WYSIWYP: What You See Is What You Pick

Alexander Wiebel, Member, IEEE, Frans M. Vos, David Foerster and Hans-Christian Hege, Member, IEEE

Abstract—Scientists, engineers and physicians are used to analyze 3D data with slice-based visualizations. A prominent example are radiologists who are particularly trained in reading slices of medical imaging data. Despite the numerous examples of sophisticated 3D rendering techniques, such methods are often considered not very useful by domain experts, who still prefer slice-based visualization. Since 3D renderings definitely have the advantage of providing an overview at a glance, while 2D depictions often better serve detailed analyses, it is of general interest to better combine these methods. Just recently there have been attempts to bridge this gap between 2D and 3D renderings. These attempts include specialized techniques for volume picking in medical imaging data that result in repositioning slices.

In this paper, we present a new volume picking technique called WYSIWYP (“what you see is what you pick”) that, in contrast to previous work, does not require pre-segmented data or metadata and thus is more generally applicable. The positions picked by our method are solely based on the data itself, the transfer function, and the way the volumetric rendering is perceived by the user. To demonstrate the usefulness of the proposed method, we apply it for automated positioning of slices in volumetric scalar fields from various application areas and present results of a user study.

Index Terms—Picking, volume rendering, WYSIWYG.

1 INTRODUCTION

Direct volume rendering (DVR) [27] is the state-of-the-art for the display of volumetric data from medicine, engineering and natural sciences. As a flexible and versatile tool, it is adaptable to virtually all application problems dealing with 3D scalar fields. The latest hardware developments allow DVR to be used interactively even on consumer type systems. Although this makes it available for the analysis and inspection of volumetric data, the physicians, scientists and engineers responsible for the analysis still rely mainly on the examination of slice-like depictions (including multi-planar reformatting, MPR).

Motivated by this fact previous work has already addressed the combination of DVR and MPR representations [12][13][14][34]. Providing interaction techniques (commonly called volume picking, point picking or volume pinpointing) that allow users to pick in the volumetric rendering to adjust a slice, and vice versa to pick on the slice to reorient the DVR, make it possible to integrate DVR in the daily routine of physicians, engineers and scientists dealing with three-dimensional scalar data. DVR can serve as overview, while the slices are still used for the detailed examinations.

With this background in mind, the motivation for the technique presented in this paper is to overcome the three limitations of current methods, who either require metadata, or are designed for medical data only, or provide only very basic picking techniques like first-hit or opacity-threshold. The basic assumption of this paper is that the user wants to examine structures that can be made visible with DVR and suitable transfer functions. The aim of this paper is to introduce a picking technique that takes a visibility-based view and overcomes the mentioned limitations. Picking is probably the most intuitive interaction technique, as it is the technical equivalent of one of the most natural actions in the real world: pointing at something that we see.

We present a method, called WYSIWYP (“what you see is what you pick”), that enables users to intuitively select spatial positions in volumetric renderings. In particular, the main contributions of this paper are

- a new technique allowing users to pick 3D structures visible in their direct volume rendering images,
- the technique’s independence of any information apart from the volume data and the transfer function of the direct volume rendering,
-
the users would like to pick what they actually see in the
rather see WYSIWYP as a complementary technique in cases where
instead of what is known to be in the
data
ordered image. The resulting position of picking the location marked with
first-hit
Figure 2. Problem of first-hit method with zero threshold and “foggy” ren-
dered image. The resulting position of picking the location marked with the
crosshairs will be on the bounding box of the dataset instead of on the
kneys because every position in the volume has non-zero opacity.

• its applicability to renderings for any volumetric scalar dataset
and all types of transfer functions (e.g. also “foggy” looking im-
ages),
• its usefulness for navigating (e.g. selecting slices) in the resulting
visualizations,
• and a comparison to other techniques as well as a user study
supporting our claims.

