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Abstract. Social decision making under stressful circumstances may involve 

strong emotions and contagion from others, and requires adequate prediction and 

valuation capabilities. In this paper based on principles from Neuroscience an 

adaptive agent-based computational model is proposed to address these aspects in 

an integrative manner. Using this model adaptive decision making of an agent in 

an emergency evacuation scenario is explored. By means of formal analysis and 

simulation, computational learning mechanisms are identified required for effec-

tive decision making of agents.  
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1   Introduction 

Decision making under stressful circumstances is a challenging type of human 

process. For example, in emergency evacuations the quality of such decision mak-

ing processes may make a difference between surviving or not. Decision making 

under stress involves a number of aspects that have to be dealt with, such as high 

levels of fear and/or hope, adequate predictive capabilities, for example, related to 

available information and earlier experiences, and social impact from other group 

members. In recent cognitive and neurological literature such decision making 

processes have been addressed. Elements that play an important role in deciding 

for certain options are the predicted effects of the options (determined by internal 

simulation), the valuing of these effects, and the emotions felt in relation to this 

valuing (based on as-if body loops). These elements affect each other by cyclic in-

ternal cognitive/affective processes. The connections used in these processes are 

adapted based on experiences. 

Prediction of the (expected) effects of a decision option, based on internal 

simulation starting from the preparation of the action has been analysed, for ex-

ample, in [30, 21]. Moreover, in [17, 18] it is pointed out how such predictions can 

be repeated, thus generating simulated behaviour and perception chains. The pre-
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dictions of action effects are not taken as neutral or objective, but are valued in a 

subjective and emotion-related manner according to the importance of the pre-

dicted effect for the agent, in a positive (hope) or negative (fear) sense; e.g., [24]. 

If the predicted effects are valued as (most) positive, this may entail a positive de-

cision for the option. In a social context, these processes of prediction and valuing 

within individuals are mutually affecting each other, so that joint group decisions 

may develop.  

In this paper based on principles from literature as indicated, an adaptive agent-

based computational model is proposed to address these aspects in an integrative 

manner. In contrast to the existing agent-based decision-making models designed 

from a software engineering perspective (cf  [6]), by employing theoretical princi-

ples from Neuroscience and Social Science, we strive to create a more biologically 

plausible model of human decision making. In the scenario used as illustration an 

agent considers three decision options (paths) to move outside of a burning build-

ing. The path to the first exit (option 1) is short, but eventually becomes danger-

ous. The path to the second exit (option 2) is known to be dangerous (e.g., con-

tains locations with high smoke and fire concentration). The path to the third exit 

(option 3) is long, but remains safe. By means of formal analysis and simulation, 

computational learning mechanisms are identified required for effective decision 

making of agents. 

The paper is organised as follows. A background for the model is considered in 

Section 2. In Section 3 the model proposed is described. In Section 4 agent learn-

ing mechanisms are considered. Simulation results based on the model are de-

scribed in Section 5. Formal analysis of the model is provided in Section 6. Sec-

tion 7 concludes the paper. 

2   Background 

The computational decision making model proposed in this paper is based on neu-

rological findings and principles considered in this section. 

2.1   Emotions and Valuing 

In decision making tasks different options are compared in order to make a rea-

sonable choice out of them. Options usually have emotional responses associated 

to them relating to a prediction of a rewarding and/or aversive consequence. In de-

cisions such an emotional valuing of predicted consequences often plays an im-

portant role. In recent neurological literature such a notion of value is suggested to 

be represented in the amygdala [2,3,15, 22,20,27].  Traditionally an important 

function attributed to the amygdala concerns representing emotions, in particular 

in the context of fear. However, in recent years much evidence on the amygdala in 

humans has been collected showing a function beyond this fear context. In hu-

mans many parts of the prefrontal cortex (PFC) and other brain areas such as hip-
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pocampus, basal ganglia, and hypothalamus have extensive, often bidirectional 

connections with the amygdala [13,28,22]. A role of amygdala activation has been 

found in various tasks involving emotional aspects [24]. Usually emotional re-

sponses are triggered by stimuli for which a prediction is possible of a rewarding 

or aversive consequence. Feeling these emotions represents a way of experiencing 

the value of such a prediction: to which extent it is positive or negative. This idea 

of positive and negative value is also the basis of work on the neural basis of eco-

nomic choice in neuroeconomics. In particular in decision-making tasks where 

different options are compared, choices have been related to a notion of value as 

represented the amygdala [2,3,22,23,20,27,29]. 

