Houten vierendeelliggers en vakwerken

De toepassing van de Lignoforce buisverbinding geëvalueerd
Houten vierendeelliggers en vakwerken

De toepassing van de Lignoforce buisverbinding geëvalueerd

Eindrapport CT3000 – Bachelor Eindwerk

18 oktober 2005

J.G. Verweij

1155482
Inhoudsopgave

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Titel</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductie</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Inleiding</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Probleembeschrijving</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Opzet van het onderzoek</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>De Lignoforce buisverbinding</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Historie</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Houtverbindingen</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Lokale versterking met DVW</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>De expanderende buis</td>
<td>7</td>
</tr>
<tr>
<td>2.5</td>
<td>Toetsing van de Lignoforce verbinding</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Ontwerpgegevens</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Vakwerken en vierendeelliggers</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Vakwerken</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Vierendeelligers</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Vakwerk ontwerp</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Inleiding</td>
<td>15</td>
</tr>
<tr>
<td>4.2</td>
<td>Ontwerp</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Belastingen</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>Krachtsverdeling</td>
<td>18</td>
</tr>
<tr>
<td>4.5</td>
<td>Toetsing</td>
<td>22</td>
</tr>
<tr>
<td>4.6</td>
<td>Evaluatie</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Vierendeelligger ontwerp</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Inleiding</td>
<td>25</td>
</tr>
<tr>
<td>5.2</td>
<td>Ontwerp</td>
<td>25</td>
</tr>
<tr>
<td>5.3</td>
<td>Belastingen</td>
<td>28</td>
</tr>
<tr>
<td>5.4</td>
<td>Krachtsverdeling</td>
<td>28</td>
</tr>
<tr>
<td>5.5</td>
<td>Toetsing</td>
<td>30</td>
</tr>
<tr>
<td>5.6</td>
<td>Evaluatie</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Vergelijking N-vakwerk met vierendeelligger</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Optimalisatie vierendeelligger</td>
<td>34</td>
</tr>
<tr>
<td>7.1</td>
<td>Inleiding</td>
<td>34</td>
</tr>
<tr>
<td>7.2</td>
<td>Vermindering van het houtvolume</td>
<td>34</td>
</tr>
<tr>
<td>7.3</td>
<td>Vermindering van het aantal buizen per knoop</td>
<td>35</td>
</tr>
<tr>
<td>7.4</td>
<td>Toevoegen trekdiagonalen in de eindvelden</td>
<td>36</td>
</tr>
<tr>
<td>7.5</td>
<td>Vergelijking varianten</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Conclusies en aanbevelingen</td>
<td>40</td>
</tr>
<tr>
<td>8.1</td>
<td>Conclusies</td>
<td>40</td>
</tr>
<tr>
<td>8.2</td>
<td>Aanbevelingen</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Literatuurlijst</td>
<td>41</td>
</tr>
<tr>
<td>Bijlage A</td>
<td>Ontwerpgegevens buizen</td>
<td>42</td>
</tr>
<tr>
<td>A.1</td>
<td>Enkele buis</td>
<td>42</td>
</tr>
<tr>
<td>A.2</td>
<td>Dubbele buizen</td>
<td>42</td>
</tr>
<tr>
<td>A.3</td>
<td>Niet-lineaire krachtvervormingsrelatie</td>
<td>43</td>
</tr>
<tr>
<td>Bijlage B</td>
<td>Knikcurve GL32h</td>
<td>44</td>
</tr>
<tr>
<td>Bijlage</td>
<td>Titel</td>
<td>Pagina</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>C</td>
<td>Toetsingsformules</td>
<td>45</td>
</tr>
<tr>
<td>C.1</td>
<td>Formules t.b.v. toetsing vakwerkligger</td>
<td>45</td>
</tr>
<tr>
<td>C.2</td>
<td>Formules t.b.v. toetsing vierendeelligger</td>
<td>46</td>
</tr>
<tr>
<td>D</td>
<td>Analytische berekening N-vakwerk</td>
<td>48</td>
</tr>
<tr>
<td>E</td>
<td>Toetsing N-vakwerk</td>
<td>49</td>
</tr>
<tr>
<td>F</td>
<td>Toetsing vierendeelligger</td>
<td>51</td>
</tr>
<tr>
<td>G</td>
<td>Voorbeeldberekening momentverbinding</td>
<td>53</td>
</tr>
<tr>
<td>H</td>
<td>Krachtsoverdracht in verbinding met trekstaaf</td>
<td>59</td>
</tr>
</tbody>
</table>
Voorwoord

Dit rapport beschrijft een onderzoek dat is opgezet in het kader van het vak CT3000 - Bachelor Eindwerk van de opleiding Civiele Techniek aan de TU Delft. Het onderzoek richt zich op de toepassing van de (nieuwe) Lignoforce buisverbinding in vakwerken en vierendeelliggers. De toepassing van het materiaal hout voor vierendeelliggers is geheel nieuw. Tot nu toe was de capaciteit van de beschikbare verbindingsmiddelen hiervoor ontoereikend. Graag wil ik mijn begeleiders, dr.ir. J.-W.G. van de Kuilen en ir. J.W. Welleman, bedanken voor hun hulp en adviezen gedurende het onderzoekstraject.