We do not aim at replacing well established picking techniques but
rather see WYSIWYP as a complementary technique in cases where
the users would like to pick what they actually see in the rendering
instead of what is known to be in the data. Thereby, we intend to pave
the way for further application of DVR in application areas that still
are reluctant to adopt this fundamental visualization technique.

2 RELATED WORK
In this section we review the previous work on picking in volumetric
renderings and the combination of direct volume rendering with slices.
Concerning perception and visibility there has also been a lot of work
in visualization research, see e.g. references [32] and [11]. However,
this work is mainly concerned with designing visualization according
to perception principles, and rather than how volumetric visualizations
are perceived.

2.1 Picking
Direct volume rendering, has been around for over twenty years
now [27] and over time has developed into an interactively usable ren-
dering technique (see e.g. references [15] and [1]), which has resulted
in research that aims at facilitating the interaction with volumetric de-
pictions. Volume picking, the interaction technique that is in the focus
of this article, has been adapted from its well-known predecessor that
is used for picking real geometry, like surfaces. Accordingly, the first
volume picking techniques mimicked the surface picking by search-
ning for the first surface-like structure along the viewing ray passing
through the picked screen position. Gobbetti et al. [10] introduced the
most widely used technique. It searches along the ray using the usual
compositing scheme (described in Section 3) and stops as soon as the
accumulated opacity exceeds a user defined threshold. This means a
surface is assumed to be at locations where the opacity threshold is
exceeded. The endpoint of the search is returned as 3D position re-
sulting from the picking. A simplified version of this approach sets
the threshold to zero. This results in selecting the first not completely
transparent position in the volume (first-hit). Both variants can result
in undesired results. Using a zero threshold will return positions in
regions surrounding the features in “foggy” looking renderings (see
Fig. 2). If, on the other hand, the threshold is non-zero some relatively
transparent but still visible regions might be missed (see Fig 3).

Another widely used method selects the largest data value along the
ray. While yielding perfect results in conjunction with maximum in-
tensity projection renderings, this technique is not suitable for DVR
in general. For common DVR it can result in selecting positions that
are completely transparent, i.e. deliberately not shown, due to the se-
lected transfer function. This and the above technique are described in
more detail in Section 2.4. Toennies and Derz [31] present a technique
that searches for user-defined data values or user-defined properties
of metadata along the ray. In our setting, it suffers from the same prob-
lem as the previously described method. Bruckner et al. [6] select the
position along the ray that contributes most to the final pixel. They re-
port that it works nicely with the special volume rendering technique
they used in their BrainGazer system. As the sample contributing most
does not necessarily have to belong to the most visible object (see e.g.
Figure 12), i.e. the group of samples contributing most to the final
pixel, their method can yield undesired results. Furthermore, consid-
ering only one sample can result in positions that lie at some arbitrary
location in the perceivable structures instead of at the front or center
of the perceived structure.

The following list of visualization tools and their volume picking
techniques gives an impression of the use of volumetric picking tech-
niques: MeVisLab [22] provides a technique selecting the maximum
data value as well as opacity threshold-based picking. Voreen [21] and
Avizo [2] use the first-hit approach. VTK [28] and thus ParaView [29]
employ the opacity threshold method [23].

Kohlmann et al. [14] employ a more sophisticated picking method
called contextual picking that is especially tailored to medical data in
DICOM [3] format. It uses the meta information given in the DICOM
files to deduce which anatomical parts of the volumetric image the user
intends to pick (e.g. angiography→vessels). Very few, initially user
specified, ray profile samples are matched against the data curve along
the viewing ray to find the intended structures. As the matching iden-
tifies the approximate extent of the picked structure, Kohlmann et al.
are able to provide picking positions either on the front of the structure or in its center. Malik et al. [17] use ray-profiles similar in a different context, the division of the data into different peeleable layers. Like our method, they use the derivatives of a ray-profile to find "features" along the ray. However, they search for features in the data whereas our method searches for features in the visible rendering (profile of data vs. profile of accumulated opacity along the ray). Additionally, in contrast to our method their transition points are extrema and are thus easily detected as zeros of the first derivative. Another peeling technique somewhat related to the present work is the so-called opacity peeling by Rezk-Salama and Kolb [26]. Opacity peeling uses several rounds of opacity accumulation (each up to some opacity threshold) to render layers originally occluded behind other rendered layers of the data. The users can interactively select the layer they would like to see.

