
 1

Formal Modeling and Analysis of Cognitive Agent Behavior

Alexei Sharpanskykh (sharp@few.vu.nl) and Jan Treur (treur@few.vu.nl)

Department of Artificial Intelligence, Vrije Universiteit Amsterdam,

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

tel.: +31.20.598.7756

tel.: +31.20.598.7763

fax: +31.20.598.7653

Abstract

From an external perspective, cognitive agent behavior can be described by specifying

(temporal) correlations of a certain complexity between stimuli (input states) and (re)actions

(output states) of the agent. From an internal perspective the agent’s dynamics can be

characterized by direct (causal) temporal relations between internal, mental states of the

agent. The latter type of specifications can be represented in a relatively simple, executable

format, which enables different types of analysis of the agent’s behavior. In particular,

simulations of the agent’s behavior under different (environmental) circumstances can be

explored. Furthermore, by applying verification techniques, automated analysis of the

consequences of the agent’s behavior can be carried out. To enable such types of analysis

when only given an external behavioral specification, this has to be transformed first into

some type of executable format. An automated procedure for such a transformation is

proposed in this paper. The application of the transformation procedure is demonstrated for a

number of cases, showing examples of the types of analysis as mentioned for different forms

of behavior.

Keywords: modeling of behavior, analysis, cognitive agents, simulation, verification,

model checking

 2

1. Introduction

The behavior of a cognitive agent can be considered both from an external and an internal

perspective. From the external perspective, behavior of the agent can be described by temporal

relationships of a certain complexity between its input (stimuli) and output (actions) states over

time, expressed in some (temporal) language, without any reference to internal or mental states of

the agent. Such relationships are called input-output correlations by Kim (1996, pp. 87-91). Within

Philosophy of Mind such a view is considered within the perspective of behaviorism (Kim, 1996).

The states of the agent are required to be publicly observable and the statements that describe these

states should be intersubjectively verifiable (Heil, 2000). According to the apologists of

behaviorism Watson (1913) and Skinner (1953), internal states of the agent (mental or inner states)

are considered to be methodologically intractable and unnecessary, since they are based on a

personal subjective experience and evaluations and can not be used for analysis and predictions of

the agent behavior. Descriptions from an external perspective can be successfully used for modeling

relatively simple types of behavior (e.g., stimulus-response behavior (Skinner, 1935)). For less

simple types of behavior (e.g., adaptive behavior based on conditioning (Balkenius & Moren,

1999)) an external behavioral specification often consists of more complex temporal relations,

relating behavior at a certain point in time to a possibly large number of inputs in the past (e.g., a

training program), that can not be directly used for simulations or other types of analysis.

From the internal perspective the behavior of the agent can be characterized by a specification of

more direct (causal) temporal relations between mental states of the agent, based on which an

externally observable behavioral pattern is generated. Such a perspective is taken within

functionalism (Kim, 1996). From this perspective mental states are described by their functional or

causal roles. These can be specified in simple, executable formats. A mental state is characterized

by its direct temporal or causal relations with input, output and other mental states. Functionalism

was originally formulated by Putnam in terms of a ‘Turing machine’ (Putman, 1975), an abstract

machine to give a mathematically precise definition of an algorithm or an automatic procedure.

However, in general other executable (temporal) languages can be applied to specify functional

roles.

From the viewpoint of analysis, executability is an important advantage of an internal

specification over an external one. An external specification of behavior that is more complex than

stimulus-response behavior, involves temporal expressions of a form of complexity that makes it

 3

useless as a basis for any simulation experiment or other analysis method. Executable

specifications, on the other hand, enable different types of automated analysis of the agent’s

behavior, for example, by simulations of different scenarios of the agent’s behavior or by verifying

certain global properties of an agent in its environment. To enable automated analysis of an external

behavioral specification, the possibly complex temporal relationships between input states and

output states over time have to be reformulated in terms of a simpler executable format. In practice,

such a reformulation process is by no means trivial. For example, it may involve certain creativity

concerning additional intermediate states that have to be postulated and direct temporal relations

between such states that have to be hypothesized. Moreover, it is hard to ensure by human activity

only that the reformulated specification is equivalent in a certain sense to the original one (and does

not describe just another process). This paper focuses mainly on how this issue may be addressed.

The challenge addressed is to obtain a standard method for this reformulation process and to

provide automated support for this method, with guaranteed outcome equivalent to the original

specification. As a solution a standard procedure is proposed for (automated) transformation of an

external behavioral specification first into a synthetic executable specification using postulated

intermediate states, and subsequently into a general state transition system format. The executable

specification is based on direct executable temporal relations between certain (postulated) states.

These states play roles comparable to sensory representation memory states and preparation states

of an agent. The type of internal memory states of an agent used (and shown to suffice) are memory

states based on the agent sensing (observations) of objects and processes in his/her environment and

of his/her own behavior (e.g., actions). Furthermore, it is postulated that before performing an

action an agent creates an internal preparation state. While simple types of agent behavior (e.g.,

variants of stimulus-response behavior) are based on a limited number of (unrelated) internal states,

more complex types (e.g., motivation-based, goal-directed, adaptive) require more complex patterns

of temporal relations between (multiple) internal states. In the approach presented this is addressed

by allowing the memory states to represent complex temporal relations. So, they are used not only

to represent world states, but also temporal patterns that occurred in the past. In this way reasoning

of an agent about his/her previous experience enables to generate proactive, motivation-based or

goal-directed behavior as well.

The justification that the proposed transformation method indeed provides an executable

specification which is equivalent to the original specification, is based on the theorem (see Section

5) that an external behavioral specification entails any dynamic property if and only if the generated

executable internal specification entails the same property.

 4

Based on the generated executable specification different types of (automated) analysis can be

performed. First, a developed simulation software tool applied to the generated transition system

specification of the agent’s behavior can be used to generate traces representing changes of internal

(mental) states and actions of the agent over time, according to different environmental scenarios.

Second, the generated transition system specification is also useful to analyze the consequences of

the agent’s behavior under such environmental scenarios.

For a given specification of externally observable behavior, an interesting however not easily

solvable problem is how to determine the (logical) consequences of this behavior in different

environmental circumstances. For example, to which extent different types of behavioral repertoires

of an animal situated in different food-related circumstances in the environment ensure (or entail)

the animal’s well-being. Within Computer Science, quite useful and efficient model checking

techniques have been developed to determine consequences of a given system specification; e.g.,

(Clarke & Grumberg & Peled, 1999). By performing model checking it is possible to determine

automatically if a system model, usually specified in a transition system format, entails some

dynamic property, specified by more complex temporal formulae. Using model checking techniques

this paper contributes an automated approach for analyzing the consequences of a behavioral

specification of an agent in its environment. To be able to use model checking techniques, a

behavioral specification has to be given in a simple, executable format (as a transition system). To

address this issue the proposed approach includes an automated procedure for the transformation of

executable specifications of agent behavior into the input format of the SMV model checking tool

(McMillan, 1993) that is used for the analysis of logical consequences of the agent’s behavior.

In the next section the concepts for formal modeling of externally observable agent behavior and

for specifying an executable internal specification are introduced. Next, in Section 3 the

transformation procedure from an external into an executable internal specification and

subsequently into a general description of a finite state transition system is described in some detail.

The explanation of the procedure is illustrated by a running example. After that the proposed

approach is applied for a number of cases concerning different types of analysis of agent behavior.

More specifically, in Section 4 simulation of different scenarios of agent behavior is considered,

and in Section 5 an automated approach for the analysis of the consequences of an agent’s behavior

is described. The paper ends with a discussion.

 5

2. Formal Modeling of Agent Behavior

From an external perspective an agent can be seen as an autonomous entity that interacts with a

dynamic environment via its input and output (interface) states. At its input the agent receives

observations from the environment whereas at its output it generates actions that can change a state

of the environment.

2.1. States

An agent state at a certain point in time as used here is an indication of which of the state

properties of the agent and its environment are true (hold) at that time point. Externally observable

state properties of the agent are formalized as first-order predicate logic terms using the interaction

state ontology InteractionOnt(A) (e.g., for observations and actions). In general, an ontology is defined

as a specification (in order-sorted logic) of a vocabulary that comprises finite sets of sorts, constants

within these sorts, and relations and functions over these sorts. A sort is a set of objects of the same

type: e.g., the sort AGENT is the set of all particular instances of agents conceptualized in a model.

InteractionOnt can be seen as a union of input and output state ontologies of the agent (resp., InputOnt

and OutputOnt) to define corresponding input and output agent state properties. Generally speaking,

an input ontology determines what types of information are allowed to be transferred to the input of

an agent (or of the environment), and an output ontology defines what kinds of information can be

generated at the output of an agent (or of the environment). InputOnt includes the unary predicate for

specifying observations of agents called observed: STATPROP, where STATPROP is the set of all state

properties defined using InputOnt. For example, for the constant tree the observation of an agent can

be defined: observed(tree). For specifying the actions performed by agents the ontology OutputOnt

includes the predicate performing_action: ACTION, where the sort ACTION consists of all actions that

may be performed by agents. For example, the execution of the action open_window by an agent

can be specified as performing_action(open_window).

2.2. Expressing Dynamic Properties

To characterize the dynamics of the agent, dynamic properties relate properties of states at

certain points in time. Consider this externally observable behavior of an agent:

“At any point in time if agent A observes food present at position p, then there exists a later point in time,

at which agent A goes to p.”

 6

To express such dynamic properties, and other, more sophisticated ones, the Temporal Trace

Language (TTL) is used (Jonker & Treur, 2002). TTL is a variant of order-sorted predicate logic

(Manzano, 1996) and has some similarities with situation calculus (Reiter, 2001) and event calculus

(Kowalski & Sergot, 1986).

The language TTL includes special sorts, such as: TIME (a set of linearly ordered time points),

STATE (a set of all state names of an agent system), TRACE (a set of all trace names), and

STATPROP (a set of all state property names). A trace can be seen as a temporally ordered sequence

of states, i.e., a trajectory. Each state in a trace γ has a name and corresponds to a unique time point

(e.g., state(γ, t1), state(γ, t2), etc). The sort TRACE contains a set of individual traces that describe

particular developments (or histories) of an agent system.

Further in the paper we shall use t with subscripts and superscripts for variables of the sort TIME;

and γ with subscripts and superscripts for variables of the sort TRACE.