2.2   Internal Simulation 

The notion of internal simulation was put forward, among others, by Hesslow 

[17,18] and Damasio [7,8]. The idea of internal simulation is that sensory repre-

sentation states are activated (e.g., mental images), which in response trigger asso-

ciated preparation states for actions or bodily changes, which, by prediction links, 

in turn activate other sensory representation states.  

sensory representation states →  preparation states  →  sensory representation states 

The latter states represent the effects of the prepared actions or bodily changes, 

without actually having executed them. Being inherently cyclic, the simulation 

process can go on indefinitely, and may, for example, be used to evaluate the ef-

fects of plans before they are executed. In Figure 1 these dynamical relationships 

are depicted by the arrows from the upper plane to the middle plane and back. In 

Section 3 these relationships are formalised in (4), (5) and (6). Internal simulation 

has been used, for example, to describe (imagined) processes in the external world 

(e.g., prediction of effects of own actions [4]), or processes in a person’s own 

body (e.g., [7]).  

The idea of internal simulation has been exploited in particular by applying it to 

bodily changes expressing emotions, using the notion of as-if body loop bypassing 

(the need for) actually expressed bodily changes (cf. [7], pp. 155-158; [8], pp. 79-

80):  
sensory representation  →  preparation for bodily changes = emotional response  →  emo-

tion felt = based on sensory representation of (simulated) bodily changes 

An as-if body loop describes an inner simulation of bodily processes, without 

actually affecting the body. Note that [7] distinguishes an emotion (or emotional 

response) from a feeling (or felt emotion). In Figure 1 these dynamical relation-

ships are depicted by the arrows in the lower plane, and the arrow from the lower 

to the upper plane. In Section (3) these relationships have been formalised in (8) 

and (9). 

An as-if body loop usually occurs in an extended, cyclic form by assuming that 

the emotion felt in turn also affects the preparation states, as it is pointed out, for 

example, in ([9], pp. 91-92; [10], pp. 119-122). This can be viewed as a way to in-

corporate emotion integration in the preparation of actions. In Figure 1 this rela-

tionship is depicted via the arrows in the upper plane. 
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2.3   Social contagion 

When decision making takes place in a social context of a group of agents inter-

acting (verbally, nonverbally) on the relevant options, mutual contagion occurs. It 

is assumed that the preparation states of an agent for the actions constituting op-

tions and for emotional responses for the options are reflected in body states that 

are observed with a certain intensity or strength by other agents from the group. 

The contagion strength γ of the interaction from an agent A to an agent B for a 

preparation state p depends on the personal characteristic expressiveness ε of the 

sender (agent A) for p, the personal characteristic openness δ of the receiver 

(agent B) for p, and an interaction characteristic α (channel strength) for p from 

sender A to receiver B. The effects of contagion are integrated within the internal 

processes. In Section 3 these relations are formalised in (1), (2), and (3). 

3   An Affective Social Decision Making Model 

Based on the neurological findings and principles from Section 2 a computational 

affective social decision making model has been developed. This model is de-

scribed in this section. 

Depending on a situational context an agent determines a set of applicable op-

tions to satisfy a goal at hand. In the model proposed the applicable options are 

generated in a cyclic manner, via connections from activated sensory states re-

flecting this situational context to preparation states for the relevant actions related 

to an option, and valuations of sensory states. An option is represented by a (par-

tially) ordered sequence of actions (i.e., a plan) to satisfy the agent’s goals. For 

example, in the evacuation scenario under investigation each option is represented 

by a sequence of locations with an exit as the last location. 

Computationally, alternative options considered by an agent are being gener-

ated and evaluated in parallel. The evaluation of options is based on internal simu-

lation as described in Section 2. The process is depicted in Figure 1. In the vertical 

plane it is shown how in the overall process options for actions are considered (ac-

tion preparations in the upper horizontal plane), for which by prediction links sen-

sory representations of effects are generated (internal simulation, middle horizon-

tal plane), which are evaluated (emotion-related valuing, lower horizontal plane). 

The notations used in the model are summarized in Table 1. 

3.1   The Social Contagion Impact 

The social context in which decision making is performed is represented by a 

group of agents interacting (verbally, nonverbally) on the relevant options. The 

contagion strength of the interaction from agent A to agent B for a preparation 

state p is modelled as follows:  
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                       Figure 1. A graphical representation of the model for a given agent and option O.  

                            Circles represent neural states and links represent connections between the states. 

                                 Upperplane: the preparation states for the subsequent actions related to the option O 

                            Middleplane: the predicted effects of the subsequent actions  

                            Lower plane: the emotion-related valuing of the predicted action effects 

 
Table 1 Notations used 

Notation Explanation 

εεεεSA expressiveness of agent A for mental state S 

αSAB channel strength for S from agent A to agent B 

δSB openness of agent B for S 

γγγγSAB contagion strength for state S in the interaction from agent A to agent B 

G(S, B) aggregated group state for S as impact for B 

prepa,O,A Preparation of agent A for action a in option O 

srsE,O,A Feeling emotion E by agent A for option O  

srsG(a,O,A) Group preparation for a in O perceived by A 

srseffect(a,O),A A’s representation of the effect of a in O 

srseval_for(effect(a,O),E),A A’s valuation by E of the effect of a in O 

srsg,A A’s goal g 

prepE,O,A Preparation for E of agent A for option O 

srsdist(effect(a,O)),A Representation of A’s distance to exit by a and O 

 

                              γpAB=εpA⋅αpAB⋅δpB  (1) 

Here εpA is the personal characteristic expressiveness of the sender (agent A) for 

p, δpB is the personal characteristic openness of the receiver (agent B) for p, and 
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αpAB is the interaction characteristic channel strength for p from sender A to re-

ceiver B. 