The most recent paper on picking in volumetric rendering we are aware of is that by Peng et al. [24]. They use two different techniques: (1) a one-click method restricted to their data with a blob-like structure where it is easy to guess the desired position as the center of the blob hit by the viewing ray; (2) a two-click method for which the user clicks on the desired location from two different viewing directions. The picked position is then the (fuzzy) intersection of the two viewing rays. This method works for arbitrary data but the desired location has to be visible from both viewing directions. The method we present is superior to Peng’s method in so far as it provides picking in renderings of arbitrary data with only one mouse click (or a similar pointing action) from one viewing direction.

2.2 Combining Slices and DVR

Many techniques dealing with isosurfaces in volumetric data provide picking on slices for reorienting the isosurface to a view point providing good visibility of the selected position. Picking on the surface is often used to change the position of a slice in the data. Just recently this has been combined with picking in volume renderings by Kohlmann et al. [13] [12] and others [5] [34]. In their work, picking on a slice results in a reorientation of the volume rendering and a local adaption of the opacity (transfer function) such that the view on the selected position is improved. For the reverse direction, i.e. for picking in the volume and adapting the position of the slice, they use either the first-hit or their contextual picking approach [14] that we described above. In their framework the selected position can also be used for placing labels.

2.3 Metadata

Medical datasets often come with metadata that can help to infer the position a user intends to pick. If available, the information provided by metadata should be taken advantage of, and, in fact, some of the above described methods do so [14] [31]. We nevertheless consider WYSIWYP’s independence of metadata to be one of its important features because many datasets, particularly outside the medical domain, come without metadata. In such cases the metadata-based approaches can not be applied at all. Our method, in contrast, is applicable to any data. Prominent examples of fields where the data most often lacks meta information are flow simulations as well as any type of derived data field (e.g. from a 3D scatter plot).

For medical data with suitable meta information we suggest to let the users interactively choose whether they would like to pick only positions with an a-priori known meaning (metadata) or if they would like to pick the features they see in the actual rendering (WYSIWYP). Their choice will vary with the task at hand.

2.4 Picking for Different 3D Rendering Methods

As picking seems to be the most natural way of interacting with renderings of three-dimensional data or objects, there are many applications where picking is readily available. An extensive list of different three-dimensional rendering techniques and how picking can be implemented in their context can be found in a recent technical report by Wiebel et al. [36, Sec.3]. The list also contains comments on how exact the respective picking methods are.

3 BACKGROUND

For the description of the proposed picking approach, a basic understanding of the volume rendering procedure is necessary. We therefore give a summary of the most relevant aspects and along this way we introduce the notation.

3.1 Volume Rendering Integral

As DVR tries to make volumetric data directly visible to the user, its most natural implementation is casting rays along the viewing direction through the volume and accumulating color information for the values of the volumetric data along these rays. The density of the rays and the samples along the rays are chosen to cover the volume sufficiently well. The color information for the data values is determined by the transfer function. The mentioned accumulation can be formalized mathematically by the volume rendering integral [27][20][9][25]:

\[I(r_{\text{max}}) = I_0 e^{r_{\text{max}} \tau(s)} + \int_{r_0}^{r_{\text{max}}} Q(s) e^{r_{\text{max}} \tau(s)} ds \]

In this equation, \(I \) is the intensity in a color channel resulting from accumulating the color for a certain distance along the ray. \(r_0 \rightarrow r_{\text{max}} \) is an interval along the ray, with \(r_{\text{max}} \) being at the eye point and \(r_0 \) at the back end of the volume. \(s \) is a parameter in this interval; \(\tau \) is the attenuation coefficient and \(Q \) the source term describing emission for a certain sample.