A state of an agent is related to a state property via the satisfaction relation |= formally defined as

a binary infix predicate (or by holds as a binary prefix predicate). For example, “in the output state of

agent A in trace γ ���at time t property p holds” is formalized by state(γ , t, output(A)) |= p. Sometimes,

when the indication of an agent aspect is not essential, this relation will be used without the third

argument: state(γ, t) |= p.

Both state(γ , t, output(A)) and p are terms of the TTL language. In general, TTL terms are

constructed by induction in a standard sorted predicate logic way from variables, constants and

functional symbols typed with TTL sorts. Dynamic properties are expressed by TTL-formulae

defined by:

(1) If v1 is a term of sort STATE, and u1 is a term of the sort STATPROP, then holds(v1, u1) is an atomic

TTL formula.

(2) If τ1, τ2 are terms of any TTL sort, then τ1 = τ2 is an atomic TTL formula.

(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic TTL formula.

(4) The set of well-formed TTL-formulae is defined inductively in a standard way based on atomic

TTL-formulae using Boolean connectives and quantifiers.

2.3. External Behavior Specification

Typically a behavior specification from an external perspective consists of a number of dynamic

properties that express how the agent copes with different situations it encounters in its

environment. Here situations are meant as sequences (extending over time) of states or events. A

simple example is the following dynamic property

 7

“in any trace γ, if at any point in time t agent A observes that it is dark in the room, whereas earlier at t1

light was on in this room, then there exists a point in time t2 after t such that at t2 in the trace γ agent A

switches on a lamp”.

which is expressed in formalized form as:

 [[state(γ, t, input(A)) |= observed(dark_in_room) & ∃t1<t [state(γ, t1, input(A)) |= observed(light_on)]

 ⇒ ∃t2 ≥ t state(γ, t2, output(A)) |= performing_action(switch_on_light)]

An external behavioral specification ϕ consists of a number of dynamic properties which have a

format based on temporal patterns described by a past statement, interval statement and a future

statement. For simplicity, the future part has a format that prevents non-determinism in behavior.

Definition (Past, Interval and Future Statements)

a) A past statement for a trace γ and a time point t over state ontology Ont is a temporal statement

ϕp(γ,t), such that each time variable different from t is restricted to the time before t: for every time

quantifier for a time variable s a restriction of the form s ≤ t, or s < t is required within the statement.

b) A future statement for a trace γ and a time point t over state ontology Ont is a temporal statement

ϕf(γ,t), such that for every time quantifier for a time variable s, different from t a restriction of the

form s ≥ t, or s > t is made.

c) An interval statement for a trace γ and time points t1 and t2 over state ontology Ont is a temporal

statement ϕ(γ, t1, t2) in TTL, that is a past statement for t2 and a future statement for t1.

Based on these definitions an external behavioral specification of an agent is defined as follows.

Definition (External Behavioral Specification)

An external behavioral specification for an agent system consists of dynamic properties ϕ(γ, t)

expressed in TTL of the form [ϕp(γ, t) ⇒ ϕf(γ, t)], where ϕp(γ, t) is a past statement and ϕf(γ, t) is a future

statement over the interaction ontology. The future statement is represented in the form of a

conditional action: ϕf(γ, t) ⇔ ∀t1 > t [ϕcond(γ, t, t1) ⇒ ϕact(γ, t1)], where ϕcond(γ, t, t1) is an interval statement

over the interaction ontology, which describes a condition for some specified action(s) and ϕact(γ, t1)

is a (conjunction of) future statement(s) for t1 over the output ontology of the form state(γ, t1+c) |=

performing_action(a), for some integer constant c and action a.

 8

When the past formula ϕp(γ, t) is true, within γ at time t a potential to perform one or more action(s)

occurs. This potential is actualized at time t1 when the condition formula ϕcond(γ, t, t1) is true, which

leads to the action(s) being performed in γ at the time point(s) t1+c indicated in ϕact(γ, t1).

2.4. Internal Dynamics Specification

An executable specification of the internal dynamics of an agent consists of a set of executable

dynamic properties, representing temporal relations between a number of postulated internal (or

mental) states. Internal states of an agent A are described using a postulated internal state ontology

InternalOnt(A). It is often assumed that an agent maintains a memory in the form of some internal

model of the history; some even go that far to speculate that intelligence is mainly based on that; cf.

(Hawkins, 2004). It is assumed that internal memory states are formed based on sensing (or

observation). The state ontology InternalOnt includes sorts and functions for defining memories

about input states. Notice that within such states representing memory, statements about time are

made. To relate time within such a state property to time external to states, the function symbol

present_time is used. Here the properties of correctness and uniqueness are assumed:

Uniqueness of time

This expresses that present_time(t) is true for at most one time point t:

∀t, t'' state(γ, t) |= present_time(t'') ⇒ ∀t', t'≠t'' ¬state(γ, t) |= present_time(t')

Correctness of time

This expresses that present_time(t) is true for the current time point t:

∀t state(γ, t) |= present_time(t)

As an example, memory(t, observed(a)) expresses that the agent has memory that it observed at time

point t a state property a. Furthermore, it is postulated that before performing an action an agent

creates an internal preparation state. For example, preparation_for(b) specifies preparation of an agent

to perform action b. Both memory and preparation states belong to a type of states, which are much

better understood and physically grounded in neurobiological research (Dudai, 1990) than

intentional states such as beliefs, desires, and intentions. This motivates the choice that has been

made with respect to the internal representations.

Each dynamic property in the internal specification of an agent’s dynamics is specified in one of

the executable forms given in Table 1.

Table 1: Executable Format

 9

If a conjunction of state properties X holds in trace γ at

time point t,

(Step Property)

then a(nother) conjunction of state properties Y will

hold in trace γ at time point t+c, with c>0 an integer

constant

∀t state(γ,t) |= X ⇒ state(γ, t+c) |= Y

If a conjunction of state properties X and a condition

property C hold in trace γ at time point t,

(Conditional Persistency Property)

then this conjunction of state properties X will hold in

trace γ at the next time point

∀t state(γ, t) |= X ∧ C ⇒ state(γ, t+1) |= X

If a conjunction of state properties X holds in trace γ

�at time point t,

(State Relation Property)

then a(nother) conjunction of state properties Y will

hold in trace γ at the same time point t

∀t state(γ, t) |= X ⇒ state(γ, t) |= Y

3. Transformation into Executable Format

The procedure described in this section achieves the transformation of an external behavioral

specification for an agent into executable format and subsequently into the representation of a finite

state transition system.

Let ϕ(γ, t) be a non-executable dynamic property from an external behavioral specification for

agent A, expressed using ontology InteractionOnt(A), for which an executable representation should

be found, then the transformation procedure is specified as follows.

The Transformation Procedure

(1) Identify executable temporal properties, which describe transitions from interaction states to

memory states.

(2) Identify executable temporal properties, which describe transitions from memory states to

preparation states for performing an action.

(3) Specify executable properties, which describe the transition from preparation states to the

corresponding action performance states.

(4) From the executable properties, identified during the steps 1-3, construct a part of the

specification π(γ, t), which describes the internal dynamics of agent A, corresponding to the

property ϕ(γ, t).

 10

(5) Apply the steps 1-4 to all properties in the external behavioral specification of the agent A. In

the end add to the executable specification the dynamic properties, which were initially

specified in executable form using an ontology, different than InteractOnt(A).

(6) Translate the identified during the steps 1-5 executable rules into the transition system

representation.

The details of the described procedure are explained by means of an example, in which delayed-

response behavior of a laboratory mouse is analyzed; e.g., Hunter (1912); Allen & Bekoff (1997).

Initial situation

The initial situation for the conducted experiment is as follows: the mouse is placed in front of a

transparent screen that separates it from a piece of food that is put behind the screen. The mouse is

able to observe the position of food and of the screen. At some moment after food has been put, a

cup is placed covering the food, which makes food invisible for the mouse. After some time the

screen is raised and the animal is free to go to any position. If the mouse comes to the position,

where the food is hidden, then it will be capable to lift up the cup and get the food.

The behavioral specification for the conducted experiment consists of environmental properties

and externally observable behavioral properties of the mouse. For the purposes of illustration of the

proposed transformation procedure the dynamic property that describes the delayed-response

behavior of the mouse has been chosen. Informally this property expresses that the mouse goes to

the position with food if it observes that there is no screen and at some point in the past the mouse

observed food and since then did not observe the absence of food. According to the definition of an

external behavioral specification the considered property can be represented in the form [ϕp(γ, t) ⇒

ϕf(γ, t)], where ϕp(γ, t) is a formula

∃t2<t [state(γ, t2, input(mouse)) |= observed(food) ∧

 ∀t3, t ≥ t3 > t2 state(γ, t3, input(mouse))|= not(observed(not(food)))]

and ϕf(γ, t) is a formula

∀t4 > t [state(γ, t4, input(mouse)) |= observed(not(screen)) ⇒

 state(γ, t4+c, output(mouse)) |= performing_action(goto_food)]

with ϕcond(γ, t, t4) is

state(γ, t4, input(mouse)) |= observed(not(screen))

and ϕact(γ, t4) is

state(γ, t4+c, output(mouse)) |= performing_action(goto_food)

 11

where t is the present time point with respect to which the formulae are evaluated.

Step 1. From interaction states to memory states

General idea

The formula ϕmem(γ, t) obtained by replacing all occurrences in ϕp(γ, t) of subformulae of the form

state(γ, t') |= p by state(γ, t) |= memory(t', p) is called the memory formula for ϕp(γ, t).

Thus, a memory formula defines a sequence of past events (i.e., a history) (e.g., observations of an

external world, actions) for the present time point t. The time interval for generation of an internal

memory state of an agent from its observation is assumed to be incommensurably smaller than time

intervals between external events (i.e., stimuli). Therefore, in the proposed model both an

observation state and a corresponding memory state are created at the same time point.

By a rewriting process (for the formal details for the considered procedure we refer to

Sharpanskykh. & Treur (2005)) ϕmem(γ, t) is equivalent to some formula δ*(γ, t) of the form state(γ, t) |=

qmem(t), where qmem(t) is called the normalized memory state formula for ϕmem(γ, t), which uniquely

describes the present state at the time point t by a certain history of events. Moreover, qmem is the

state formula ∀t’ [present_time(t’) ⇒ qmem(t’)].

