and to G. Otten, E. Boer, G.M. Terra, A.F. Koenderink, B.
Lloyd and M. Osian for implementation support.

Appendix A. Glossary

Application ontology: An ontology that contains only
those concepts and relations of a domain that
are relevant for the task at hand.

Domain: A particular field of knowledge.
Domain ontology: An ontology containing a formalisation

of all knowledge that belongs to the specified
domain.

General domain ontology: A synonym for domain ontology.
Model: In this paper, a model is an instantiation of the

object under inspection in one of the application
ontologies.
Ontology: An explicit specification of a conceptualisation
(Gruber, 1995).

Task: A piece of work that needs to be done by an agent
(Schreiber et al., 1999). In this paper, the agent is
the computer vision system.
References

Albamont, J., Goshtasby, A., 2003. A range scanner with a virtual laser.

Image and Vision Computing 21, 271–284.

Antoniou, G., van Harmelen, F., 2004. A Semantic Web Primer. MIT

Press, Cambridge, MA.

Berners-Lee, T., 1997. Realising the full potential of the Web. Presentation

at W3C Meeting, London, hhttp://www.w3.org/1998/02/

Potential.htmli.

Faugeras, O., Robert, L., 1996. What can two images tell us about a third

one? International Journal of Computer Vision 18 (1), 5–19.

Granlund, G., 2003. Cognitive vision — background and research issues.

In: Lecture Notes of Summer School on Cognitive Vision 2003.

Gruber, T.R., 1995. Towards principles for the design of ontologies used

for knowledge sharing. International Journal of Human-Computer

Studies 43, 907–928.

Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P., Bunke, H., Goldgof,

D., Bowyer, K., Eggert, D., Fitzgibbon, A., Fisher, R., 1996. An

experimental comparison of range image segmentation algorithms.

IEEE Transaction on Pattern Analysis and Machine Intelligence 18

(7), 673–689.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean,

M., 2004. SWRL: A Semantic Web Rule Language Combining OWL

and RuleML hhttp://www.w3.org/Submission/SWRL/i, submitted to

W3C.

Hudelot, C., Thonnat, M., 2003. A cognitive vision platform for

automatic recognition of natural complex objects. In: 15th IEEE

International Conference on Tools with Artificial Intelligence

(ICTAI’03), pp. 398–405.

Korotkiy, M., Top, J., 2005. MoRe semantic web applications. In:

Proceedings of the End-User Aspects of the Semantic Web Workshop.

European Semantic Web Conference.

Leonardis, A., Gupta, A., Bajcsy, R., 1990. Segmentation as the search for

the best description of the image in terms of primitives. In: Proceedings

of the Third International Conference on Computer Vision, pp.

121–125.

Maillot, N., Thonnat, M., Boucher, A., 2003. Towards ontology based

cognitive vision. In: Proceedings of the Third International Conference

On Computer Vision Systems, pp. 44–53.

Matusik, M., Buehler, Ch., Raskar, R., Gortler, S.J., McMillan, L., 2000.

Image-based visual hulls. In: Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques, pp.

369–374.

Naktuinbouw, 1999. Verslag ringtoets bruikbare planten (in Dutch),

Technical Report, Project 133.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt,

N., van de Velde, W., Wielinga, B., 1999. Knowledge Engineering

and Management, The CommonKADS Methodology. MIT Press,

Cambridge, MA.

Thonnat, M., 2002. Knowledge-based techniques for image

processing and for image understanding. Journal de Physique IV 12,

189–236.

Uschold, M., Gruninger, M., 1996. Ontologies: principles methods

and applications. The Knowledge Engineering Review 11 (2),

93–155.

http://www.w3.org/1998/02/Potential.html
http://www.w3.org/1998/02/Potential.html
http://www.w3.org/Submission/SWRL/

	Supporting knowledge-intensive inspection tasks �with application ontologies
	Introduction
	Case description
	Overview of the method
	The ’back-to-front’ design approach
	The ’front-to-back’ algorithm specification process

	Discussion
	Conclusion
	Acknowledgements
	Glossary
	References