For a numerical approximation the volume rendering integral has to be discretized: compositing (accumulation) is performed for a finite number of samples along the ray. The iterative computation of the discretized version in a front-to-back fashion can be denoted as follows [8][9]:

\[c_{\text{acc}} = c_{\text{src}} + (1 - \alpha_{\text{acc}}) \alpha_{\text{src}} \]

\[\alpha_{n+1} = \alpha_{n} + (1 - \alpha_{n}) \alpha_{\text{acc}} \]

Here, \(c \) denotes color, \(\alpha \) denotes opacity, \(n \) denotes the step number, \(\text{acc} \) indicates the accumulated values and \(\text{src} \) indicates values of the transfer function for the data found at the current sample position.

3.2 Compositing

Equation 2 describes the steps that have to be performed to compute the opacity at a certain sample on the ray. This opacity is accumulated along the ray up to that position. It determines how much the final pixel value is influenced by the values of the samples on the ray that lie behind the current sample. Later in this paper we will be concerned with how \(\alpha_{\text{acc}} \) varies along the ray. Therefore it is worth noting three important properties of \(\alpha_{\text{acc}} \) that can be easily deduced from Eq. 2 by mathematical induction: first, the accumulated opacity will never be larger than one. Second, \(\alpha_{\text{acc}} \) is monotonically increasing along the ray, and, third, \(\alpha_{\text{acc}} \in [0, 1] \).

Another important fact about the compositing in Eq. 2 is that with a change of the sampling density along the ray the series of accumulated opacity changes. More samples result in a faster increasing opacity compared to the location of the samples along the ray. This can be compensated by scaling \(\alpha_{\text{acc}} \) with respect to the sample density (opacity correction) [33][9]. Opacity correction is also necessary if non-equidistant samples are used. For sake of simplicity, we restrict all explanations to equidistant samples throughout this paper. All presented methods are easily extendable to the general case.

4 WYSIWYP

In this section we give a detailed description of the new visibility-oriented picking technique WYSIWYP. A comparison with previous techniques that emphasizes its advantages is provided in Section 6.

The overall procedure of all picking techniques is similar. First, the user clicks on a position in the screen. This position and the user’s viewing direction are transformed from screen coordinates into world coordinates. The result is then used to cast a ray through the scene (see Fig. 6). Along this ray a number of samples are used to gather information about the volume data. Finally, certain criteria are applied
to the gathered data to determine the position resulting from the pick. This last step is the one that the new method focuses on.

4.1 Visibility-Oriented Picking Criterion

At the heart of the of the new technique are the characteristics of the values of α^{acc} along the viewing ray, i.e. the discretized version of the opacity accumulation described by the volume rendering integral. Previous work on volume rendering already noted that opacity (resp. accumulated opacity) along the ray is strongly correlated with the visibility of positions (resp. regions or features) in the volume [4, Sec.3.2][7, Sec.3]. Consequently, we hypothesize (confirmed by our experiments, Section 5) that the user most of the time perceives those features at a screen position that contribute the highest amount of opacity or in other words, the highest jump of α^{acc} along the ray (Fig. 4). The amount of opacity contribution of a spatial feature thus determines its influence on the final color of the pixel, and thus defines which feature is perceived. This means that an object’s visibility does not only depend on the optical properties of a single location, but on the properties of a number of consecutive locations. Furthermore, as all our experiments confirm, it does not seem to depend on the steepness of the increasing opacity but on how much the opacity increases in an interval of consecutive samples, i.e. on how large the contribution of the interval to the final is. An evident example of this effect can be seen in Figure 12. Finally, considering the changes of opacity for selecting the picking position is sensible because usually high opacity is assigned to important features during transfer function design, or in short: opacity correlates to importance.