Example

For the considered example qmem(t) for ϕmem(γ, t) is specified as:

∃t2 [memory(t2, observed(food)) ∧

 ∀t3, t ≥ t3 > t2 memory(t3, not(observed(not(food))))]

Additionally, memory state persistency properties are composed for all memory atoms. For

example, for the atom memory(t2, observed(food)) the corresponding persistency property is defined

as:

∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(food)) ⇒

 state(γ, t"+1, internal(mouse)) |= memory(t', observed(food))

Rules that describe creation and persistence of memory atoms are given in the executable theory

from observation states to memory states Tho→m. For the considered example:

 ∀t' state(γ, t', input(mouse)) |= observed(food) ⇒

 state(γ, t', internal(mouse)) |= memory(t', observed(food))

 ∀t' state(γ, t', input(mouse)) |= not(observed(not(food))) ⇒

 state(γ, t', internal(mouse)) |= memory(t', not(observed(not(food))))

 ∀t' state(γ, t', input(mouse)) |= observed(not(food)) ⇒

 state(γ, t', internal(mouse)) |= memory(t', observed(not(food)))

 12

 ∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(food)) ⇒

 state(γ, t"+1, internal(mouse)) |= memory(t', observed(food))

 ∀t'' state(γ, t'', internal(mouse)) |= memory(t', not(observed(not(food)))) ⇒

 state(γ, t"+1, internal(mouse)) |= memory(t', not(observed(not(food))))

 ∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(not(food))) ⇒

 state(γ, t"+1, internal(mouse)) |= memory(t', observed(not(food)))

Step 2. From memory states to preparation states

General idea

Obtain ϕcmem(γ, t, t1) by replacing all occurrences in ϕcond(γ, t, t1) of state(γ, t') |= p by state(γ, t1) |=

memory(t', p). The condition memory formula ϕcmem(γ, t, t1) contains a history of events, between the

time point t, when ϕp(γ, t) is true and the time point t1, when the formula ϕcond(γ, t, t1) becomes true.

Again by a rewriting process ϕcmem(γ, t, t1) is equivalent to the formula state(γ, t1) |= qcond(t, t1), where

qcond(t, t1) is called the normalized condition state formula for ϕcmem(γ, t, t1). Moreover, qcond(t) is the

state formula ∀t’ [present_time(t’) ⇒ qcond(t, t’)].

Example

For the considered example qcond(t, t4) for ϕcmem(γ, t) is obtained as: memory(t4, observed(not(screen)))

and qcond(t): ∀t' [present_time(t') ⇒ memory(t', observed(not(screen)))].

Obtain ϕprep(γ, t1) by replacing in ϕact(γ, t1) any occurrence of state(γ, t1+c) |= performing_action(a) by

state(γ, t1) |= preparation_for(action(t1+c, a)), for some number c and action a. The preparation state is

created at the same time point t1, when the condition for an action ϕcond(γ, t, t1) is true. By Lemma 1

ϕprep(γ, t1) is equivalent to the state formula state(γ, t1) |= qprep(t1), where qprep(t1) is called the normalized

preparation state formula for ϕcond(γ, t1). Moreover, qprep is the state formula ∀t’ [present_time(t’)] ⇒

qprep(t’)]. For the considered example qprep(t4) is composed as preparation_for(action(t4+c, goto_food)).

Rules, which describe generation and persistence of condition memory states, a transition from the

condition to the preparation state, and the preparation state generation and persistence, are given in

the executable theory from memory states to preparation states Thm→p. For the considered example:

∀t' state(γ, t', input(mouse)) |= observed(not(screen)) ⇒

 state(γ, t', internal(mouse)) |= [memory(t', observed(not(screen))) ∧

stimulus_reaction(observed(not(screen)))]

∀t'' state(γ, t'', internal(mouse)) |= memory(t', observed(not(screen))) ⇒

 state(γ, t"+1, internal(mouse)) |= memory(t', observed(not(screen)))

∀t' state(γ, t') |= ∀t'' [present_time(t'') → ∃t2 [memory(t2, observed(food)) ∧ ∀t3, t'' ≥ t3 > t2 memory(t3,

not(observed(not(food))))]] ⇒

 13

 state(γ, t') |= ∀t''' [present_time(t''') → [∀t4 > t''' [memory(t4, observed(not(screen))) →

preparation_for(action(t4+c, goto_food))]]]

∀t', t state(γ, t') |= [∀t''' [present_time(t''') → [∀t4 > t''' [memory(t4, observed(not(screen))) →

preparation_for(action(t4+c, goto_food))]]] ∧

 ∀t'' [present_time(t'') → memory(t'', observed(not(screen)))] ∧ stimulus_reaction(observed(not(screen)))]

⇒

 state(γ, t', internal(mouse)) |= ∀t4 [present_time(t4) → preparation_for(action(t4+c, goto_food))]

∀t' state(γ, t') |= [stimulus_reaction(observed(not(screen))) ∧ not(preparation_for(action(t'+c, goto_food)))]

⇒

 state(γ, t'+1) |= stimulus_reaction(observed(not(screen)))

∀t' state(γ, t', internal(mouse)) |= [preparation_for(action(t'+c, goto_food)) ∧

not(performing_action(goto_food))] ⇒

 state(γ, t'+1, internal(mouse)) |= preparation_for(action(t'+c, goto_food)).

The auxiliary atoms stimulus_reaction(a) are used to reactivate agent preparation states for generating

recurring actions.

Step 3. From preparation states to action states

General idea

The preparation state preparation_for(action(t1+c, a)) is followed by the action state, created at the time

point t1+c. Rules that describe a transition from preparation to action states are given in the

executable theory from the preparation to the action state(s) Thp→a.

Example

For the considered example the following rule holds:

 ∀t' state(γ, t', internal(mouse)) |= preparation_for(action(t'+c, goto_food)) ⇒

 state(γ, t'+c, output(mouse)) |= performing_action(goto_food).

Step 4. Constructing an executable specification

An executable specification π(γ, t) for agent A is defined by a union of the dynamic properties from

the executable theories Tho→m, Thm→p and Thp→a, identified during the steps 1-3. For the purposes of

simulations of agent behavior the non-executable external behavioral specification is replaced by

the executable behavioral specification.

 14

Step 5. Constructing an executable specification for the whole external behavioral specification

of an agent

Other non-executable dynamic properties from the agent behavioral specification are substituted by

executable ones by applying the same sequence of steps 1-4. In the end the executable properties for

generating observation states from the states of the external world are added:

 ∀t' state(γ, t', world) |= [food ∧ not(cup)] ⇒

 state(γ, t', input(mouse)) |= observed(food)

 ∀t' state(γ, t', world) |= [not(food) ∧ not(cup)] ⇒

 state(γ, t', input(mouse)) |= observed(not(food))

∀t' state(γ, t', world) |= not(screen) ⇒

 state(γ, t', input(mouse)) |= observed(not(screen))

∀t' state(γ, t', world) |= screen ⇒

 state(γ, t', input(mouse)) |= observed(screen)

It is assumed that an observation state is generated at the same time point, when a corresponding

state of the external world is active.

Step 6. Translation of an executable specification into a description of a transition system

General idea

For the purposes of practical analysis (e.g., by performing simulation and verification) a

specification based on executable temporal logical properties generated by the procedure described

in the previous Section is translated into a finite state transition system model. The translation is

based on the fact that a computation (in our case the execution of temporal logical properties) is

essentially an (infinite) sequence of states (Vardi, 1996). Therefore, similarly to Vardi (1996), given

an executable temporal specification one can construct a finite state transition system that generates

the set of traces (by all possible executions of transition rules) equivalent to the set produced by all

possible execution of temporal logical properties from the specification.

In computer science a finite state transition system is often described by a tuple 〈Q, Q0, Σ, →〉,

where Q is a finite set of states of an agent, Q0
 ⊆ Q

 is a set of initial states, Σ is a set of labels or

events, which trigger the transition and → ⊆ Q x Σ x Q is a set of transitions. Such a representation

often assumes an explicit denotation for every state in a transition system, which can be very

numerous. However, a more compact representation, close to the production systems style, in the

form of a set of transition rules with variables is possible (Arnold, 1994).

 15

Definition (General Representation of a Finite State Transition System)

Let Ont be a state ontology consisting of sorts, constants, functions and predicates. Let At(Ont) be

the set of (many-sorted predicate logic) atoms over Ont (possibly with variables). A general

representation for a finite state transition system over Ont consists of transition rules of the form [Ρ

→→ Ν], where Ρ is a proposition based on atoms from At(Ont), and N is a conjunction of atoms from

At(Ont). The meaning is that when a certain instance of P by a certain variable assignment is true in

a state, then the instance of N by the same variable assignment will be true in the next state; here →→

is a symbol for the transition between the two states.

Such a general representation for a finite state transition system has as an advantage that it does

not depend on any particular implementation (e.g., verification or simulation tools). However, as

this generic format describes states and transitions between them, it can be relatively easy translated

into specialized languages of existing tools, based on the finite state transition system representation

(e.g., the input format of the SMV model checker).

To translate the executable specification constructed at Step 5 from the theories Tho→m, Thm→p and

Thp→o into the finite state transition system format, for each rule from the executable specification

the corresponding transition rule should be created. Let us first consider the formulae from the

theory Tho→m. To relate states of a transition system to the timeline used in these rules the unary

predicate present_time is used. The atom present_time(t) being true in a given state indicates that t is

the time in this state. Furthermore, the assumption from Tho→m that an observation state and a

corresponding memory state are created at the same time point should be preserved. Thus, the time

increment rules are defined as:

present_time(0) ∧ ¬p →→ present_time(1)

present_time(t) ∧ ¬qmem ∧ ¬p →→ present_time(t+1)

Now, when a relation between states and time points is established, the rules defined in the Tho→m can

be easily translated into the transition system format as it is shown in Table 2.

 16

Table 2: Translation of the formulae from the executable theory Tho→→→→m into the

corresponding finite state transition rules

Rule from the executable theory Tho→→→→m Corresponding transition rules

Memory state creation rule

∀t' state(γ, t') |= p ⇒ state(γ, t') |= memory(t', p)
present_time(t) ∧ p →→ memory(t, p)

Memory persistence rule

∀t'' state(γ, t'') |= memory(t', p) ⇒ state(γ, t"+1) |=

memory(t', p)

memory(t, p) →→ memory(t, p)

Next, let us translate the properties from Thm→p. The time increment rules are created similarly to the

Tho→m case based on the assumption from Thm→p that a preparation state is generated at the same time

point, when the condition for an output is true.

present_time(t) ∧ qcprep ∧ ¬qcond(t) ∧ ¬p →→ present_time(t+1)

present_time(t) ∧ qprep →→ present_time(t+1)

Then, the rules defined in the Thm→p are translated into the transition system format in a

straightforward manner as it is shown in Table 3.