By aggregating such input, an agent B perceives the group’s joint attitude to-

wards each option, which comprises the following dynamic properties. Note that 

for the sake of simplicity no intermediate states for this process have been in-

cluded, such as effector states, body states, or sensor states; the process from in-

ternal states to external expression, transfer and receipt is characterised at once by 

using parameters such as εpA, αpAB 
and δpB introduced above. 

(a) The aggregated group preparation to (i.e., the externally observable intention to per-

form) each action p constituting the option for agent B: 

        G(p, B) = ΣA≠B  γpAB qp,A  / Σ A≠B  γpAB 
εpA               (2) 

 (b) The aggregated group preparation to an emotional response (body state) be for each op-

tion. A predicted consequence for an option may induce different types of emotions 

(e.g., fear, hope, joy) with separate preparation states. Formally:  

            G(be, B) = ΣA≠B  γbeAB  
qbe,A  / Σ A≠B  γbeAB 

εbeA                (3) 

Note that in Figure 1 for reasons of transparency only one agent is depicted. 

The contagion received by this agent can be visualised as incoming arrows to the 

preparation states of the action options in the upper horizontal plane, and to the 

preparation state of the emotional response in the lower horizontal plane. The con-

tagion from the depicted agent to other agents can be visualised as outgoing ar-

rows from the same preparation states. 

3.2   Internal simulation 

The preparation state prepa1 for the first action from an option is affected by the 

sensory representations srsOi  of the option, of the perceived group preparation 

srsG(a1,Oi,A)  for the action and of the emotion srsbe felt towards the option which 

functions as valuing the option (Figure 1, upper horizontal plane). Formally: 

d prepa1,Oi,A
(t)/dt = 

 γ [ h(srsOi,A
(t), srsbe,Oi,A

(t), srsG(a1,Oi,A)(t)) – prepa1,Oi,A
(t) ]       (4) 

where A is any agent, Oi is an option, be is an emotional response state, 

G(a1,Oi,A) is the aggregated group preparation to action a1 of agent A, h(V1, V2, 

V3) is a combination function. In general, different forms of combination functions 

are possible. For example: 

h(V1, V2, V3) = β (1-(1- V1)(1- V2)(1- V3)) + (1-β) V1 V2 V3 

Another possibility is a logistic combination function: 

    h(V1, V2, V3) = 1/(1+e
-β2(V-β2)

), with V= ω1⋅V1 + ω2⋅V2 + ω3⋅V3 

The simulated perception of the effect of an action a (Figure 1, middle plane) in 

a simulated behavioural chain, based on prediction links (the arrows from the up-

per to the middle plain in Figure 1) is modelled by the following property: 
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d srseffect(a,Oi),A
(t) /dt  =  

γ [ω(prepa,Oi,A
(t),srseffect(a,Oi),A

(t))⋅ prepa,Oi,A
(t) - srseffect(a,Oi),A

(t)] (5)         

The confidence that an action will result in a particular effect is specified as the 

strength of the link between the preparation for the action state and the sensory 

representation of the corresponding effect state (the vertical arrows from the upper 

plane to the middle plane in Figure 1). In the evacuation scenario the strength of a 

link between a preparation for a movement action and a sensory representation of 

the effect of the action is used to represent confidence values of the agent’s beliefs 

about the accessibility of locations. For example, if the agent’s confidence of the 

belief that location p1 is accessible from location p2 is ω, then the strength of the 

link between the states described by prepmove_from_to(p2,p1) and srsis_at_location(p1) is put on 

ω. 

Similar to the first action a1, the preparation state for each subsequent action a 

from the behavioural chain is specified by: 

d prepa,Oi,A
(t)/dt =  

 γ [h(srseffect(a,Oi),A
(t), srsbe,Oi,A

(t), srsG(a,Oi,A)(t)) – prepa,Oi,A
(t)]     (6) 

Note that here the effects of the arrows pointing towards the preparation states 

in the upper plane in Figure 1 are combined using the chosen combination func-

tion. The option with the highest value for the preparation state for the first action 

is chosen for the execution by the agent. 

3.3   Emotion-related valuing 

In the lower horizontal plane in Figure 1 emotion-related valuing of the action 

options takes place.  

An emotional response is generated based on an evaluation of the effects of 

each action of the option. In such an evaluation the effect state for each action is 

compared to a goal state(s) of the agent. Note that for different types of emotions 

different aspects of a goal state or different types of goals may be used. In [25] a 

number of cognitive structures eliciting particular types of emotions are described. 