Figure 4 illustrates the criterion. Here, the largest jump can be found in region b, while the strongest ascend, i.e. the steepest jump, appears in region c. Consequently, the region used to determine the picking position is b.

To determine the highest jump, the first task is to define the regions of Figure 4 as intervals $I = [i_0, i_{max}] \subset [r_0, r_{max}]$ along the ray. Thereafter, the difference between α^{acc} at the start and the end of the interval, i.e. the jump j as

$$ j = \alpha^{acc}(i_0) - \alpha^{acc}(i_{max}). \quad (3) $$

has to be computed. Extracting the boundaries i_0 and i_{max} of the jumps is similar to the task of edge detection [18] in one dimension. Consequently, our method for detecting the boundaries is inspired by computer vision methods [19] and incorporates the second derivative of α^{acc}. We denote the first derivative of α^{acc} as β^{acc} and the second derivative as γ^{acc}. Figure 5 illustrates the idea behind our method for extracting the interval boundaries. In principle, the boundaries are the positions where the second derivative γ^{acc} has zero crossings from below, i.e. from negative to positive values. This criterion, however, is only reliable if α^{acc} is strictly increasing. As α^{acc} has plateau-like regions and thus γ^{acc} has extended regions where it is constantly zero, the criterion is adapted as follows. The lower bounds i_0 of such intervals are the positions where accumulated opacity starts to grow stronger, that is where γ^{acc} becomes positive after being negative or zero. The criterion for the upper bounds i_{max} is that α^{acc} stops decreasing again. For γ^{acc} this means that it becomes zero or positive after being negative.

After having determined the interval boundaries and having computed all jumps j one simply has to select the interval with the largest jump j. This is the interval dominantly perceived at the picked screen position.

4.2 Front vs. Center of Perceived Feature

The criterion described above does not directly yield a position. It only yields the interval seen most prominently along the viewing ray through the picked screen position. This, however, is not a problem but rather an advantage of the criterion because it allows to choose the final position according to the task at hand by application of further criteria. For labeling features in the volume rendering the front most position of the feature is of interest, whereas for repositioning slices to display most of the picked feature the center of the feature is of interest. This has also been noted by Kohlmann et al. [14] and has been implemented for their contextual picking.

For WYSIWYP determining the center and the front position is straightforward because the front and back positions are implicitly computed as the start and end of the jump interval. A feature’s front is simply the first position i_0 of the interval corresponding to the largest jump. A feature’s approximate center is the center i_c of the interval, i.e.

$$ i_c = \frac{1}{2}(i_0 + i_{max}). $$

Of course, other task- and data-specific criteria are conceivable. However, in our applications the two described methods proved to be sufficient.

4.3 Implementation Details

In our implementation, casting the ray through the volume is realized by a combination of usual surface picking and straightforward ray casting on the CPU. We draw a completely transparent bounding cube (proxy geometry) around the volume rendered data in the scene. The standard geometry picking mechanism of the scene graph is then used to determine the position where the viewing ray intersects the proxy geometry and enters the data volume (see Fig. 6). The direction of the
values are accumulated to provide the values of data value, i.e. color at the position and the result of applying the transfer function to this ray with the surfaces and thus infinitesimally small.

The easiest way to achieve consistency between DVR and picking is to use the same number of steps and the same step size. If this cannot be achieved, then the previously mentioned opacity correction needs to be applied during compositing.

4.4 Transparent Surfaces

Figure 12, an example that will be described in detail in Section 6, suggests that WYSIWYP for transparent polygonal surfaces can be implemented analogous to the method for DVR. One simply traces a ray through the volume, accumulates or composites the opacities of the different polygons that are hit by the ray, and finally selects the intersection of the ray with the polygon that has the largest opacity contribution after compositing. Computing derivatives of \(\alpha_{\text{acc}} \) is not necessary in this case, because the intervals are the intersections of the ray with the surfaces and thus infinitesimally small.