Table 3: Translation of the rules from the executable theory Thm→→→→p into the corresponding

finite state transition rules

Rule from the executable theory Thm→→→→p Corresponding transition rules

Memory state creation rule

∀t' state(γ, t') |= p ⇒ state(γ, t') |= [memory(t',

p) ∧ stimulus_reaction(p)]

present_time(t) ∧ p →→ [memory(t, p) ∧

stimulus_reaction(p)]

Memory persistence rule

∀t'' state(γ, t'') |= memory(t', p) ⇒ state(γ, t"+1) |=

memory(t', p)

memory(t, p) →→ memory(t, p)

Conditional preparation generation rule

∀t' state(γ, t') |= qmem ⇒ state(γ, t') |= qcprep
qmem →→ qcprep

Preparation state creation rule

∀t', t state(γ, t') |= [qcprep ∧ qcond(t) ∧

∧ stimulus_reaction(p)]

p

⇒ state(γ, t') |= qprep

present_time(t’) ∧ qcprep ∧ qcond(t) ∧

∧ stimulus_reaction(p) →→ qprep

p

 17

Preparation state persistence rule

∀t' state(γ, t') |= [preparation_for(output(t'+c, a)) ∧ ¬

output(a)] ⇒ state(γ, t’+1) |=

preparation_for(output(t'+c, a))

preparation_for(output(t+c, a)) ∧ ¬output(a) →→

preparation_for(output(t+c, a))

Stimulus reaction state persistence rule

∀t' state(γ, t') |= [stimulus_reaction(p) ∧

¬preparation_for(output(t'+c, a))] ⇒ state(γ, t'+1)

|= stimulus_reaction(p)

present_time(t’) ∧ stimulus_reaction(p) ∧

¬preparation_for(output(t'+c, a)) →→

stimulus_reaction(p)

The executable theory from preparation to output Thp→o contains only one formula that relates a

preparation state at the time point t' to an output state at the time point t'+c; its translation is given in

Table 4.

Table 4: Translation of the rule from the executable theory Thp→→→→o into the corresponding

finite state transition rule

Rule from the executable theory Thp→→→→o Corresponding transition rules

Output generation rule

∀t' state(γ, t') |= preparation_for(output(t'+c, a)) ⇒

state(γ, t’+c) |= output(a)

preparation_for(output(t+c, a)) ∧ present_time(t+c-

1) →→ output(a)

Example

The executable properties from the executable specification, translated into the transition rules for

the considered example are given below:

food ∧ not(cup) →→ observed(food)

not(food) ∧ not(cup) →→ observed(not(food))

screen →→ observed(screen)

not(screen) →→ observed(not(screen))

present_time(t) ∧ observed(food) →→ memory(t, observed(food))

present_time(t) ∧ not(observed(not(food))) →→

memory(t, not(observed(not(food))))

present_time(t) ∧ observed(not(food)) →→

memory(t, observed(not(food)))

present_time(t) ∧ observed(not(screen)) →→

 18

memory(t, observed(not(screen))) ∧ stimulus_reaction(observed(not(screen)))

memory(t, observed(food)) →→ memory(t, observed(food))

memory(t, not(observed(not(food)))) →→

memory(t, not(observed(not(food))))

memory(t, observed(not(food))) →→

memory(t, observed(not(food)))

memory(t, observed(not(screen))) →→

memory(t, observed(not(screen)))

present_time(t) ∧ ∃t2 [memory(t2, observed(food)) ∧ ∀t3, t ≥ t3 > t2 memory(t3, not(observed(not(food))))]

→→

conditional_preparation_for(action(goto_food))

 present_time(t) ∧ conditional_preparation_for(action(goto_food)) ∧ memory(t, observed(not(screen))) ∧

 stimulus_reaction(observed(not(screen))) →→

preparation_for(action(t+c, goto_food))

present_time(t) ∧ stimulus_reaction(observed(not(screen))) ∧ not(preparation_for(action(t+c, goto_food))) →→

stimulus_reaction(observed(not(screen)))

preparation_for(action(t+c, goto_food)) ∧ not(performing_action(goto_food)) →→

preparation_for(action(t+c, goto_food))

preparation_for(action(t+c, goto_food)) ∧ present_time(t+c-1) →→

performing_action(goto_food).

The described transformation procedure was implemented in Java™, with an input (an external

behavioral specification) and an output (an executable specification and finite transition system

descriptions) files specified in textual format.

The generated finite state transition system representation is used in this paper for performing two

types of analysis: by running simulations of different types of agent behavior, and by analyzing the

consequences of the agent’s behavior by model checking techniques.

4. Analysis of Agent Behavior by Simulation

In this Section the proposed transformation procedure is applied for simulating the delayed

response and the adaptive behavior of an agent. For performing simulations a special software tool

has been developed. Based on a specification of agent behavior in form of a transition system and

using a sequence of external events (i.e., stimuli) as input, the program generates a trace (i.e., a

sequence of agent states over time). The generated in such way traces can be used for analysis of

external and internal dynamics of the agent in different experimental settings.

 19

4.1 Simulation of the Delayed-response Behavior of the Agent

First, let us consider in more detail the example of the delayed-response behavior of the agent (a

laboratory mouse), briefly introduced in Section 3. The behavior specification for this case is given

below; it consists of environmental properties and externally observable behavioral properties of the

agent.

Environmental properties:

EP1: At some time point food has been put at the position p1, after some time a cup has been

placed upon food and after that the screen is raised

∃t1, t2, t3 t2>t1 & t2<t3 state(γ, t2) |= cup_at(p1) & state(γ, t1) |= food_at(p1) & state(γ, t3) |= not_screen

EP2: Food stays at the position where it has been put until it has been taken away or the agent is

satisfied

∀t4 state(γ, t4) |= [food_at(X) & not(mouse_sat) & not(food_taken_away_from(X))] ⇒

state(γ, t4+1) |= food_at(X), where X ∈ {p1, p2}

EP3: After the screen has been raised, it will never be drawn down again

∀t5 state(γ, t5) |= not_screen ⇒ state(γ, t5+1) |= not_screen

EP4: After placing the cup it will not be removed

∀t6 state(γ, t6) |= cup_at(X) ⇒ state(γ, t6+1) |= cup_at(X), where X ∈ {p1, p2}

Properties that define the externally observable behavior of the mouse:

BP1: The mouse is able to observe presence (absence) of screen.

∀t7 state(γ, t7) |= X ⇒ ∃t8 t8>t7 state(γ, t8, input(mouse)) |= observed(X),

where X ∈ {not_screen, screen}

BP2: The mouse is always able to observe presence or absence of food if the cup is not covering it.

∀t9 state(γ, t9) |= X & not(cup_at(Y))⇒ ∃t10 t10>t9 state(γ, t10, input(mouse)) |= observed(X),

where X∈ {food_at(Y), not(food_at(Y))} and Y ∈ {p1, p2}

BP3: The mouse is able to observe that food is taken away if the cup is not covering it.

∀t11 state(γ, t11) |= food_taken_away_from(X) & not(cup_at(X)) ⇒

∃t12 t12>t11 state(γ, t12, input(mouse)) |= observed(food_taken_away_from(X)),

where X ∈ {p1, p2}

 20

BP4: The mouse always arrives at the position where it goes.

∀t13 state(γ, t13, output(mouse)) |= performing_action(goto(X)) ⇒

∃t14 t14>t13 state(γ, t14) |= mouse_at(X),

where X∈ {p1, p2}

BP5: If the mouse is at the position with food, then it will be eventually satisfied (after consuming

food).

∀t15 state(γ, t15) |= mouse_at(X) & food_at(X) ⇒ ∃t16 t16>t15 state(γ, t16) |= mouse_sat,

where X ∈ {p1, p2}

BP6: The mouse consumes food completely.

∀t17 state(γ, t17) |= mouse_sat & mouse_at(X) ⇒ state(γ, t17+1) |= not(food_at(X))

BP7: If mouse found the position with food, it stays there.

∀t18 state(γ, t18) |= mouse_at(X) & food_at(X) ⇒ ∀t19 t19>t18 mouse_at(X)

BP8: Delayed-response behavior of the mouse

The mouse goes to the position with food if and only if it observes that there is no screen and at

some point in the past the mouse observed food and since then did not observe the absence of food.

∀t20 [state(γ, t20, input(mouse)) |= observed(not_screen) &

 ∃t21< t20 state(γ, t21, input(mouse)) |= observed(food_at(X)) &

 ∀t22, t20 ≥ t22 > t21 state(γ, t22, input(mouse))|= not(observed(not(food_at(X))))] ⇒

∃t23, t23>t20 state(γ, t23, output(mouse)) |= performing_action(goto(X)),

where X∈ {p1, p2}

The complete specification of the finite state transition system generated for this specification is

given in (Sharpanskykh & Treur, 2005). This transition system was used to simulate a scenario of

the animal’s behavior with the following events in the environment: food is put at position p1 (time

point 0), the screen separating the animal from food is present (time points 0-3), a cup is put at

position p1, covering the food (time point 2), and the screen is removed (time point 4). The results

of the simulation in the form of a trace (i.e., a sequence of states) are given in Table 5.

 21

Table 5: Simulation trace illustrating delayed-response of the agent.