As a simulated behavioural chain is a kind of a behavioural projection, cognitive 

structures of prospect-based emotions (e.g., fear, hope, satisfaction, disappoint-

ment) from [25] are particularly relevant for the evaluation process. Such struc-

tures can be represented formally as evaluation properties. As indicated in [25], 

the intensity of prospect-based emotions depends on the likelihood (confidence) 

that a prospect state will occur. Thus, the strength of the link between the prepara-

tion state for an action and the sensory representation of its effect state is taken 

into account as a factor in the evaluation property. The generic evaluation property 

of the effect of the action a compared with the goal state g (in the lower plane in 

Figure 1) is specified formally as: 

d srseval_for(effect(a,Oi),be),A(t)/dt =  
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γ[h(ω(prepa,Oi,A
(t),srseffect(a,Oi),A

(t))⋅f(srsg,A(t),srseffect(a,Oi),A
(t)), srsbe,Oi,A

(t)) - 

srseval_for(effect(a,Oi),be),A(t) ],                                     (7) 

where f(srsg,A(t),srseffect(a,Oi),A
(t)), srsbe,Oi,A

(t)) is an evaluation function depending 

on the cognitive structure used for the evaluation. 

The evaluation of the effects of the actions for a particular emotional response 

to an option together with the aggregated group preparation to the emotional re-

sponse determine the intensity of the emotional response: 

prepbe,Oi,A
(t) = f(srseval_for(effect(a1,Oi),be),A(t),…,  

 srseval_for(effect(an,Oi),be,A(t))  (8) 

where be is a particular type of the emotional response. 

By the as-if body loop, the agent perceives its own emotional response prepara-

tion and creates the sensory representation state for it (in Figure 1 the arrow from 

the lower plane to the upper plane):  

          d srsbe,Oi,A
(t) /dt = γ  [ prepbe,Oi,A

(t)- srsbe,Oi,A
(t) ]            (9) 

The options in the evacuation scenario evoke two types of emotions: fear and 

hope, which are often considered in the emergency context. According to [25], the 

intensity of fear induced by an event depends on the degree to which the event is 

undesirable and on the likelihood of the event. The intensity of hope induced by 

an event depends on the degree to which the event is desirable and on the 

likelihood of the event. Thus, both emotions are generated based on the evaluation 

of a distance between the effect states for the actions from an option and the 

agent’s goal states. In this example each agent in the group has two goal states ‘be 

outside’ and ‘be safe’. The evaluation functions for both emotions include two as-

pects: (1) how far is the agent’s location from the nearest reachable exit; (2) how 

dangerous is the agent’s location (i.e., the amount of smoke and fire). Formally 

these two aspects are combined in the evaluation function from (7) using the for-

mula  

                 ωV1 + (1-ω)/(1+ λe
-ϕV2

)                        (10) 

where V1 is the degree of danger of the location, V2 is the distance in number of 

actions that need to be executed to reach the nearest accessible exit, λ and ϕ are pa-

rameters of the threshold function, ω is a weight. The goal value in (7) is obtained 

by setting V1=0 and V2=0 in (10):   (1-ω)/(1+ λ). 

According to the two emotions considered in the example, (7) is refined into 

two specialized evaluation properties – one for fear and one for hope: 

d srseval_for(effect(a,Oi),bfear),A(t)/dt =  

   γ[h(ω(prepa,Oi,A
(t),srseffect(a,Oi),A

(t))⋅ f(srsg,A(t),srseffect(a,Oi),A
(t)),  

                         srsbfear,Oi,A
(t)) - srseval_for(effect(a,Oi),bfear,A(t)]       (11) 

where  

f(srsg,A(t),srseffect(a,Oi),A
(t))= 

|srsg,A(t)-ω⋅srsdanger(effect(a,Oi)),Oi,A
(t) - (1-ω)/(1+ λe

- ϕ srsdist(effect(a,Oi)),A(t))|  
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and 

d srseval_for(effect(a,Oi),bhope),A(t)/dt =  

γ[h(ω(prepa,Oi,A(t),srseffect(a,Oi),A(t))⋅f(srsg,A(t),srseffect(a,Oi),A
(t)),    

srsbhope,Oi,A
(t)) - srseval_for(effect(a,A),bhope),A(t)]                              (12) 

where  

f(srsg,A(t),srseffect(a,Oi),A
(t))=  

  1- |srsg,A(t) –  ω⋅srsdanger(effect(a,Oi)),Oi,A
(t) - (1-ω)/(1+ λe

- ϕ
 
f1(a,O

i
,A)

)| 

 

Also specialized versions of other generic properties 3-9 are defined by replacing 

the generic state be in them by specific emotional response states bfear and bhope. 