Sliedrecht/Delft – september/oktober 2005

Gert-Jan Verweij
Leeswijzer

In Hoofdstuk 4 is een ontwerp voor een houten N-vakwerk uitgewerkt. Eenzelfde uitwerking is gegeven in Hoofdstuk 5 voor een vierendeelligger. In elk hoofdstuk zijn de ontwerpkeuzes toegelicht, en is de krachtwerking inzichtelijk gemaakt. Ook zijn de beperkingen ten aanzien van de toetsingen opgenomen. De ontwerpen zijn op verschillende aspecten met elkaar vergeleken in Hoofdstuk 6. Aansluitend worden in Hoofdstuk 7 een aantal alternatieve ontwerpen voor de vierendeelligger gepresenteerd en vergeleken met het ‘basisontwerp’ uit Hoofdstuk 5.
Ten slotte worden in Hoofdstuk 8 enkele conclusies getrokken en worden aanbevelingen voor eventuele vervolgonderzoeken geformuleerd.
Na de Literatuurlijst volgen bijlagen waarin diverse handberekeningen, berekeningsresultaten, ontwerpgegevens en toetsingsformules zijn opgenomen.
1 Introductie

1.1 Inleiding

Figuur 1 Toepassingsvoorbeeld: brandweerkazerne Soest [11]

1.2 Probleembeschrijving

Constructies dienen om bouwwerken in stand te houden. Voor een specifieke toepassing, kan naast de keuze voor een of meerdere materialen, gekozen worden voor een vorm die het beste bij het bouwwerk past. Deze keuze kan op verschillende gronden worden gemaakt. Architecten hanteren daarbij andere maatstaven dan constructeurs, maar zijn wel gebonden aan de huidige stand van de techniek.

Wanneer besloten wordt de constructie in het zicht te plaatsen, is de keuze voor hout een reële mogelijkheid. Nadeel is dat houtconstructies gekenmerkt worden door relatif grote, massieve profielen. Zeker in vergelijking met staalconstructies valt dit direct op. Hiervoor zijn verschillende oorzaken aan te wijzen. Hout heeft een lagere sterkte dan staal, waardoor grotere doorsneden nodig zijn om eenzelfde belasting op te kunnen nemen. Hier staat tegenover dat de volumieke massa van hout belangrijk lager is dan die van staal.

Voor houten vakwerken zijn enkele mogelijke verbindingen getoond in Figuur 2 en Figuur 3. Ook Figuur 11 (pagina 12) toont een oplossing.

![Figuur 2 Verbinding met ingelaten plaat](image1)

![Figuur 3 Verbinding met hechtplaat](image2)

De belangrijkste oorzaak waarom verbindingen maatgevend kunnen worden, is het anisotrope gedrag van hout. Hout is namelijk opgebouwd uit tegen elkaar liggende vezels. In de vezelrichting zijn de mechanische eigenschappen beduidend beter dan loodrecht daarop. Een houtverbinding (in vlakke constructies) bestaat vaak uit elkaar overlappende profielen, die zijn verbonden door er één of meer stalen verbindingmiddelen door te voeren. De belasting brengt met zich mee dat deze verbindingmiddelen krachten loodrecht op de vezelrichting van het hout uitoefenen. Door de lage treksterkte in die richting kan het hout splijten. In de normen worden minimale rand-, eind- en tussenafstanden voorgeschreven om splijten van het hout te voorkomen. Deze eisen leiden ertoe dat de profielen veelal grotere afmetingen krijgen dan op basis van sterkte nodig zou zijn. Wanneer de sterkte van de verbinding uitgedrukt wordt in de sterkte van de aangesloten houtprofielen, dan ligt deze efficiëntie tussen
de 40% en 60% [1]. Doordat in verbindingen doorgaans sprake is van gatspeling, is de stijfheid van een houtconstructie laag. Om deze redenen worden vierendeelliggers niet in hout uitgevoerd.

Met de recent ontwikkelde, en al enkele keren toegepaste, Lignoforce verbinding kan een sterkte worden behaald die gelijkwaardig is aan die van de aangesloten profielen. De efficiëntie bedraagt dan dus 100%. Hierdoor kunnen besparingen op het houtgebruik worden gerealiseerd tot 40%. Ook gedraagt deze verbinding zich veel stijver dan een gewone stiftverbinding.

1.3 Opzet van het onderzoek

In deze studie zijn de gevolgen van de toepassing van de Lignoforce buisverbinding onderzocht. Daarbij ligt de focus op de houten vierendeelligger. Omdat deze constructievorm tot dusverre nog nooit in hout is uitgevoerd, wordt de vergelijking gemaakt met een houten vakwerk. Voor beide constructies is daartoe een ontwerp gemaakt. Tevens is nagegaan op welke manieren het ontwerp van de vierendeelligger kan worden geoptimaliseerd.
2 De Lignoforce buisverbinding

2.1 Historie

Sinds met hout wordt gebouwd, wordt er onderzoek gedaan naar de eigenschappen van het materiaal. Vroeger was dat vaak gebaseerd op trial-and-error: wanneer een constructie instortte, moest kennelijk zwaarder worden gedimensioneerd. Meestal werd dan ook van te voren een profiel gekozen, waarvan men zeker wist dat het de beoogde functie kon vervullen. Met het toenemen van kennis, is ook het onderzoek naar het materiaal meer en meer systematisch aangepakt. Veel onderzoek is gericht geweest op het kunnen inschatten van de sterkte van een houten balk [13]. Wanneer de verbinding echter maatgevend blijkt, moeten de profielen ter plaatse van de verbinding daarop worden aangepast. Om economische redenen wordt dan vaak de vergrootte doorsnede over de hele lengte van het onderdeel doorgezet. Om dit te voorkomen, is ook onderzoek gedaan naar diverse alternatieve verbindingswijzen. Vaak voldeden deze alternatieven echter niet aan de 3 basiseisen voor een goede verbinding: deze moet sterk, stijf en taai zijn (Figuur 4).