5 Evaluation

In order to show the suitability and appropriateness of the presented picking method and to further support the claim that the parts contributing the most opacity are observed by the user, we conducted a user study. In this section, we first describe the experimental setup of the study that led to the results we present afterwards.

5.1 Experimental Setup

We set up the user study to determine the 3D position that the probands perceive at a certain 2D screen position. The positions recorded throughout the study can then be compared to the position the presented picking method selects automatically.

The general set up of the test cases consists of a volume rendered image, small crosshairs indicating the currently considered position and a method to let the probands specify the actual 3D position they perceive. The latter is a slice that can be moved through the rendering by manipulating a slider until the slice intersects the 3D position perceived at the 2D location marked by the crosshairs. The setup is exemplified in Figure 7. The left image shows the initial state where only the rendering and the crosshairs are visible. The second image additionally contains the slice that has been placed by a proband. The slice appears as soon as the proband moves the slider the first time for a certain test case. Usually probands do not place the slice by a single slider movement but move it back and forth in order to select the visible position in an exploratory process. In this process the part of the volume lying behind the slice is not visible anymore. This simplifies the task of position selection, as the proband can move the slice to the position where the observed feature just disappears. Please note that this does not influence the position that is actually marked as being perceived. Furthermore, simplifying the specification of positions does not influence the study because our objective is not to judge the depth perception of the probands. Instead, the intention is only to get positions that can be compared with positions that have been automatically selected by picking.

Excluding the pretests, 20 probands participated in the study. The age of the participants ranged from 18 to 55 years. Most participants were familiar to volumetric rendering at least superficially; they furthermore had no known vision deficiencies or they wore appropriate glasses or contact lenses.

We chose eleven datasets from different domains for the user study. Most datasets stem from the repository at http://www.volvis.org. For each dataset we created between two and nine different test cases. In total we used 40 test cases. For each test case we defined a transfer function, a viewing direction and a position of interest. We mostly varied the viewing direction and the position of interest. For some datasets the transfer functions varied between test cases. All probands performed the same 40 tests.

5.2 Comparison to Picking Method

As mentioned before, the aim of the user study was to find out how close the position chosen by WYSIWYP is to the position of structures that humans perceive as essential. To quantify the answers to this question we performed some basic statistical analysis for each test case. As the selected positions of the participants naturally vary to some degree we computed the average \(\mu \) of the positions chosen by the participants. This is simple and appropriate as all positions lie on the viewing ray. The average position \(\mu \) is then compared to the position selected by WYSIWYP by computing their distance. The quality of the WYSIWYP position is then established by comparing its distance
to the standard deviation σ of the distances of the positions picked by the participants. We consider WYSIWYP to perform well if the picked position lies in an interval of $[\mu - \sigma, \mu + \sigma]$ around the average position μ.

The actual analysis of the recorded experimental data and the positions picked by WYSIWYP yielded a correspondence of WYSIWYP and the perceived positions. For 90% (36 of 40) of the test cases the picked position lay inside the desired interval I of one standard deviation (see Figure 9 for an example). In four cases, where the participants’ choices varied strongly, the picking also did not perform well. See Figure 8 for an example where the choice of the participants varied strongly.