4   Agent Learning 

Decision making in ongoing real life processes is adaptive in the sense that 

decisions made lead to new information and valuations based on which future 

decisions may be different. In this process a central role is played by how the 

experienced emotion-related information and valuations lead to adaptations. Such 

adaptations may concern, for example, (1) altered action effect prediction links, 

(2) altered links by which input from the other group members is incorporated, or 

(3) altered emotion-related valuation links. These three types of links are 

addressed in the approach put forward here. 

In the model presented in this paper, a Hebbian learning principle [16] is 

exploited to obtain this form of adaptivity for the three types of links mentioned: 

roughly spoken this principle states that connections between neurons that are 

activated simultaneously are strengthened. From a Hebbian perspective, 

strengthening of connections as mentioned in case of positive valuation may be 

reasonable, as due to feedback cycles in the model structure, neurons involved will 

be activated simultaneously. Therefore such a connection may be developed and 

adapted based on a Hebbian learning mechanism. Originally proposed in [16], in 

recent years more support has been found for the biological plausibility of this 

principle; e.g., [5]. In [12] a more in depth treatment of different variations of the 

principle from a mathematical perspective can be found, including the variation 

used here. The Hebbian learning of the three types of links considered above is 

formalised as follows (and similarly for state bhope). 

For link (1):   

d ω(prepai,Oj,A
(t), srseffect(ai+1,Oj),A

(t))/dt =  

η srseffect(ai+1,Oj),A
(t) prepai,Oj,A

(t) (1 – ω(prepai,Oj,A
(t),  

srseffect(ai+1,Oj),A
(t))) –  ξ ω(prepai,Oj,A

(t), srseffect(ai+1,Oj),A
(t))         (13) 

where η  is a learning rate and ξ  is an extinction rate. 
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In the presence of actual observation of an agent of an effect of its action, 

ω(prepai,Oj,A
(t), srseffect(ai+1,Oj),A

(t)) may be updated differently. For example, its 

value may be set to 0 in the absence of the effect, and to 1 in the presence of the 

effect. Another alternative is to apply a Bayesian update rule [26] or a probabilis-

tic update based on the weighting function from the Prospect Theory [19]. 

For link (2):    

d αprep(ai,Oj)A2A1
(t)/dt =  

η prepai,Oj,A1
(t) prepai,Oj,A2

(t) (1 – α prep(ai,Oj)A2A1
(t)) - ξ αprep(ai,Oj)A2A1

(t)) 

 (14) 

For link (3): dω(prepbfear,Oi,A
(t), srsbfear,Oi,A

(t))/dt =  

η srsbfear,Oi,A
(t) prepbfear,Oi,A

(t) (1 – ω(prepbfear,Oj,A
(t), srsbfear,Oj,A

(t))) –   

    ξ ω(prepbfear,Oj,A
(t), srsbfear,Oj,A

(t))            (15) 

5   Simulation Results 

Based on the model described in Section 3 and the variations in types of links be-

ing learned considered in Section 4, simulation has been performed in the Matlab 

environment. The aim of the simulation was to investigate systematically how dif-

ferent mechanisms of learning considered in Section 4 influence the dynamics of 

the agent decision making. The simulation model included a group of 10 agents at 

some location in the building with the parameters drawn from the ranges of uni-

formly distributed values as indicated in Table 2 below. The agents were deliber-

ating about three decision options (paths) to move outside of a burning building.  

Furthermore, information sources placed at each location in the building were 

providing information to the agents about the degree of danger of the locations. 

Table 2. Ranges and values of the agent parameters used in the simulation 

Parameter γ η ζ εpA δpA β αpAiAj
 

Range/value [0.7,1] 0.8 0.1 [0.7,1] [0.7,1] [0.55, 0.7] 1 

 

First, simulation of the agent system without learning was performed; see Fig-

ure 2. In this simulation the agents did not adapt to changing conditions of the en-

vironment, e.g., emergence and spread of fire. The agents did not have the ability 

to store information received from the information sources. Thus, the danger of 

fire was taken into consideration by an agent only at the moment when it received 

the corresponding information. Because of this shortsightedness, the agents pre-

ferred options 1 and 2 (shorter, but dangerous paths) to option 3 (a longer, but 

safer path) (Figure 2).  

After that different variations in learning of the three types of links considered 

in Section 4 have been explored in a systematic manner by simulation. A partial 

simulation trace for the case of learning of the emotion-related links (3) in the 

model for option 1 of Agent1 is provided in Table 3.  



 

Figure 2. Change of 

(center), 3 (right) without learning; the x

are the ordered numbers of actions in each options

Figure 3. Change of the 

(center), 3 (right) with the Hebbian learning of links (1), (2) and (3); the x

time scale (0-150), on the y

Table 3. A partial simulation trace for the case of learni

Time point

Preparation to move to loc2 from loc1

Preparation to move to loc3 from loc2

Preparation to move to exit1

 

Option 1 consists of three movement actions between  locations loc1, loc2 and 

loc3.  During the time period [0, 29) the path corresponding to option 1 was safe. 