![Figuur 4 Materiaaleigenschappen [5]](image)

In gestandaardiseerde testprocedures wordt geen methode gegeven om de laatste parameter, de taaiheid, te bepalen. Ten slotte vormt ook de economie een belangrijke kant van de zaak: de verbinding moet concurrerend kunnen worden geproduceerd.

2.2 Houtverbindingen

Verbindingen worden gekarakteriseerd als scharnierend, flexibel of star. Scharnierend verbonden elementen kunnen vrij ten opzichte van elkaar roteren. Dat wil zeggen, dat er geen buigende momenten kunnen worden opgenomen. Bij een starre of momentvaste verbinding wordt deze rotatie verhinderd, waardoor wel momenten kunnen worden overgedragen. Een flexibele of verende verbinding is een tussenvorm. Er kunnen momenten worden overgedragen, maar de rotatiestijfheid is beperkt. In praktijk is elke verbinding verend. Bij handberekeningen is het eenvoudiger om te werken met zogenaamde ideale scharnieren en inklemmingen, terwijl bij een computerberekening een veerstijfheid kan worden ingevoerd die de realiteit beter benadert.

De hier gepresenteerde buisverbinding is in staat om zowel normaal- en dwarskrachten als momenten over te dragen. Dit laatste gebeurt, net als bij de toepassing van stiften, door de buizen te plaatsen in een patroon rondom het centrum van de verbinding (Figuur 5).

![Figuur 5 Een momentoverdragen verbinding](image)

De rotatiestijfheid van een verbinding is per verbindingsmiddel afhankelijk van de soort en het aantal, de sterkte per snede en de afstand tot aan het centrum van de verbinding. Voor een verbinding met n verbindingsmiddelen die op een afstand r_i van het verbindingscentrum zijn aangebracht, geldt dat het ‘polair traagheidsmoment’ gelijk is aan:

$$I_p = \sum_{i=1}^{n} r_i^2$$

Wanneer elke buis een gelijke stijfheid k_b heeft (zo niet, dan moet ook hier een sommatie worden uitgevoerd per verbindingsmiddel), dan is de rotatiestijfheid van de totale verbinding gelijk aan:

$$K_r = k_b \cdot I_p$$

Deze eenheid van deze rotatiestijfheid is uiteraard moment gedeeld door hoekverdraaiing.
De Lignoforce buisverbinding

Hoofdstuk 2

Voor de sterkte per snede per verbindingsmiddel (gasbuizen) zijn op basis van proeven kracht-vervormingsdiagrammen bepaald [11]. Enkele hiervan zijn getoond in Figuur 6.

![Diagram](image)

Figuur 6 Kracht-vervormingsdiagrammen voor enkele buizen

2.3 Lokale versterking met DVW

Splijten van het hout wordt veroorzaakt door trekkrachten loodrecht op de vezelrichting. Zowel bij het aanbrengen als bij het belasten van de verbindingsmiddelen bestaat dit risico. Daarom schrijven de normen minimale rand-, eind-, en tussenafstanden voor [10]. Vaak moeten profielen om deze reden groter worden genomen dan voor het opnemen van de dwarskrachten en momenten in de ligger noodzakelijk is. (In geval van buiging zijn de normaalkrachten doorgaans niet maatgevend.) Ook de grootte van de verbindingsmiddelen is van belang. Een verbinding met een grote enkele buis leidt eerder tot splijten dan wanneer meerdere kleine verbindingsmiddelen (met een gelijke totale doorsnede) toegepast zijn. Als nadeel geldt dat het aanbrengen van meer verbindingsmiddelen arbeidsintensiever en dus duurder is.

De toepassing van Densified Veneer Wood (DVW) biedt een oplossing voor beide genoemde problemen. Op elk te verbinden onderdeel wordt voor het samenstellen van de verbinding een laag versterkingsmateriaal gelijmd. Dit is te zien in de opengezaagde verbinding in Figuur 7 (volgende pagina). Door het toepassen van DVW bij verbindingen, worden de geconcentreerde krachten opgevangen, gespreid en via de lijmvoeg overgedragen aan het hout. Hierdoor wordt splijten voorkomen. Daardoor kunnen weer grotere verbindingsmiddelen worden gebruikt. In vergelijking met hout zijn de eigenschappen van DVW meer isotroop.
Lignostone is een commercieel verkrijgbaar DVW-product dat het beste blijkt te voldoen aan de eisen voor de beoogde toepassing. Lignostone DVW is een kruisgelaagd plaatmateriaal wat is opgebouwd uit geselecteerd beukenfijneer, wat onder hoge druk en temperatuur is samengeperst [12]. Het wordt ondermeer toegepast voor hockeysticks en ringen in gymzalen. Lignostone kan zeer hoge stukspanningen weerstaan. Ook is het in staat om plastisch te vervormen. Voor het gebruik in verbindingen moet het Lignostone een minimale volumieke massa hebben van 1300 kg/m3. De schuifsterkte van het materiaal moet minstens 30 N/mm2 bedragen.