6 RESULTS, COMPARISON AND DISCUSSION

The present paper introduces a new picking technique that does not need any metadata, can be applied to volumetric scalar fields from all application domains and nevertheless picks the really observed 3D location corresponding to a selected 2D position. To demonstrate these characteristics we applied the method to a selection of very different volumetric scalar fields. As the most sophisticated previous picking techniques come from the area of medical visualization, an abdominal MRI scan involving intravenous contrast is our first example. Figure 11 shows how a position in a DVR image (DVRI) is picked, how a slice with the appropriate orientation is positioned so that it cuts the picked vessel, and how the slice can be subsequently used to examine the vessel in detail. The DVR is hidden in the final image to provide a completely free view on the slice. Figures 2 and 3 show DVRIs of the same dataset but with different transfer functions. As adumbrated before, threshold-based picking fails for the DVRI in Figure 3 if the threshold is chosen too high and for the DVR in Figure 2 if the threshold is chosen too low (e.g. zero, first-hit). In the first case the cast ray would go through the volume without identifying any position as picked. In the second case the ray tracing would stop as soon as it reaches the bounding box of the dataset because opacity can be found everywhere. WYSIWYP can handle the DVRs of all three transfer functions correctly. Please see the accompanying video for another comparison of the techniques using the fuel dataset which is described later in this section. The video also provides a comparison of WYSIWYP to picking the position with the highest contribution to the final pixel. The comparison shows that the latter method (known from Bruckner et al. [4]) has problems in situations where WYSIWYP performs well.

The second example dataset comes from a numerical simulation of a flow around an ellipsoidal body. The images in Figure 11 show DVR of the vorticity $|\nabla \times \mathbf{v}|$ of the velocity vector field \mathbf{v}. For illustration purposes the images have been rotated so that the flow comes from below. Like for the MRI dataset, the steps of WYSIWYP are shown. Additionally, the curves of the accumulated opacity α^{acc} illustrate the interval selection. While approaches employing metadata, like contextual picking [14], are possibly applicable to the MRI dataset, they are not applicable for the flow field as there are no clearly defined structures that can be named and matched for detection. One might think of vortices as such structures, but there is still no vortex definition commonly agreed upon (see e.g. Lugt [16]).

A synthesized scalar function increasing from two locations provides the data for the third example. The transfer function used for rendering produces two balls that are visible in the DVRIs of Figure 12. This synthetic data has been included in the paper because the shapes of the α^{acc}, β^{acc} and γ^{acc} curves are clearly discernable. The principle of choosing the highest jump is nicely visible in the lower right image of Figure 12. The first, last and central location of the selected interval are marked by gray bars. As our picking criterion suggests before the marks coincide with zero crossings of γ^{acc}, although the two peaks corresponding to the first two peaks of β^{acc} are steeper, the criterion selects the marked interval because it exhibits the highest jump. The result is that a position in the shell of the ball in the background is picked through two transparent shell areas of the ball in front of it. This example also shows that material boundaries parallel to the viewer, which are usually well perceived, are easily picked because they are represented by a long and strong increase in opacity and thus a high jump of accumulated opacity. Finally, this rendering is another example where choosing the position with the highest contribution to the final pixel fails. It will select the front-most shell. The steepness of the first jump in Figure 12 confirms that single samples in this area have a high contribution to the final pixel.

The last dataset we present stems from a simulation of fuel injection into a combustion chamber. It contains density values of gas: the higher the density value, the less presence of air. We use this dataset for comparing different picking techniques in Figure 10. The figure shows snapshots from the video accompanying this paper. Figure 10(a) shows the initial state of the rendering and the mouse pointer above the position that will be used for picking with the different techniques in the following. Figure 10(b) shows the situation directly after picking with the first-hit strategy. The slice is situated where nothing of interest is visible because the picked position is on the border of the dataset (see Figure 10(b) for another perspective). This is the case as there is opacity in a large area of the DVR. In Figure 10(d) the slice is on the front of the dataset because no position could be found by the threshold-based picking. The last two images (10(e), 10(f)) show the picking with WYSIWYP. The slice in Figure 10(e) cuts exactly through the intended position. Finally, Figure 10(f) shows the render-
ing from a different position in order to demonstrate that the small gray sphere indicating the picked position is located at the desired position. It becomes clear that only WYSIWYP can reliably yield the desired position in this dataset for which no metadata are available.