Thus, option 1 was valuated highly by the agent, and was c

During the execution of option 1, at time point 29, the agent received information 

about fire, which occurred at location loc 2 along the path of option 1. This obse

vation caused a rapid devaluation of all action steps constituting op

agent, which eventually stabilized (time point 100). Other simulation results are 

summarized in Table 4 and depicted in Figure 3.

In comparison with the case without learning, learning of links (1) and (3) r

sults into a noticeable increase i

of option 3 (i.e., a longer and safer path). Learning of links (3) has the greatest e

fect on decision making. On the contrary, learning of links (2) has a negligible e

fect on the evaluation of options in

larity of the preparation states of the agents observed in simulation is the main 

cause of a limited effect of learning of link (2) on decision making. In situ

which agents with radically conflicting o

making, the effect of learning of links (2) would be much higher. A combin

  
Change of the Agent1’s preparation for execution of options 1 (left), 2 

(center), 3 (right) without learning; the x-axis is the time scale (0-150), on the y

are the ordered numbers of actions in each options 

  
Change of the Agent1’s preparation for execution of options 1 (left), 2 

(center), 3 (right) with the Hebbian learning of links (1), (2) and (3); the x-axis is the 

150), on the y-axis are the ordered numbers of actions in each option.

A partial simulation trace for the case of learning of the emotion-related links (3) 

in the model for option 1 of Agent1 

Time point 10 30 50 70 

Preparation to move to loc2 from loc1 0.73 0.88 0.55 0.55 0.55

Preparation to move to loc3 from loc2 0.67 0.82 0.52 0.45 0.44

Preparation to move to exit1 from loc3 0.66 0.8 0.52 0.43 0.40

Option 1 consists of three movement actions between  locations loc1, loc2 and 

loc3.  During the time period [0, 29) the path corresponding to option 1 was safe. 

Thus, option 1 was valuated highly by the agent, and was chosen for execution. 

During the execution of option 1, at time point 29, the agent received information 

about fire, which occurred at location loc 2 along the path of option 1. This obse

vation caused a rapid devaluation of all action steps constituting option 1 by the 

agent, which eventually stabilized (time point 100). Other simulation results are 

summarized in Table 4 and depicted in Figure 3. 

In comparison with the case without learning, learning of links (1) and (3) r

sults into a noticeable increase in discrimination of the decision options in 

of option 3 (i.e., a longer and safer path). Learning of links (3) has the greatest e

fect on decision making. On the contrary, learning of links (2) has a negligible e

fect on the evaluation of options in this simulation study (Table 4). A close sim

larity of the preparation states of the agents observed in simulation is the main 

cause of a limited effect of learning of link (2) on decision making. In situa

which agents with radically conflicting opinions participate in social decision 

making, the effect of learning of links (2) would be much higher. A combin
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of learning of all links (1), (2) and (3) results in the strongest discrimination be-

tween the options (Figure 3, Table 4). 

Table 4. Preparation for the first action of each option and the average preparation (over all 

actions) for each option per learning case 

Learning 

links 

Option 1  

1st action 

Option 1 

(average) 

Option 2   

1st action 

Option 2 

(average) 

Option 3         

1st action 

Option 3 

(average) 

(1) 0.53 0.50 0.53 0.50 0.63 0.59 

(1), (2) 0.53 0.49 0.53 0.49 0.63 0.57 

(3) 0.55 0.46 0.55 0.46 0.88 0.77 

(1), (3) 0.49 0.36 0.49 0.36 0.8 0.69 

(1), (2), (3) 0.49 0.31 0.49 0.31 0.8 0.65 

6   Formal Analysis 

The behaviour of the agent’s adaptation process can also be investigated by formal 

analysis, based on the specification for the connection strength ω = ωij from node i 

to node j. 
�ω���

��
 + γ �ηai�t�aj�t� + ζ� ω�t�  = γηai�t�aj�t� 

This is a first-order linear differential equation with time-dependent coeffi-

cients: ai and aj are functions of t which are considered unknown external input in 

the equation for ω. An analysis can be made for when equilibria occur:  

�ω���

��
 = 0  ⇔ �ηaiaj  + ζ� ω = ηaiaj   ⇔   ω  =  

η� �! 

η� �!  " ζ
 

Indeed this relation was confirmed up to an accuracy of 0.01 for ω by the ex-

ample simulations. One case here is that ω = 0  and one of ai and aj is 0. When ai and 

aj are nonzero, it can be rewritten as (since aiaj ≤ 1):   ω = 1 /(1  + ζ/ηaiaj)  ≤  1 /(1  + 

ζ/η). This shows that when no extinction takes place (ζ = 0), an equilibrium for ω 

of 1 is possible, but if extinction is nonzero, only an equilibrium < 1 is possible, as 

is also shown in the example simulations.  