![Figuur 7 Een met DVW versterkte verbinding](image)

2.4 De expanderende buis

Een tweede verbetering is de toepassing van de expanderende buis. Deze ondervangt twee tegenstrijdige wensen: vanuit de kant van constructeur moet de passing zo goed mogelijk zijn, terwijl voor de montage een ruime gatspeling wenselijk is. De gatspeling veroorzaakt een lagere stijfheid doordat de verbinding eerst zal vervormen alvorens krachten over te dragen. Voor een verbinding met gatspeling is bij een gemeten vervorming de kracht, en dus ook de stijfheid, lager dan verwacht. In Figuur 8 is dit effect getoond.

![Figuur 8 Invloed van gatspeling](image)
Door gebruik te maken van de expanderende buis kan met weinig moeite een perfecte passing worden gerealiseerd. Het principe is gelijk aan dat van popnagels, maar de schaal is verschillend. In een te groot voorgeboord gat wordt een standaard gasbuis geplaatst. Aan beide kanten wordt een ring aangebracht. Een speciaal daarvoor ontwikkeld apparaat plaatst een pin in de buis en belast de uiteinden van de buis met een drukkracht (Figuur 9).

De buis zal gaan vervormen, en omdat de buiswand niet naar binnen kan plooien, zet deze uit naar buiten. Daardoor wordt de gatspeling opgevuld, wat al goed was te zien in Figuur 7 (vorige pagina). Door de buis nog verder te belasten, zal deze nog meer in diameter toenemen. Daardoor wordt het omringende hout verdicht, waardoor de stijfheid toeneemt. Er treedt namelijk geen slip meer op bij het aangrijpen van de belasting. Tevens wordt de stijfheid groter doordat de buis over de volledige omtrek direct contact heeft met het hout. Bij het aangrijpen van de belasting hoeft de buis dus niet eerst in het hout te stuiken, totdat de kracht gelijkmatig verdeeld over de omtrek kan worden overgedragen. De uiteinden van de buis worden door het optrompen verankerd in de ringen.

Door het taaie stuikgedrag van verdicht fineerhout (Lignostone) en de plastische vervormingscapaciteit van de stalen buis wordt de taaheid van de verbinding gegarandeerd. Hiermee is een grotere weerstand mogelijk tegen belastingen die van teken wisselen. Wanneer een nog grotere sterkte en stijfheid benodigd is, kan een tweede buis in de eerste geplaatst worden.
2.5 Toetsing van de Lignoforce verbinding

Om de Lignoforce verbinding in een constructie toe te mogen passen, moet worden aangetoond dat deze de beoogde functie kan vervullen. Daarvoor moet allereerst de maatgevende krachtsverdeling ter plaatse van de verbinding worden bepaald. Aangetoond moet worden dat de verbinding de berekende normaal- en dwarskracht en het moment kan overbrengen. In de berekening van de respons op de belasting is het nodig te weten wat de stijfheid is van de verbindingen. In plaats van te werken met de nauwkeurige kracht-verbuigingrelatie, kan ook gebruik gemaakt worden van een (bi-)lineaire relatie. Gecontroleerd moet worden of de verbinding niet buiten het bereik van deze benadering valt. Wanneer dat het geval is, dan moet de berekening worden herhaald met een lagere stijfheid dan waarmee was gerekend. De relatie tussen kracht en vervorming (proefondervindelijk bepaald) wordt beschreven door de formule:

\[
F = \frac{(a-b) \cdot \delta}{\sqrt{1 + \left(\frac{(a-b) \cdot \delta}{c}\right)^d}} + b \cdot \delta
\]

De parameters hierin zijn:
- \(a\) de initiële stijfheid
- \(b\) de stijfheid in het vloeistadium
- \(c\) de snedekracht waarbij de buis plastisch begint te vervormen
- \(d\) een parameter die de kromming in de curve weergeeft

Per buis van de verbinding moet op sterkte worden getoetst, ofwel de rekenwaarde van de capaciteit dient groter te zijn dan de rekenwaarde van de belasting.

Ten slotte moet de krachtsoverdracht vanuit de buis naar het hout worden getoetst. Deze vindt plaats via het DVW en door schuifspanningen in het lijmvlak.

Bij gebruik van een goede houtlijm, zal de sterkte van de lijmvoeg doorgaans toereikend zijn. Voor een momentoverdraggende verbinding is hiervoor een eenvoudige formule beschikbaar:

\[
M_{\text{lijmvoeg}} = \frac{b \cdot h^2 \cdot f_c}{8}
\]

Hiermee is de toetsing compleet.
2.6 Ontwerpgegevens

Voor de toepassing van de Lignoforce buisverbinding zijn ontwerpgegevens beschikbaar. Deze geven direct de sterkte- en stijfheidseigenschappen per snede. Hiervan kan echter alleen gebruik worden gemaakt, wanneer voldaan wordt aan de volgende eisen [11]:

1. De in NEN6760 gedefinieerde rand- en eindafstanden moeten een afstand hebben van 3,5D, waarbij D de buitendiameter van de buis na het expanderen. Voor de tussenafstand geldt 5D.
2. De dikte van het Lignostone dient overeen te komen met de waarden zoals gegeven in de tabel bij de betreffende buisdiameter.
4. Het Lignostone DVW moet een volumieke massa hebben van ten minste 1300 kg/m3.