0: present_time(0)

 world(0,food_at(p1))

 world(0,screen)

9: present_time(4)

 world(4,not(screen))

1: observed(0,food_at(p1))

 observed(0,screen)

10: observed(4,not(screen))

2: memory(observed(0,food_at(p1)))

 memory(observed(0,screen))

11: memory(observed(4,not(screen)))

 stimulus_reaction(observed(not(screen)))

3: conditional_preparation_for(action(goto(p1))) 12: preparation_for(action(5,goto(p1)))

4: present_time(1) 13: not(stimulus_reaction(observed(not(screen))))

5: present_time(2)

 world(2,cup_at(p1))

14: present_time(5)

 performing_action(goto(p1))

6: observed(2,cup_at(p1)) 15: not(preparation_for(action(5,goto(p1))))

7: memory(observed(2,cup_at(p1)) 16: present_time(6)

 world(6,mouse_at(p1))

8: present_time(3) 17: present_time(7)

 world(7,mouse_sat)

Furthermore, a transition system representation can be used for construction of graphical models

of agent dynamics. A graphical model for the considered example is shown in Figure 1. The state

description literals with names started with a capital letter denote variables, which allow a concise

representation of sets of states. For example, the label mem(T, obs(not(screen))) represents the set

that includes every state corresponding to some time point t, in which the state property mem(t,

obs(not(screen))) holds. An AND-relation between states requires all state properties of the states in

the relation to be true in order to carry out the corresponding transition. A persistent state once

activated, remains active at every time point in the future, i.e. the state properties of a persistent

state hold for every time point in the future. The model in Figure 1 has been built manually.

However, tools exist such as the one described in van Ham, van de Wetering, and van Wijk (2002),

which allow for automatic visualization of finite state transition systems and can be used for

graphical analysis of executable models. The graphical representation is particularly useful for the

analysis of large transition systems. Usually such systems comprise a large number of transition

rules specified without any particular order that do not provide a clear and ordered overview on the

dynamics of a system. A graphical counterpart of a transition system makes temporal and causal

relations between states of a system explicit and allows tracking different development paths of the

system. Furthermore, the existing tools allow zooming into particular parts of a transition system to

investigate relations between particular states.

 22

Figure 1: Graphical model, which describes delayed-response behavior in executable form.

4.2 Simulation of Adaptive Agent Behavior

In the second simulation example the adaptive behavior of Aplysia Californica (a sea hare) is

considered. In neurobiology Aplysia has been often used for investigating classical and operant

conditioning (Carew & Walters & Kandel, 1981). Consider a slightly simplified classical

conditioning experiment of the Aplysia’s defensive withdrawal reflex. Before a learning phase a

strong noxious stimulus (an electric shock) on the Aplysia’s tail produces a defensive reflex (a

contraction), while a light tactile stimulus on Aplysia’s siphon does not lead to contraction.

Formally:

∀t9 ≤ t state(γ, t9, input(aplysia)) |= observed(tail_shock) ⇒

 state(γ, t9+c, output(aplysia)) |= performing_action(contraction)

During the learning phase a light tactile stimulus on the Aplysia’s siphon is repeatedly paired with

an electric shock on its tail. After a few trials (for this example three temporal pairings are assumed)

the animal reacts by contraction to the light tactile stimulus. The property that describes the learning

process of the animal from the external perspective can be represented in the form [ϕp(γ, t) ⇒ ϕf(γ, t)],

where ϕp(γ, t) is the formula:

∃t2, t3, t4, t5, t6, t7 [t2 < t3 & t3 < t4 & t4 < t5 & t5 < t6 & t6 < t7 & t7 < t &

state(γ, t2, input(aplysia)) |= observed(touch_siphon) &

state(γ, t3, input(aplysia)) |= observed(tail_shock) &

state(γ, t4, input(aplysia)) |= observed(touch_siphon) &

state(γ, t5, input(aplysia)) |= observed(tail_shock) &

state(γ, t6, input(aplysia)) |= observed(touch_siphon) &

state(γ, t7, input(aplysia)) |= observed(tail_shock)]

and ϕf(γ, t) is the formula

 23

∀t8 ≥ t [state(γ, t8, input(aplysia)) |= observed(touch_siphon) ⇒

state(γ, t8+c, output(aplysia)) |= performing_action(contraction)]

with ϕcond(γ, t, t8) is

∀t8 ≥ t state(γ, t8, input(aplysia)) |= observed(touch_siphon)

and ϕact(γ, t8) is

state(γ, t8+c, output(aplysia)) |= performing_action(contracts).

For this experiment c is assumed to be equal to two time units in a relative time scale.

Using the automated procedure, from the external behavioral specification of Aplysia a transition

system was generated. This transition system was used to simulate a scenario of the animal’s

behavior with the following stimuli: touch the siphon (time points 0, 5, 9 and 15) and shock on the

tail (time points 1, 6 and 10). The results of the simulation in form of a partial trace are given in

Table 6.

Table 6: Partial simulation trace illustrating adaptive behavior of Aplysia Californica.

0: present_time(0)

 world(0,touch_siphon)

11: not(preparation_for(action(3,contracts)))

1: not(world(0,touch_siphon))

 observed(0,touch_siphon)

………

2: memory(observed(0,touch_siphon))

 not(observed(0,touch_siphon))

 stimulus_reaction(observed(touch_siphon))

39: present_time(15)

 world(15,touch_siphon)

3: present_time(1)

 world(1,tail_shock)

40: not(world(15,touch_siphon))

 observed(15,touch_siphon)

4: not(world(1,tail_shock))

 observed(1,tail_shock)

41: memory(observed(15,touch_siphon))

 not(observed(15,touch_siphon))

 stimulus_reaction(observed(touch_siphon))

5: memory(observed(1,tail_shock))

 not(observed(1,tail_shock))

 stimulus_reaction(observed(tail_shock))

42: preparation_for(action(17,contracts))

6: conditional_preparation_for(action(contracts)) 43: not(stimulus_reaction(observed(touch_siphon)))

 not(stimulus_reaction(observed(tail_shock)))

7: preparation_for(action(3,contracts)) 44: present_time(16)

8: not(stimulus_reaction(observed(touch_siphon)))

 not(stimulus_reaction(observed(tail_shock)))

45: present_time(17)

 performing_action(contracts)

9: present_time(2) 46: not(preparation_for(action(17,contracts)))

10: present_time(3)

 performing_action(contracts)

47: present_time(18)

 24

In the given trace the process of conditioning starts at the state 0 (time point 0) and finishes at the

state 36 (time point 12). After that the animal reacts to a light tactile stimulus (state 39) by

producing a defensive reflex (states 42-45).

A graphical model for the example of classical conditioning for Aplysia Californica’s defensive

withdrawal reflex is shown in Figure 2.

ts

present_time(T)

present_time(T2)

obs(ts)

st

obs(st)

present_time(T3)

present_time(T4)

present_time(T5)

present_time(T6)

present_time(T7)

mem(T2, obs(ts))

mem(T3, obs(st))

mem(T4, obs(ts))

mem(T6, obs(ts))

mem(T7, obs(st))

mem(T5, obs(st))

T2 < T3 T3 < T4 T4 < T5

T5 < T6 T7 < TT6 < T7

cond_prep_for(act(contracts))

present_time(T8)

mem(T8, obs(ts))

s_r(obs(ts))

prep_for(act(T+c, contracts))

present_time(T+c-1)

perf_act(contracts)

--

a state

a persistent state

a transition AND-relation

- negation of an

antecedent state

s_r(obs(st))

present_time(T9)

mem(T9, obs(st))
T9 <= T

-

 Figure 2: A graphical model for the example of classical conditioning for Aplysia Californica’s

defensive withdrawal reflex

5. Analysis of the Consequences of Agent Behavior by Model Checking

The proposed approach for analysis of the consequences of the agent behavior is based on the

statement that the logical consequences of a certain external behavior specification are the logical

consequences of the corresponding internal executable specification. This statement is supported by

the following theorem.

 25

Theorem
1

If the internal dynamics specification π(γ, t) corresponds (by the transformation above) to the

external behavioral specification ϕ(γ, t), and ψ(γ, t) is a dynamic property of the agent in its

environment, then ψ(γ, t) is entailed by ϕ(γ, t) if and only if ψ(γ, t) is entailed by π(γ, t):

 ∀γ [π(γ, t) ⇒ ψ(γ, t)] ⇔ ∀γ [ϕ(γ, t) ⇒ ψ(γ, t)]

The consequences of the generated executable specification are easier to determine because of

the simpler format of the internal dynamics specification. Furthermore, the process of analysis of

such consequences can be automated by model checking techniques. For this purpose the SMV

model checking tool is used in this paper. The SMV uses efficient algorithms to analyze a model of

an agent system and the Computational Tree Logic (CTL) (McMillan, 1993) is used for properties

(e.g., properties concerning well-being) to check. CTL is branching-time logic, meaning that its

model of time is a tree-like structure in which different paths in the future are possible, any one of

which might be actually realized. A particular use of CTL will be demonstrated by an example in

this Section.

Moreover, the language for model specification in the SMV is similar to the executable format of

agent behavioral specifications, which facilitates the automatic translation of the description of a

finite state transition system, generated by the procedure introduced in Section 3, into the SMV

input format. A specification in SMV is a plain text file that consists of two main parts: (1) a

specification of a transition system and (2) a set of properties to be checked on the transition system

specification expressed in CTL.

A transition system (or model) specification in SMV consists of a number of sections. In the

section labeled VAR the names and types of the variables used in the model are defined. The type

associated with a variable is either Boolean, scalar, or an array. In the second section labeled

ASSIGN the initial values of variables are defined (i.e., the values that the variables have in the

initial state) and the transition rules between states are specified. The transition rules are specified

by case-expressions that define the change of values of the variables of the transition system as

follows:

next (var) := case

boolean_expression: val;

esac

1 The proof for this theorem is given in Sharpanskykh & Treur (2005)

 26

All case-expressions are evaluated in every state. When boolean_expression on the left-hand

side of “:” of some transition rule is evaluated to true in some state, then the corresponding variable

var will receive the value val in the next state.

For the translation of an executable specification of agent behavior into a SMV specification a

dedicated procedure has been developed and implemented. This procedure is applied for every

dynamic property in an executable behavioral specification as follows: First, the normalized

memory state formula qmem(t) and the normalized condition state formula qcond(t, t1) are processed by

applying the steps 1-3 described below. After that conditional preparation generation rules are

added by performing the step 4. Finally, the preparation and output state creation rules are

generated by performing the step 5.

Step 1. For each occurrence of an existential quantifier of the form ∃t1 P(t1), where t1 is a time

variable name and P(t1) is some function of the form memory(observed(t1, obs_event)),

¬memory(observed(t1, obs_event)), memory(output(t1, act_event)), or ¬memory(output(t1,

act_event)), where obs_event and act_event are some atoms and for each occurrence of a universal

quantifier of the form ∀t1 P(t1), create an atom (a label) t1 and add to the SMV specification the

corresponding initialization rules.