Further analysis can be made by obtaining an explicit analytic solution of the 

differential equation in terms of the functions ai and aj. This can be done as fol-

lows. Take W�t� = $  %&�'�%(�'��
�)

*' the accumulation of ai�t�aj�t� over time from t0 

to t; then �+�,�

��
  = ai�t�aj�t�. Given this, the differential equation for ω can be solved 

by using .γ�η/���"ζ��0�0�� as an integrating factor obtaining: 

ω(t) = ω�,0� .0γ1η/���"ζ��0�)�2 +   

                          γη $  �
�)

ai�u�aj�u�   .0γ1η�/���0/�4��"ζ��04�2du  

For the special case of constant aiaj= c, explicit expressions can be obtained, 

using  W�t� = c�t-t0� and W�t�-W�u� = c�t-u�: 

 

$  �
�)

ai�u�aj�u�   .0γ1η�/���0/�4��"ζ��04�2du = 
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                  $  �
�)

c .0γ1η7"ζ���04�2du = 
8

γ�η7"ζ��
 [1 -  .0γ1η7"ζ���0�)�2 ] 

Although in a simulation usually aiaj will not be constant, these expressions 

may still be useful in a comparative manner. When aiaj  ≥ c on some time interval, 

then by monotonicity the above expressions for ω with aiaj= c  provide a lower 

bound for ω. Thus it can be found that 

ηc /(ηc+ζ) – ω(t) = [ηc /(ηc+ζ) – ω(0)] 90γ�η:"ζ�� 

which shows the convergence rate to an equilibrium for constant aiaj= c, provides 

an upper bound for the deviation from the equilibrium. This has half-value time 

ln(2)/γ(ηc+ζ) = 0.7/γ(ηc+ζ). When aiaj  ≥ c on some time interval, then by the 

monotonicity mentioned earlier, the upward trend will be at least as fast as de-

scribed by this expression. In the example simulations these relations roughly have 

been confirmed as a way of approximation of the actual convergence speed (with 

deviations varying from less than 15% to 50%). 

7   Conclusion 

Effectiveness of human reasoning and decision making is determined largely by 

learning and adaptation mechanisms. In this paper effects of learning of different 

types of links in a social affective decision making model based on neurological 

principles are explored. Learning of the emotion-related links has the strongest ef-

fect on discrimination of decision making options, which can be seen as in line 

with recent perspectives addressing the role of the Amygdala in valuing, de-

scribed, for example, in [13, 24, 23, 24]. The adaptation of action effect prediction 

links has a smaller, but still noticeable effect on social decision making. Next to 

learning of action effect prediction links, adaptation of effect-next action predic-

tion links in simulated chains was investigated by simulation. It was established 

that the learning effect of the latter links on decision making is the same as of the 

former links. Thus, employing learning of both types of links in simulated deci-

sion chains does not have any added value for discrimination of the decision op-

tions. The Hebbian learning of external information provision links did not result 

in a significant discrimination between the decision options. This is explained by a 

high mutual influence of the agents and the similarity of their states.  In conclu-

sion, in societies of homogeneous and/or pervious to influence agents, employing 

Hebbian learning of action-effect prediction and emotion-related links would re-

sult in an efficient social decision making process. When agents express strong 

opposing opinions in decision making, learning of external information provision 

links may also need to be employed. 

Previously, the Prospect Theory model of human decision making was pro-

posed [19], which is often used for representing human decision making in Cogni-

tive Science (see e.g., [11]). The theory is developed for simple probabilistic op-

tions (actions) with monetary outcomes, however can be extended to more 
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involved options. In the model individuals subjectively transform probabilities pi 

into decision weights w(pi) and outcomes xi into values v(xi), relative to a refer-

ence point, which depends on the individual’s expectation and situation. The util-

ity of an option in its simplest form is calculated as ∑i=1..N w(pi)⋅v(xi), where N is 

the number of outcomes of an option. The decision weighting function may have 

different forms, e.g. as in [11]: w(p)=p
δ
/( p

δ 
+ (1-p)

δ
)

1/δ
. In the proposed model 

such a function could be incorporated into (13) for updating the strength values of 

links from preparation to sensory representation of action effect states.  

The value function for an option in the Prospect Theory model is often defined 

as a power function of deviations of outcomes of actions from the agent’s refer-

ence point. In [1] a computational decision making model is proposed, in which 

parameters of a prospect theory value function change with emotions. Similarly, in 

the proposed model, emotions, which play a crucial role in the evaluation of op-

tions, arise based on a difference between sensory representation of action effect 

states (the reference point) and the agent’s desired state (a goal) (equation (7)). In 

contrast to the standard prospect model with atomic actions, options in our model 

are composite (i.e., represented by chains). Furthermore, in contrast to a linear 

(non-cyclic) evaluation of options in the prospect model, in the proposed model 

the evaluation of later states in a chain has an effect through an emotional influ-

ence on the evaluation of earlier states in a cyclic manner. This assumption is in 

line with psychological evidences [14], submitting that emotions influence not 

only the final outcome (action selection), but the processing dynamics of the 

whole system. 