De gegeven waarden zijn onafhankelijk van de hoek die de kracht met de houtvezelrichting maakt. Dit betekent dat voor de in NEN6760 gegeven modificatiefactor k_a geldt: $k_a = 1$.

Voor de stijfheid kan gebruikt gemaakt worden van de gemiddelde waarde, of van de nauwkeurigere kracht-verbormingsrelatie, als eerder toegelicht. Uiteraard moeten voor de bepaling van de rekenwaarden materiaal- en modificatiefactoren overeenkomstig NEN6760 in rekening worden gebracht.

De daadwerkelijke waarden (de tabellen) zijn te vinden in Bijlage A.
3 Vakwerken en vierendeeligen

3.1 Vakwerken

Een van de belangrijkste constructieprincipes, is dat materiaal moet geplaatst worden, daar waar dit het meeste nodig is. Voor een ligger op buiging belast, betekent dit dat aan de boven- en onderzijde (trek- en drukzone) het materiaal het meest efficiënt wordt benut. Het traagheidsmoment, en daarmee de buigstijfheid van een ligger, kan sterk worden vergroot wanneer de samenstellende delen ervan op een bepaalde afstand van elkaar worden gefixeerd. Op dit principe rust het idee van een vakwerk. Een hieraan gelijke voorstelling van zaken is dat het materiaal wat het minste bijdraagt aan de (moment)capaciteit, wordt weggehaald.

De staven in vakwerken zijn per definitie scharnierend aangesloten. Op voorwaarde dat de belasting in de knooppunten aangrijpt, en dat alle staven centrisch zijn verbonden, zullen alle staven in het vakwerk zich als pendelstaven gedragen. Dit heeft ten gevolg dat slechts hoeft te worden gedimensioneerd op trek- en drukkrachten. Om het vakwerk kinematisch bepaald te doen zijn, zal dit voor het grootste deel uit vormvaste driehoeken moeten bestaan [4]. Door het relatief lage materiaalgebruik (enkel krachtsoverdracht via normaalkrachten), kan de vergelijking met een ander constructietype vooral voor grotere overspanningen gunstig uitvallen. Verder bezitten vakwerken een relatief grote stijfheid. Als nadeel kan genoemd worden dat de vervaardiging van met name de knooppunten bewerkelijk is.

Figuur 10 Verschillende vakwerktypen [7]
Afhankelijk van de beoogde toepassing, kan uit een heel scala van vakwerkvormen worden gekozen. Enige mogelijkheden zijn getoond in Figuur 10 (vorige pagina). Daarnaast is het altijd mogelijk zelf een variant te ontwikkelen. Verbindingen in houten vakwerken worden vaak uitgevoerd door in de knopen alle staven naast elkaar te plaatsen, en daar verbindingsmiddelen door te voeren (Figuur 11). Hierdoor krijg je een dik pakket hout, waardoor de constructie massief oogt. Deze verbinding kan centrisch worden uitgevoerd, zodat de benadering van de constructie als zuiver vakwerk zo goed mogelijk overeenkomt met de werkelijkheid.

![Single web member](image1) ![Double web member](image2) ![Large diameter bolt](image3)

Figuur 11 Vakwerkverbinding; dik pakket hout [3]

Overigens hoeven voor een scharnierende verbinding de staven niet persé ter plaatse van het centrum van de verbinding te worden aangesloten. Wanneer de staafassen elkaar in het hart van de verbinding snijden, zoals het geval in Figuur 12, kan ondanks een verbindingstechniek die leidt tot een zekere rotatiestijfheid, de verbinding goed worden gemoduleerd als een zuiver scharnier [4]. Een dergelijke verbindingvorm wordt vaak gekozen om redenen van montage, en om water- en vuilophoping te voorkomen [9].

![Centrische staafaansluitingen](image4)

Figuur 12 Centrische staafaansluitingen [4]

Wanneer er gekozen wordt voor een verbinding waarbij niet alle staven in hetzelfde vlak liggen, zal het echter vaak niet mogelijk blijken (uit economisch oogpunt) de staven centrisch aan te sluiten. In dat geval moet rekening worden gehouden met optredende excentriciteitsmomenten. Deze behoeven niet tot een zwaardere dimensionering van de randstaven te leiden.
De oorzaak daarvan is gelegen in het feit dat de staafafmetingen vaak bepaald worden door de benodigde grootte van de contactvlakken. Deze volgen op hun beurt uit de verbindingsmiddelen [2]. Vaak moet namelijk vanwege het benodigde contactvlak de randstaaf zwaarder worden uitgevoerd dan op grond van sterkteoverwegingen voor de staaf zelf, nodig zou zijn. Daardoor is een zekere restcapaciteit aanwezig, welke vaak groot genoeg is om de optredende excentriciteitsmomenten op te kunnen nemen.