The presented technique is intrinsically interactive and three-dimensional, and thus hard to demonstrate in static 2D images. Therefore, a video with a live demonstration using some of the described and several additional datasets accompanies this paper.

6.1 Limitations

As may be deduced from the images throughout this paper, the proposed method deals with volume rendering using the standard emission-absorption model. This does not impose any constraint on the type of transfer function (e.g. one-dimensional vs. multi-dimensional). However, we did not investigate how the method deals with images in which local illumination has been applied after evaluating the transfer function. Perception theory [18] tells us that lighting, color and context influence the perception of transparency. Therefore, we expect that the method will have to be extended to correctly handle volume rendering using local illumination. Still, probably no complex computer vision methods are required because much more information than only the resulting image is available. The data and the transfer function are highly valuable information for the picking task.

Also, our current implementation does not ensure that close positions in screen space also result in close 3D locations. In noisy data sets this might be desirable. A solution one could imagine in conjunction with the handling of local illumination is the following: The 3D locations corresponding to positions lying next to (probably on pixel base) the picked position can be taken into account. In other words, one could cast additional rays for pixels around the picked position. An outlier filtering for the resulting 3D locations could then avoid rapid changes in the selected depth. Overall, this problem will only become relevant if we allow the user to drag the mouse while continuously updating the picked position and thus the slice. However, this is a quite unusual scenario for picking. Furthermore, it somehow contradicts the idea of picking what is visible.

7 Conclusion and Future Work

We have presented a method to allow users to pick positions in volumetric renderings of three-dimensional data in a WYSIWYG type of interaction. The users can select, in an intuitive manner, the 3D position of structures that they really perceive in the rendering. In contrast to previous methods, the described approach is rendering-centered and thus is applicable for any type of volume rendered data. It only uses the transfer function of the volume rendering together with the data itself (of course) to determine the opacity and thus the visible structures along the viewing direction. Observable structures are characterized by large jumps in the accumulated opacity; the picked structure corresponds to the largest jump of the accumulated opacity. We emphasized the fact that no metadata is needed by demonstrating the method with data from a flow simulation where no metadata is available. The usefulness of the proposed technique for medical data has been shown by its application to an abdominal MRI scan, and the claims are supported by a user study. The application to flow and other data shows that the method is useful far beyond the medical domain.

As mentioned before, WYSIWYP has been developed for volume rendering without local illumination; research into picking in illuminated direct volume rendering is one of the next steps. Furthermore, we are already working on incorporating information from rays in the vicinity of the ray through the picked position.

We believe that the proposed technique can help to pave the way for further application of DVR in application areas that still are reluctant to adopt this fundamental visualization technique.

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) of the VIGOR++ Project under grant agreement nr. 270379. The information presented is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. The opinions expressed in the document are of the authors only and in no way reflect the European Commission’s opinions. Except where indicated, all visualizations were produced with Amira [30].
Fig. 11. Picking in DVR of vorticity field of flow around an ellipsoid. The images in the upper row show the picking process (picked position as red dot). The lower left image shows the volume rendered data from a different perspective. The lower right shows the accumulated opacity and its derivatives along the ray. Curves of derivatives are scaled by a factor of ten, but changes in second derivative are still hardly visible. The data is courtesy of Markus Rütten, DLR Göttingen.

Fig. 12. The images in the upper row show the picking process (red dot=picked position) in a synthetic dataset consisting of two spheres. The actually picked 3D position can be inferred from the position and the gray-scale map of the slice. It shows that a position on the border of the sphere in the back is picked. This perfectly fits to what can be seen in the upper left image where the border of the sphere in the back shines through the second sphere in front of it. The lower left image shows the DVR from a different perspective to show the spatial relation of the spheres. The lower right shows the accumulated opacity and its derivatives along the ray. Curves of derivatives are scaled by a factor of ten. It is nicely visible how the highest jump corresponding to the border of the sphere in the back is chosen from the intervals determined by the second derivative.
REFERENCES