In the literature [11] it is recognized that humans often employ diverse emotion 

regulation mechanisms (e.g., to cope with fear and stress). These mechanisms in-

volve interplay between cognitive and affective processes. In the future the pro-

posed model will be extended with an emotion regulation component. 

References 

1. Ahn, H. Modeling and analysis of affective influences on human experience, prediction, 

decision making, and behavior. PhD thesis. MIT, Cambridge (2010) 

2. Bechara, A., Damasio, H.,  Damasio, A.R., and Lee, G.P., Different Contributions of the 

Human Amygdala and Ventromedial Prefrontal Cortex to Decision-Making. Journal of 

Neuroscience 19, 5473–5481 (1999)  

3. Bechara, A., Damasio, H.,  and Damasio, A.R.: Role of the Amygdala in Decision-

Making. Ann. N.Y. Acad. Sci. 985, 356-369 (2003)  

4. Becker, W., and Fuchs, A.F.: Prediction in the Oculomotor System: Smooth Pursuit Dur-

ing Transient Disappearance of a Visual Target. Experimental Brain Research 57, 562--

575 (1985) 

5. Bi, G.Q., and, Poo, M.M.: Synaptic Modifications by Correlated Activity: Hebb’s Postu-

late Revisited. Ann Rev Neurosci 24, 139--166 (2001) 

6. Boutilier, C., Dean, T.,  and Hanks, S.  Decision-Theoretic Planning: Structural Assump-

tions and Computational Leverage.  In Proceedings of J. Artif. Intell. Res. (JAIR). 1-94 

(1999) 



15 

7. Damasio, A.R.: Descartes’ Error: Emotion, Reason and the Human Brain. Papermac, 

London (1994) 

8. Damasio, A.R.: The Feeling of What Happens. Body and Emotion in the Making of Con-

sciousness. New York: Harcourt Brace (1999) 

9. Damasio, A.R.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Vintage books, 

London (2003) 

10. Damasio, A.R.: Self comes to mind: constructing the conscious brain. Pantheon Books, 

NY (2010) 

11. Delgado, M. R., Phelps, E. A. and Robbins, T. W. Decision Making, Affect, and Learn-

ing: Attention and Performance XXIII, Oxford University Press (2011) 

12. Gerstner, W., and Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. 

Cybern. 87, 404--415 (2002) 

13. Ghashghaei HT, Hilgetag CC, Barbas H: Sequence of information processing for emo-

tions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroi-

mage 2007, 34:905-923. 

14. Gray, J. R. Integration of emotion and cognitive control. Current Directions in Psycho-

logical Science. 13, 46-48. (2004) 

15. Haggard, P.: Human volition: towards a neuroscience of will. Nature Neoroscience Re-

views, 8:  934-946, 2008. 

16. Hebb, D.O.: The Organization of Behaviour. New York: John Wiley & Sons (1949) 

17. Hesslow, G.: Will neuroscience explain consciousness? J. Theoret. Biol. 171, 29–39 

(1994) 

18. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends 

Cogn. Sci. 6, 242--247 (2002) 

19. Kahneman, D., and Tversky, A.  Choices, Values and Frames. American Psychologist 

39, 341-350. (1984). 

20. Montague P.R., Berns G.S.: Neural economics and the biological substrates of valua-

tion. Neuron, 36:265-284 (2002) 

21. Moore, J., and  Haggard, P., Awareness of action: Inference and prediction. Conscious-

ness and Cognition, 17: 136–144 (2008) 

22. Morrison SE, Salzman CD: The convergence of information about rewarding and aver-

sive stimuli in single neurons. J Neurosci, 29:11471-11483 (2008) 

23. Morrison, S.E., and Salzman, C.D.: Re-valuing the amygdala. Current Opinion in Neu-

robiology 20, 221–230 (2010) 

24. Murray EA: The amygdala, reward and emotion. Trends Cogn Sci, 11:489-497 (2007) 

25. Ortony, A., Clore, G. L., and Collins, A. The Cognitive Structure of Emotions. Cam-

bridge University Press (1988) 

26. Perl, J. Causality. Cambridge University Press (2000) 

27. Rangel A, Camerer C, Montague PR: A framework for studying the neurobiology of 

value-based decision making. Nat Rev Neurosci, 9:545-556 (2008) 

28. Salzman, C.D., and Fusi, S.,  Emotion, Cognition, and Mental State Representation in 

Amygdala and Prefrontal Cortex. Annu. Rev. Neurosci, 33:173–202 (2010) 

29. Sugrue LP, Corrado GS, Newsome WT: Choosing the greater of two goods: neural cur-

rencies for valuation and decision making. Nat Rev Neurosci, 6:363-375 (2005) 

30. Wolpert, D.M., Computational approaches to motor control. Trends in Cognitive Sci-

ences, 1: 209-216, (1997) 