Ten slotte wordt opgemerkt dat bij het ontwerp van vakwerken meerdere overwegingen een rol spelen. Zelden zullen enkel de mechanische eigenschappen de doorslag geven. De ontwerper dient hierop goed bedacht te zijn.

In onderstaande figuur is een houten vakwerk (in wording getoond). Hierbij komt direct het belangrijkste nadeel van houten vakwerken naar voren: de diagonalen belemmeren het doorzicht. Sowieso worden houten constructies vaak in het zicht geplaatst. Ook hier is dat het geval; het vakwerk bevindt zich achter een glazen gevel.

![Figuur 13 Zwembad in Gramsbergen [11]](image)

3.2 Vierendeelgligers

Vierendeelgligers worden voornamelijk gebruikt vanuit architectonische en functionele overwegingen. De krachtsoverdracht via buiging is namelijk minder efficiënt dan die via normaalkrachten. Voorbeelden zijn naast in bruggen, te vinden in gebouwen. Dat kan zijn als alternatief voor een vakwerk (esthetisch), maar ook om een vrije doorgangsopening te verkrijgen (functioneel). In dat laatste geval is de hoogte van de vierendeelgliger vaak gelijk aan de verdiepingshoogte.

Omdat in een vierendeelgliger geen diagonalen aanwezig zijn, moeten de knopen momentvast worden uitgevoerd. Dat bleek tot nu toe in hout niet haalbaar.

De staven van een vierendeelgliger worden op buiging worden belast. Daarom mag de belasting ook direct als verdeelde belasting aangrijpen. Om de kniklengte(n) te verkleinen, kunnen alsnog gordingen worden toegepast.
Het gestelde bij vakwerken over ontwerpoverwegingen is op vierendeelliggers onverminderd van toepassing. Een paar voorbeelden van toepassingen van vierendeelliggers zijn getoond in onderstaande figuren:

Figuur 14 Brug in Nuth (1950-1990)

Figuur 15 Vierendeelligger als draagconstructie loopbrug

Figuur 16 Jan Schlaeferbrug in Amsterdam
4 Vakwerk ontwerp

4.1 Inleiding

Ter referentie is een vakwerkklgger ontworpen, waarin de geëxpandeerde buisverbinding is toegepast. Het vakwerk dient als ondersteuning van een dak, dat via gordingen op de bovenste knopen van het vakwerk rust. Het gekozen type is een N-vakwerk. Per knooppunt is één verbindingsmiddel toegepast. Hierdoor is geen rotatiestijfheid aanwezig, en zal het vakwerk zich ook werkelijk als vakwerk gedragen. Er kan dus een zuivere vakwerkberekening worden uitgevoerd, waartoe hier (vooruitlopend op het ontwerp) een schema is gegeven.

![Mechanicaschema N-vakwerkklgger](image1)

Figuur 17 Mechanicaschema N-vakwerkklgger

4.2 Ontwerp

De opbouw van het staafpakket ter plaatse van de (meeste) knopen is als volgt. Tussen de dubbel uitgevoerde trekdiagonalen bevindt zich een drukverticaal. De regel bestaat ook weer uit twee delen, die aan weerszijden van de diagonalen zijn aangebracht. Ter plaatse van de verbindingen is tussen de staven Lignostone aangebracht. Zie onderstaande afbeelding.

![Opbouw staafpakket N-vakwerk](image2)

Figuur 18 Opbouw staafpakket N-vakwerk
Hiermee is een tamelijk dik pakket hout verkregen. Een centrische verbinding valt anders echter nauwelijks te realiseren. Een ontwerp waarbij alle wandstaven zich in hetzelfde vlak bevinden en waarbij de verbindingen centrisch zijn, leidt door voorgeschreven rand- en eindafstanden, tot architectonisch en economisch onwenselijk grote staafafmetingen. De totale overspanningslengte bedraagt 30 m. Op basis van vuistregels wordt de inwendige hefboomsarm van het vakwerk bepaald op $\frac{1}{12}$ deel van 30 m. Deze afstand van 2,5 m is ook de veldlengte, waarmee de diagonalen onder een hoek van 45° komen te staan. De h.o.h. afstand van de vakwerken bedraagt 5,0 m.
Het vakwerk is aan de uiteinden onder scharnierend opgelegd. De oplegging is over de volledige breedte van vakwerk aanwezig. De gordingen rusten direct op de uiteinden van de verticale drukstaven.
Één stap in de goede richting is al gezet door bij de gekoppelde staven halverwege een klos te plaatsen. Hiermee wordt de kniklengte per staaf tot de helft teruggebracht.
De staafafmetingen zijn gegeven in Tabel 1, evenals de staaflengte ℓ met bijbehorende kniklengte ℓ_{buc}:

<table>
<thead>
<tr>
<th></th>
<th>b [mm]</th>
<th>h [mm]</th>
<th>ℓ [mm]</th>
<th>ℓ_{buc} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>regel</td>
<td>2x70</td>
<td>300</td>
<td>2500</td>
<td>1250</td>
</tr>
<tr>
<td>verticaal</td>
<td>95</td>
<td>250</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>diagonaal</td>
<td>2x50</td>
<td>250</td>
<td>3536</td>
<td>1768</td>
</tr>
</tbody>
</table>

Uit een eerste ontwerpberekening is gebleken dat voor een paar verbindingen nabij de opleggingen, niet kan worden volstaan met één buis $\varnothing 35$ mm. Hier is een dubbele buis als verbindingsmiddel toegepast: $\varnothing 35+28$ mm. Dit betreft de knopen 2 & 12, 14 & 15 en 25 & 26 volgens de hieronder gegeven nummering in Figuur 19. Alle overige knopen zijn uitgevoerd met één buis $\varnothing 35$ mm.