Step 2. For each occurrence of the expression Q t1, t2 R t1 memory(observed(t1, obs_event)), where Q

is either an existential or a universal quantifier, R is the comparison relation for the linear ordered

time line: R∈{<, ≤}; t1 and t2 are time variables, add to the specification the following rule:

next(t1):= case

 t2 & obs_event: 1; //memory state creation

 !t2: 0;

 1: t1; //persistence of memory

esac;

Similar rules should be added for the expressions Q t1, t2 R t1 memory(output(t1, act_event), Q t1, t2 R

t1 ¬memory(observed(t1, obs_event)) and Q t1, t2 R t1 ¬memory(output(t1, act_event)).

Step 3. For each expression of the form ∃t1, t2 ∀t3 [t3 R t2 AND t1 R t3 AND memory(observed(t1,

obs_event1)) AND memory(observed(t2, obs_event2)) & P3(t3)] if P3(t) is of the form

memory(observed(t3, obs_event))

 For t3 < t2 and t1< t3 add to the specification the following rules:

 27

t3t1_eq: boolean ;

init(t3t1_eq):=0;

next(t3t1_eq):= case

 t1: 1;

 1: 0;

esac;

next(t1):= case

 !obs_event2 & !t2 & t3t1_eq &

!obs_event3: 0;

 1: t1;

esac;

next(t3):= case

 !t1: 0;

 !obs_event2 & !t2 &

!obs_event3: 0;

 !obs_event2 & !t2 &

obs_event3: 1;

 1: t3;

esac;

The cases (ii) t3 < t2 and t1≤ t3; (iii) t3 ≤ t2 and t1< t3 and (iiii) t3 ≤ t2 and t1≤ t3 are dealt

similarly.

Step 4. Add conditional preparation generation rules to the specification:

next(fmemN):= case // N is a number of a dynamic property in the input specification

 ∧ti: 1; // conjunction of all labels, created based on ϕp(γ, t)

 i

 1: 0;

esac;

Step 5. For each action and communication a function output(act_event) in a formula qbt(t) add to

the specification the following rules:

next(fprep_act):= case

 fmemN & ∧tj: 1;

 j

 1: 0;

esac;

next(act_event):= case

 fprep_act: 1;

 1: 0;

esac;

When an executable specification is translated into the SMV input format, the checking of a CTL

property(ies) on this specification can be automatically performed using the SMV. As a result the

tool generates an answer, if the specified property(ies) are satisfied by the model. If the property is

not satisfied, a counterexample is provided. A counter-example shows a sequence of states that

resulted in a state, in which the checked property is not satisfied. In such a way, the reason for the

checking failure can be determined.

 28

In this section the proposed analysis method is described and illustrated by an example, in which

next to the delayed-response behavior (considered in Section 4.1) also the motivation-based

behavior of the agent is analyzed. The specification for the delayed-response behavior (denoted here

by ϕ1) is given in Section 4.1. The specification for the motivation-based behavior (denoted here by

ϕ2) is constructed from the properties BP1-BP7, which are defined in Section 4.1, and additional

properties BP9-BP12 given below.

BP9: Motivation-based behavior of the mouse (start at position p1)

If the mouse observes no screen and it is not satisfied, and at some time point in the past it observed food at

position p1 and since then did not observe food at position p2, then the mouse will go to position p1.

 ∀t24 [state(γ, t24, input(mouse)) |= observed(not_screen) & state(γ, t24) |= not(mouse_sat) &

∃t25, t25<t24 state(γ, t25, input(mouse)) |= observed(food_at(p1)) &

∀t26, t26 ≤ t24 & t26 > t25 state(γ, t26, input(mouse)) |= not(observed(food_at(p2)))] ⇒

 ∃t27, t27>t24 state(γ, t27, output(mouse)) |= performing_action(goto(p1))

BP10: Motivation-based behavior of the mouse (start at position p2)

If the mouse observes no screen and it is not satisfied, and at some time point in the past it observed food at

position p2 and since then did not observe food at position p1, then the mouse will go to position p2.

 ∀t24 [state(γ, t24, input(mouse)) |= observed(not_screen) &

state(γ, t24) |= not(mouse_sat) & ∃t25, t25<t24 state(γ, t25, input(mouse)) |= observed(food_at(p2)) &

∀t26, t26 ≤ t24 & t26 > t25 state(γ, t26, input(mouse)) |= not(observed(food_at(p1)))] ⇒

 ∃t27, t27>t24 state(γ, t27, output(mouse)) |= performing_action(goto(p2))

BP11: Motivation-based behavior of the mouse (continue at position p2)

If the mouse is at position p1 and there is no food at p1 and the mouse is still not satisfied, then it will go to

position p2 to continue its search for food

 ∀t28 state(γ, t28) |= mouse_at(p1) & not(food_at(p1)) & not(mouse_sat) ⇒

 ∃t29, t29>t28 state(γ, t29, output(mouse)) |= performing_action(goto(p2))

BP12: Motivation-based behavior of the mouse (continue at position p1)

If the mouse is at position p2 and there is no food at p2 and the mouse is still not satisfied, then it will go to

position p1 to continue its search for food

 ∀t30 state(γ, t30) |= mouse_at(p2) & not(food_at(p2)) & not(mouse_sat) ⇒

 ∃t31, t31>t30 state(γ, t31, output(mouse)) |= performing_action(goto(p1))

 29

Such a specification of behavior can be attributed, for example, to an animal that feels hunger.

Both types of behavior of the agent are analyzed in two different environmental experimental

settings (E, resp. E') with an identical initial situation, described as follows:

The mouse is placed in front of a transparent screen that separates it from a piece of food that is put behind

the screen. The mouse is able to observe the position of food and of the screen. At some moment after food

has been put, a cup is placed covering the food, which makes food invisible for the mouse. After some time

the screen is raised and the animal is free to go to any position. If the mouse comes to the position, where the

food is hidden, then it will be capable to lift up the cup and get the food.

By means of the analysis method described below it is determined for each of the environmental

settings and each type of behavior whether the combination will bring the agent well-being.

The Analysis Method

(a) By means of the translation procedure described in Section 3, each external behavioral

specification ϕi is automatically translated into the corresponding executable internal dynamics

specification πi and related to it state transition system representation τi.

(b) The well-being properties ψ and ψ' to be checked are specified in CTL

(c) Using the state transition system representations τi, verification of each of the agent models with

respect to properties ψ and ψ' is performed in the SMV model checker, resulting in confirmed or

rejected entailment relations between the πi and ψ and ψ'.

(d) Based on the theorem introduced at the beginning of this Section the confirmed or rejected

entailment relations between the πi and ψ and ψ' imply corresponding confirmed or rejected

entailment relations between the ϕi and ψ and ψ'.

The environmental conditions E are defined by dynamic properties EP1-EP4 listed in Section

4.1. For this example, ψ is the following conditional well-being property (which is expressed

conditionally for environmental conditions E):

for all traces, if the screen is removed and food is hidden under the cup, then the mouse will

eventually be satisfied.

This property ψ can be expressed in Computation Tree Logic (CTL) (Clarke & Grumberg &

Peled, 1999) required for verification in the SMV model checking tool as follows:

 AG (not_screen & food & cup → AF mouse_sat)

where A is a path quantifier defined in CTL, meaning “for all computational paths”, G and F are

temporal quantifiers that correspond to “globally” and “eventually” respectively.

 30

The automatic verification in the SMV model checking tool showed that the property ψ

expressing well-being under environmental conditions E is entailed by the model of the agent

delayed-response behavior expressed by ϕ1. The model of agent motivation-based behavior ϕ2 also

turns out to entail the general property ψ.

In the second experimental setting, described by environmental conditions E', the mouse

observed food for some time at the position p1, after that one cup is put covering the food and

another cup is put at the position p2, which is also behind the transparent screen. Thereafter,

invisibly for the mouse, food is removed from position p1 and put under the cup at position p2.

Later the screen is raised and the animal is free to go to any position. The environmental conditions

E' are formalized by dynamic properties BP2-BP4, and by the property BP5:

EP5: At some time point food had been put at the position p1, after some time one cup had been

placed upon food and another cup had been placed at the position p2; thereafter food has been taken

away from p1 and has been put at p2 behind the cup, after that the screen is raised

∃t32, t33, t34, t35, t33>t32 & t33<t34 & t35>t34 state(γ, t33) |= [cup_at(p1) & cup_at(p2)] &

state(γ, t32) |= food_at(p1) & state(γ, t34) |= [food_taken_away_from(p1) & food_at(p2)] &

state(γ, t35) |= not_screen

The global property ψ' to be verified in this case expresses well-being under these environmental

conditions E':

for all traces if the screen is removed and food is hidden behind the cup at position p2, then the mouse will

eventually be satisfied,

or, in CTL:

 AG (not_screen & food_at(p2) & cup_at(p2) → AF mouse_sat)

The automated verification in SMV showed that the model of the agent behavior ϕ1 for the

delayed-response case does not entail property ψ' expressing well-being under environmental

conditions E'. From the counter-example generated by the model checker it is visible that the animal

went to the position p1, and did not find food there, and after that did not go anywhere else, which

caused the failure of the property.

Unlike the external behavior specification ϕ1 that describes the delayed-response behavior of the

agent, the specification ϕ2 for the motivation-based behavior includes behavioral repertoire to deal

with invisible food, expressed in the form of properties that turn out to ensure the entailment of

global property ψ'. More specifically, ϕ2 expresses the behavior that if the agent could not find food

 31

at the position where it has seen it before, and the agent is still not satisfied, then the agent will

search for food at another position p2. Formally this is expressed by:

∀t5 state(γ, t5) |= mouse_at(p1) & not(food_at(p1)) & not(mouse_sat) ⇒

 ∃t6, t6>t5 state(γ, t6, output(mouse)) |= performing_action(goto(p2))

∀t7 state(γ, t7) |= mouse_at(p2) & not(food_at(p2)) & not(mouse_sat) ⇒

 ∃t8, t8>t7 state(γ, t8, output(mouse)) |= performing_action(goto(p1))

The automated verification in SMV confirmed that the external behavioral specification ϕ2 for the

case of motivation-based behavior entails property ψ'.