![Figuur 19 Knoop- en staafnummering N-vakwerk](image)

Het vakwerk is in Figuur 20 in aanzicht weergegeven (volgende pagina).
Figuur 20 Vooraanzicht N-vakwerk
4.3 Belastingen

De maatgevende belastingcombinatie in de UGT wordt gevormd door de belasting ten gevolge van het eigen gewicht van de constructie, de belasting door het op de constructie rustende dak + ballastlaag en een variabele belasting, bijvoorbeeld door sneeuw. Representatieve waarden voor de twee laatstgenoemde belastingen zijn te vinden in de onderstaande tabel. In de achterste kolom zijn de belastingfactoren gegeven.

<table>
<thead>
<tr>
<th>Tabel 2 Representatieve belastingen en belastingfactoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{rep} [kN/m2]</td>
</tr>
<tr>
<td>rustende belasting (dak)</td>
</tr>
<tr>
<td>variabele belasting</td>
</tr>
</tbody>
</table>

Uitgedrukt in een lijnlast (incl. eigen gewicht vakwerk) bedraagt de totale belasting in de uiterste grenstoestand 11,25 kN/m. Alle belastingen zijn vertaald naar knooplasten. De belasting t.g.v. het eigen gewicht is ingevoerd door het totale gewicht van de constructie ‘uit te smeren’ over de lengte, en vervolgens om te zetten in puntlasten. Tabel 3 geeft de belastingen per knoop (bovenkant ligger). Nogmaals zijn de belastingfactoren vermeld.

<table>
<thead>
<tr>
<th>Tabel 3 Representatieve knooplasten en belastingfactoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>kN/knoop</td>
</tr>
<tr>
<td>eigen gewicht (vakwerk)</td>
</tr>
<tr>
<td>rustende belasting (dak)</td>
</tr>
<tr>
<td>variabele belasting</td>
</tr>
</tbody>
</table>

Voor de ‘randknopen’ dient slechts de halve waarde dient te worden ingevoerd, zoals getoond in Figuur 17 (pagina 15).

N.B. In geval van een windbelasting, zal de resulterende kracht opwaarts gericht zijn. Hoewel hier niet verder uitgewerkt, is in het ontwerp toch rekening gehouden met een opwaartse belasting die in grootte gelijk is aan de helft van de neerwaarts gerichte belasting. Dit resulteert i.v.m. de vereiste knikstabiliteit in een grotere doorsnede voor de diagonale wandstaven, die anders slechts op trek behoefden te worden gedimensioneerd.

4.4 Krachtsverdeling

Voor het berekenen van zuivere vakwerken staan eenvoudige handmethoden ter beschikking. Voorwaarde is wel dat het vakwerk statisch bepaald is. Twee methoden hiervoor zijn de snedmethode en de methode van het knoopevenwicht [4]. Volgens laatste methode is een berekening gemaakt, welke te vinden is in Bijlage D.

In dit onderzoek is echter voornamelijk gebruik gemaakt van het computerprogramma Matrix-Frame. Dit programma is speciaal toegespitst op de berekening van staafconstructies, en heeft eenvoudige invoermogelijkheden. Ook het eventueel verwerken van excentriciteiten en rotatiestijfheden is geen probleem. De resultaten kunnen voor verdere bewerking (toetsing) naar Excel worden geëxporteerd.

Allereerst worden (ter controle) de optredende krachten voor het hoofdsysteem, een vrij opgelegde ligger, bepaald. Dit is getoond in Figuur 21 (volgende pagina).
Als schatting geldt nu voor de staafkracht in de regel in het midden van de ligger:

\[N_d = \frac{M_d}{z} = \frac{1265,6}{2,5} = 506,2 \text{ kN} \]

Omdat alle verticaal en diagonalen gelijke afmetingen hebben, kan de toetsing beperkt blijven tot de zwaarst belaste staven. Ook voor de regels hoeft slechts gecontroleerd te worden of de zwaarste belaste staven die belasting kunnen weerstaan. De maatgevende krachten blijkens de berekening staan vermeld in Tabel 4. (Voor de diagonaal is de halve waarde van de optredende trekkracht als drukkracht vermeld, i.v.m. de genoemde windbelasting).

<table>
<thead>
<tr>
<th>Regel</th>
<th>492,1</th>
<th>506,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verticaal</td>
<td>-</td>
<td>168,7</td>
</tr>
<tr>
<td>Diagonaal</td>
<td>218,7</td>
<td>109,4</td>
</tr>
</tbody>
</table>

De grafische weergave van de krachtsverdeling in Figuur 22 toont waar de maatgevende snedekrachten optreden: voor de regels t.p.v. het midden van de ligger, en voor de wandstaven direct naast de opleggingen. Vanwege de symmetrie wordt slechts de halve ligger getoond.