From the results of verification of the external behavioral specifications ϕ1 and ϕ2 for both types

of behavior in both experimental settings with respect to the entailment of properties ψ and ψ' (see

Table 7) we draw the conclusion that the agent that manifests motivation-based behavior ϕ2 fits

more for surviving in the world, described by the two types of experimental conditions than the

agent that has the delayed-response behavior ϕ1.

Table 7: Outcomes of the Example Analysis

 well-being under different environmental

conditions

 ψ ψ'

behavior delayed response ϕ1 + -

type motivation-based ϕ2 + +

6. Discussion

Behavior of organisms comes in a variety of forms and complexities. Simple forms of behavior

such as stimulus-response patterns can be formalized in relatively simple terms, based on direct

stimulus-action associations that can be considered as associations between an input state and a

subsequent output state of the organism. A description of an organism’s behavior in terms of such

stimulus-action associations can directly be used as a basis to model and analyze this behavior. For

more complex behavior, however, the picture is not so simple. To describe behavior from the

external perspective, in general, an input-output correlation (cf. Kim, 1996) has to be specified

which indicates how a pattern of input states over time relates to a pattern of output states over time.

With increasing complexity of the behavior considered, specification of such an input-output

correlation will become more complex, and not take the form of direct stimulus-action associations

anymore. The question arises on how such more complex descriptions of behavior can be expressed

 32

and handled, and, in particular, how such behavior can be analyzed, for example, by simulation and

verification. The problem with specifications of input-output correlations for externally observable

behavior is that for any type of behavior that is a bit more complex than stimulus-response

behavior, such specifications have a temporal complexity that makes them useless as a basis for

analysis by simulation or verification.

The solution for this problem developed in this paper is twofold. First, a formal language is put

forward that allows specifying behavior from an external perspective in terms of dynamic properties

involving input states and output states over time. Secondly, it is shown how an external behavior

specification expressed in such a language can be automatically transformed into an equivalent

executable specification that easily can be used to perform different types of analysis of agent

behavior. This transformation creates a specification based on postulated internal states (in

particular memory states and preparation states), and their direct temporal relationships. Here

memory states do not simply represent of certain aspects of the world state, but they can provide

representations of temporal relationships over various states in the past.

Further, the paper illustrates how based on generated executable specifications both simulations

and the analysis of consequences of agent behavior can be performed. Alternative methods for

temporal analysis of reactive systems are discussed in (Manna & Pnueli, 1995); also these methods

can be applied, once an executable behavioral specification has been generated.

The analysis of consequences of agent behavior is performed by means of model checking

techniques using the SMV model checker. The external behavioral specification is related to the

executable SMV specification in the following linear way:

(1) for every quantified variable from a non-executable specification a variable and an

appropriate rule for its update are introduced;

(2) for every nested quantifier an additional variable and an auxiliary executable rule are

introduced, which establishes a relation between the quantified variables;

(3) for every observed atom from a past and a conditional formulae from dynamic properties, a

corresponding memory state creation and a memory state persistence rule are introduced using

the variables described in (1) and (2), and variables that correspond to external events;

(4) for every non-executable dynamic property auxiliary variables fmem and fprep (i.e., the

variables that indicate truth values of ϕmem(γ, t) and ϕprep(γ, t1) respectively) and corresponding

update rules are introduced;

(5) for every action specified in ϕact(γ, t1) a variable and an appropriate update rule are

introduced;

 33

(6) for reactivation of agent preparation states the auxiliary variables and the update rules

corresponding to observed atoms from ϕprep(γ, t1) are introduced.

Notice that an SMV-specification comprises constants, variables and state transition rules with

limited expressiveness (e.g., no quantifiers). Furthermore, for expressing one complex temporal

relation a large quantity (including auxiliary) of transition rules is needed. Specification of agent

system behavior observed externally in the more expressive predicate-logic-based language TTL is

much easier. TTL proposes an intuitive way of creating a specification of system dynamics, which

still can be automatically translated into a state transition system description, as shown in this paper.

In general, the transformation into executable format can be achieved in different ways,

depending on the format of an external behavioral specification of an agent system. For example,

for translating agent behavioral specifications expressed in modal temporal logics into executable

format, procedures described in (Fisher, 1996) can be used. This paper exploits a procedure to

generate an executable internal behavioral specification from a more expressive external

specification than is possible in modal temporal logics. The executable format introduced in this

paper has similarities with the production rule representation formats used in existing cognitive

architectures. For example, in the ACT-R architecture (Anderson, 1996) rules are stored in the

procedural memory, which is essentially specified by a production system and can be easily

expressed by formulae from the executable specification introduced in this paper.

Also, different languages may be used for describing internal executable specifications based on

different types of internal states. For the approach chosen here an internal specification is expressed

over memory states of an agent that are based on the agent sensing (i.e., observations) of not only

his/her environment state, but also of patterns over time of this environment and his/her own

behavior therein (e.g., actions). This relates to a thesis currently recognized in neurobiological

research (Di Ferdinando & Parisi, 2004) that internal representations of an agent are based not only

on the properties of the sensory input, but also on the properties of the actions with which the agent

responds to this sensory input. The internal states can represent world states, but may also refer to

more complex temporal patterns occurring in the past. This focus on internal representations for

temporal patterns is also supported by other literature (e.g., (Damasio, 1999; Dennett, 1991, 2001,

2005; Pockett, Banks and Gallagher, 2006; Wegner, 2002, 2003)). This literature discusses that for

crucial cognitive capabilities, certain mental states or brain states are exploited that can be

interpreted as representing temporal information. Several authors put forward ideas on

consciousness that incorporate this thesis. For example, Damasio (1999)’s notion of core

consciousness is based on internal second-order representations of the process of body change upon

 34

a stimulus. Furthermore, Wegner (2002, 2003)’s notion of conscious will is based on an internal

representation of the temporal relationship between the occurrences of a thought and an action.

Moreover, Dennett (2001, 2005) discusses how from an asynchronous distributed process that

occurs in the brain consciousness emerges by temporal representation of the ordering of events.

Descriptions of memory states can also be compared to information chunks stored in memory

considered in (Kokinov 2003). When a problem has to be solved, an organism retrieves relevant

chunks from his/her memory and combines them into an episode representing a similar

problem/situation occurred in the past. Using the terminology of the approach proposed in this

paper, an episode corresponds to a (possibly complex) temporal property based on memory states

and relations between them.

Sometimes, when a structure of a neurological circuit of an organism is known, it is possible to

relate postulated internal states to certain real neurological states of an organism. The neurological

model of Aplysia Californica, suggested by Roberts and Glanzman (2003) allows finding some

correspondences between the postulated internal states described in the example of this paper and

the real physical states of the organism. The observation states from our model can be related to

activation states of sensory neurons, whereas the memory states (to some extent) can be put into

correspondence with an enhancement of the strength of the synaptic connection between the

sensory and motor neurons and with an associative increase in the excitability of the siphon sensory

neurons of Aplysia.

However, the rules for the creation of internal states of an agent proposed in this approach are

based on the idealized assumptions described above, which may lead to internal states that do not

correspond in a direct manner to internal states actually occurring in certain biological organisms. If

such a direct correspondence is aimed for, to ensure the biological plausibility of the models

constructed using the proposed approach for specific forms of organisms (types of agents), the rules

for creation of intrinsic states may be adjusted correspondingly.

Also other existing frameworks and approaches that include different types of mental states of an

agent (e.g., BDI (Rao & Georgeff, 1991), KARO (van Linder & van der Hoek & Meyer, 1998),

Schweiger Gallo & Gollwitzer (2007)) can be considered for internal representation. In particular,

these frameworks recognize attitudes of agents such as desires, intentions, and goals. More

specifically, in (Gollwitzer, 1999) it is shown that intentions can be implemented by if-then plans

that describe when, where and how a goal set of an agent has to be put into action: “if situation x is

encountered, then the agent will perform behavior y”. However, such if-then plans can be specified

using the approach proposed in this paper by temporal relations between externally observable and

 35

internal states of an agent. In this case no introduction of supplementary internal concepts is

required, and the intentional aspects of the agent behavior are implicitly realized through the

temporal rules in the behavior specification of the agent. However, goal and intention concepts

could also be considered explicitly by adding them to our ontology in order to get more

transparency. However, this will add no essential expressivity, as they would be a renaming of

already available complex expressions over our memory states; see also (Jonker, Treur, and Vries,

2002). In future work it will be investigated, which alternative or additional attitudes of agents

could be included into the internal framework in order to more transparently represent certain

specific types of complex behavior of an agent.

References

Allen, C., and Bekoff, M., (1997). Species of Mind: the philosophy and biology of cognitive

ethology. MIT Press.

Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51,

355-365.

Arnold, A. (1994). Finite transition systems. Semantics of communicating systems. Prentice-Hall.

Balkenius, C., & Moren, J. (1999). Dynamics of a classical conditioning model. Autonomous

Robots, 7, 41-56.

Carew, T.J. & Walters, E.T., & Kandel, E.R. (1981). Classical conditioning in a simple withdrawal

reflex in Aplysia Californica. The Journal of Neuroscience, 1(12), 1426-1437.

Clarke, E.M., & Grumberg, E.M., & Peled, D.A. (1999). Model Checking, MIT Press, Cambridge

Massachusetts, London England.

Damasio, A. (1999). The Feeling of What Happens: Body, Emotion and the Making of

Consciousness. Harcourt Brace.

Dennett, D.C. (1991). Consciousness Explained. Little, Brown & Company. Published by Penguin

Books.

Dennett, D.C. (2001). Are we Explaining Consciousness Yet? Cognition, 79, 221-237.

Dennett, D.C. (2005). Sweet Dreams: Philosophical Obstacles to a Science of Consciousness. MIT

Press.

Di Ferdinando, A. & Parisi, D. (2004) Internal representations of sensory input reflect the motor

output with which organisms respond to the input. In Carsetti A. (ed.): Seeing, Thinking and

Knowing. Kluwer, Dordrecht, 115-141

 36

Dudai Y. (1990). The Neurobiology of Memory. Concepts, Findings, Trends. Oxford: Oxford

University Press.

Fisher, M. (1996). An Introduction to Executable Temporal Logics, Knowledge Engineering Review

11(1), 3-36.

Fitting, M. (1996). First-order Logic and Automated Theorem Proving, 2nd edition, Springer-

Verlag.

Hawkins, J. (2004). On Intelligence, Henry Gholt and Co Ltd.

Heil, J. (2000). Philosophy of Mind. Routledge.

Hunter, W.S. (1912). The delayed reaction in animals. Behavioral Monographs, 2, 1-85.

Jonker, C.M., & Treur J., & Wijngaards W.C.A. (2003). A temporal-modelling environment for

internally grounded beliefs, desires, and intentions. Cognitive Systems Research Journal, 4(3),

191-210.

Jonker, C.M., & Treur, J. (2002) Compositional Verification of Multi-Agent Systems: a Formal

Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative Information

Systems, 11, 51-92.

Jonker, C.M., Treur, J., and Vries, W. de, (2002). Temporal Analysis of the Dynamics of Beliefs,

Desires, and Intentions. Cognitive Science Quarterly (Special Issue on Desires, Goals, Intentions,

and Values: Computational Architectures), vol. 2, 2002, pp.471-494.

Kim, J. (1996). Philosophy of Mind. Westview Press

Kokinov, B. (2003). The Mechanisms of Episode Construction and Blending in DUAL and AMBR:

Interaction Between Memory and Analogy. In: Kokinov, B., Hirst, W. (ed.) Constructive

Memory. Sofia: NBU Press.

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation Computing,

4, 67-95.

Manna, Z., & Pnueli A. (1995) Temporal verification of reactive systems, Springer-Verlag, Berlin

Heidelberg New York.

Manzano, M. (1996). Extensions of First Order Logic, Cambridge University Press.

McMillan, K. (1993). Symbolic Model Checking, Kluwer Academic Publishers.

Pockett, S., Banks, W.P., and Gallagher, S. (eds.) (2006). Does Consciousness Cause Behaviour?

MIT Press.

Priest, S. (1991). Theories of the Mind. Penguin.

Putman, H. (1975). Mind, Language, and Reality: Philosophical papers, vol.2. Cambridge:

Cambridge University Press.

 37

Rao, A. S. & Georgeff, M. P. (1991). Modeling agents within a BDI architecture. In Proceedings of

the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR

’91). Morgan Kaufmann, Cambridge, MA, 473-484.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing

Dynamical Systems. Cambridge MA: MIT Press.

Roberts, A.C., & Glanzman, D.L. (2003). Learning in Aplysia: looking at synaptic plasticity from

both sides. Trends in Neurosciences, 26, 662-670.

Schweiger Gallo, I., & Gollwitzer, P. M. (2007). Implementation intentions: A look back at fifteen

years of progress. Psicothema, 19, 37-42.

Skinner, B.F. (1935). The generic nature of the concepts of stimulus and response. Journal of

General Psychology, 12, 40-65.

Skinner, B.F. (1953). Science and human behavior. New York: Macmillan.

Sharpanskykh, A. & Treur, J. (2005). Modeling of Agent Behavior Using Behavioral Specifications

(Tech. Rep. 06-02ASRAI; http://hdl.handle.net/1871/9123). Vrije Universiteit, Amsterdam.

van Ham, F., & van de Wetering, H., & van Wijk, J.J. (2002). Interactive Visualization of State

Transition Systems. IEEE Transactions on Visualization and Computer Graphics, 8(4), IEEE CS

Press, 319-329.

van Linder, B.W., & van der Hoek, & Meyer, J.-J. Ch. (1998). Formalising Abilities and

Opportunities of Agents, Fundamenta Informaticae, 34(1-2), 53-101.

Vardi, M.Y. (1996). An automata-theoretic approach to linear temporal logic. In: Proceedings of the

VIII Banff Higher Order Workshop, in: Lecture Notes in Computer Science, vol. 1043, Springer-

Verlag, 238–266.

Watson, J. B. (1913). Psychology as the Behaviorist Views It. Psychological review, 20, 158-177.

Wegner, D.M. (2002). The Illusion of Conscious Will. MIT Press.

Wegner, D.M. (2003). The mind's best trick: how we experience conscious will. Trends in

Cognitive Science, 7, 65-69.

 38

Table 1: Executable Format

If a conjunction of state properties X holds in trace γ at

time point t,

(Step Property)

then a(nother) conjunction of state properties Y will

hold in trace γ at time point t+c, with c>0 an integer

constant

∀t state(γ,t) |= X ⇒ state(γ, t+c) |= Y

If a conjunction of state properties X and a condition

property C hold in trace γ at time point t,

(Conditional Persistency Property)

then this conjunction of state properties X will hold in

trace γ at the next time point

∀t state(γ, t) |= X ∧ C ⇒ state(γ, t+1) |= X

If a conjunction of state properties X holds in trace γ

�at time point t,

(State Relation Property)

then a(nother) conjunction of state properties Y will

hold in trace γ at the same time point t

∀t state(γ, t) |= X ⇒ state(γ, t) |= Y

 39

Table 2: Translation of the formulae from the executable theory Tho→→→→m into the

corresponding finite state transition rules

Rule from the executable theory Tho→→→→m Corresponding transition rules

Memory state creation rule

∀t' state(γ, t') |= p ⇒ state(γ, t') |= memory(t', p)
present_time(t) ∧ p →→ memory(t, p)

Memory persistence rule

∀t'' state(γ, t'') |= memory(t', p) ⇒ state(γ, t"+1) |=

memory(t', p)

memory(t, p) →→ memory(t, p)

 40

Table 3: Translation of the rules from the executable theory Thm→→→→p into the corresponding

finite state transition rules

Rule from the executable theory Thm→→→→p Corresponding transition rules

Memory state creation rule

∀t' state(γ, t') |= p ⇒ state(γ, t') |= [memory(t',

p) ∧ stimulus_reaction(p)]

present_time(t) ∧ p →→ [memory(t, p) ∧

stimulus_reaction(p)]

Memory persistence rule

∀t'' state(γ, t'') |= memory(t', p) ⇒ state(γ, t"+1) |=

memory(t', p)

memory(t, p) →→ memory(t, p)

Conditional preparation generation rule

∀t' state(γ, t') |= qmem ⇒ state(γ, t') |= qcprep
qmem →→ qcprep

Preparation state creation rule

∀t', t state(γ, t') |= [qcprep ∧ qcond(t) ∧

∧ stimulus_reaction(p)]

p

⇒ state(γ, t') |= qprep

present_time(t’) ∧ qcprep ∧ qcond(t) ∧

∧ stimulus_reaction(p) →→ qprep

p

Preparation state persistence rule

∀t' state(γ, t') |= [preparation_for(output(t'+c, a)) ∧ ¬

output(a)] ⇒ state(γ, t’+1) |=

preparation_for(output(t'+c, a))

preparation_for(output(t+c, a)) ∧ ¬output(a) →→

preparation_for(output(t+c, a))

Stimulus reaction state persistence rule

∀t' state(γ, t') |= [stimulus_reaction(p) ∧

¬preparation_for(output(t'+c, a))] ⇒ state(γ, t'+1)

|= stimulus_reaction(p)

present_time(t’) ∧ stimulus_reaction(p) ∧

¬preparation_for(output(t'+c, a)) →→

stimulus_reaction(p)

 41

Table 4: Translation of the rule from the executable theory Thp→→→→o into the corresponding

finite state transition rule

Rule from the executable theory Thp→→→→o Corresponding transition rules

Output generation rule

∀t' state(γ, t') |= preparation_for(output(t'+c, a)) ⇒

state(γ, t’+c) |= output(a)

preparation_for(output(t+c, a)) ∧ present_time(t+c-

1) →→ output(a)

 42

Table 5: Simulation trace illustrating delayed-response of the agent.

0: present_time(0)

 world(0,food_at(p1))

 world(0,screen)

9: present_time(4)

 world(4,not(screen))

1: observed(0,food_at(p1))

 observed(0,screen)

10: observed(4,not(screen))

2: memory(observed(0,food_at(p1)))

 memory(observed(0,screen))

11: memory(observed(4,not(screen)))

 stimulus_reaction(observed(not(screen)))

3: conditional_preparation_for(action(goto(p1))) 12: preparation_for(action(5,goto(p1)))

4: present_time(1) 13: not(stimulus_reaction(observed(not(screen))))

5: present_time(2)

 world(2,cup_at(p1))

14: present_time(5)

 performing_action(goto(p1))

6: observed(2,cup_at(p1)) 15: not(preparation_for(action(5,goto(p1))))

7: memory(observed(2,cup_at(p1)) 16: present_time(6)

 world(6,mouse_at(p1))

8: present_time(3) 17: present_time(7)

 world(7,mouse_sat)

 43

Table 6: Partial simulation trace illustrating adaptive behavior of Aplysia Californica.

0: present_time(0)

 world(0,touch_siphon)

11: not(preparation_for(action(3,contracts)))

1: not(world(0,touch_siphon))

 observed(0,touch_siphon)

………

2: memory(observed(0,touch_siphon))

 not(observed(0,touch_siphon))

 stimulus_reaction(observed(touch_siphon))

39: present_time(15)

 world(15,touch_siphon)

3: present_time(1)

 world(1,tail_shock)

40: not(world(15,touch_siphon))

 observed(15,touch_siphon)

4: not(world(1,tail_shock))

 observed(1,tail_shock)

41: memory(observed(15,touch_siphon))

 not(observed(15,touch_siphon))

 stimulus_reaction(observed(touch_siphon))

5: memory(observed(1,tail_shock))

 not(observed(1,tail_shock))

 stimulus_reaction(observed(tail_shock))

42: preparation_for(action(17,contracts))

6: conditional_preparation_for(action(contracts)) 43: not(stimulus_reaction(observed(touch_siphon)))

 not(stimulus_reaction(observed(tail_shock)))

7: preparation_for(action(3,contracts)) 44: present_time(16)

8: not(stimulus_reaction(observed(touch_siphon)))

 not(stimulus_reaction(observed(tail_shock)))

45: present_time(17)

 performing_action(contracts)

9: present_time(2) 46: not(preparation_for(action(17,contracts)))

10: present_time(3)

 performing_action(contracts)

47: present_time(18)

 44

Table 7: Outcomes of the Example Analysis

 well-being under different environmental

conditions

 ψ ψ'

behavior delayed response ϕ1 + -

type motivation-based ϕ2 + +

 45

Figure 1: Graphical model, which describes delayed-response behavior in executable form.

 46

Figure 2: A graphical model for the example of classical conditioning for Aplysia Californica’s

defensive withdrawal reflex