N.B. Het verschil (in grootte) tussen de maximale druk- en trekkracht in de regel wordt veroorzaakt door het feit dat de totale horizontale kracht, ter plaatse van de onderregel in het midden, wordt opgebracht door de regel en de diagonaal beide. Dit wordt duidelijk gemaakt in Bijlage D.
Eindrapport BSc-eindwerk: *Houten vakwerken en vierendeelhouten*

Figuur 22 Krachtsverdeling N-vakwerk
Voor de toetsing van de verbindingen zijn de knoopkrachten nabij de opleggingen weergeven in Figuur 23. Hier is immers de kracht in de wandstaven, en dus ook de krachtsoverdracht, het grootst.

![Figuur 23 Knoopkrachten N-vakwerk](image)

Doorbuigingen worden deels veroorzaakt door elastisch gedrag, en deels door krui. De hierdoor optredende vervormingen zijn ongeveer even groot. Hier is slechts gekeken naar de totale elastische vervorming. De optredende vervorming zal na verloop van tijd dus ongeveer gelijk zijn aan twee maal de berekende waarde. Indien nodig kan de elastische vervorming worden gecompenseerd door bij fabricage een zegel aan te brengen.

De doorbuiging in de bruikbaarheidsgrenstoestand bedraagt 54,9 mm. Figuur 24 toont de vervormde constructie met als maximale waarde 67,8 mm. Hiertoe is echter gerekend met $E_{0;\text{rep}} = 11.100$ N/mm² (UGT zonder k_{mod}) i.p.v. met $E_{0;\text{ser,d}} = 1,00 \times 13.700 = 13.700$ N/mm² (BGT inclusief k_{mod}). Door het resultaat hiervoor te corrigeren, wordt de waarde 54,9 mm verkregen. Bij deze berekening is er vanuit gegaan dat er in de verbindingen geen verplaatsingen optreden.

![Figuur 24 Vervormd N-vakwerk](image)
4.5 Toetsing

Niet meegenomen in de toetsing wordt:
- knikinstabiliteit van de ligger als geheel
- gapervzwakking door aanbrengen verbindingsmiddelen
- lagere effectieve stijfheid van trekstaven doordat de buis een ook zekere stijfheid bezit/niet oneindig stijf is (seriesysteem)

Omdat het vakwerk dient als dakondersteuning, is de klimaatklasse I (binnenklimaat). Samen met de belastingduurklasse Kort (geldt voor extreme waarden van de belasting) is de factor \(k_{\text{mod}} \) bepaald op 0,85.

Per staaf zijn de optredende spanningen bepaald. Deze zijn getoetst aan de rekenwaarden van de bijbehorende sterkte-parameters. Hiervoor is gebruik gemaakt van Excel. De formules die gebruikt zijn voor de toetsingen, zijn opgenomen in Bijlage C. In Bijlage E is de Excel-sheet opgenomen. Bij wijze van toetsing is de waarde van de optredende spanning uitgedrukt als percentage van de toelaatbare waarde.

Toetsing van de doorsnedecapaciteit

De maatgevende staafkrachten zijn al vermeld in Tabel 4 (pagina 19) en in Figuur 22 (pagina 20). Onderstaande tabel toont de optredende spanningen ten gevolgde van de belastingen in de zwaarst belaste staven. Tevens zijn enkele efficiënties vermeld: een percentage dat de mate van uitnutting van de capaciteit van de staaf weergeeft. Verder is ook nog de knikfactor \(k_{\text{com}} \) vermeld. In Bijlage B is de betreffende knikcurve opgenomen.

<table>
<thead>
<tr>
<th></th>
<th>(\sigma_{t;0:d}) [N/mm²]</th>
<th>eff. (treksterkte)</th>
<th>(\sigma_{c;0:d}) [N/mm²]</th>
<th>eff. (druksterkte)</th>
<th>eff. (knik)</th>
<th>(k_{\text{com}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>regel</td>
<td>11,72</td>
<td>69%</td>
<td>12,05</td>
<td>59%</td>
<td>89%</td>
<td>0,657</td>
</tr>
<tr>
<td>verticaal</td>
<td>3,55*</td>
<td>-</td>
<td>7,10</td>
<td>35%</td>
<td>91%</td>
<td>0,380</td>
</tr>
<tr>
<td>diagonaal</td>
<td>8,75</td>
<td>50%</td>
<td>4,38*</td>
<td>21%</td>
<td>95%</td>
<td>0,225</td>
</tr>
</tbody>
</table>

* ten gevolge van de windbelasting

Alle efficiënties zijn lager dan 100% dus de gekozen profielen voldoen. Duidelijk is dat drukkrachten maatgevend zijn voor de dimensionering.

Toetsing van de verbindingen

In het ontwerpstadium was bepaald dat voor de zwaarst belaste knopen de verbindingen worden uitgevoerd met een dubbele buis. Omwille van eenvoud zijn de overige verbindingen alle aan elkaar gelijk. In Figuur 23 (vorige pagina) zijn de knoopkrachten zoals die optreden ten gevolge van de maatgevende belastingcombinatie in de uiterste grenstoestand weergegeven. De drukkracht uit de verticaal wordt via 2 werkzame snedes overgebracht naar de trekdiagonaal en zorgt daar voor de verticale component. Vanuit de regels komt een, in grootte gelijke, horizontale kracht, die via 2 andere snedes overgebracht wordt naar de diagonaal. De capaciteit van de toegepaste buizen staat vermeld in Tabel 6 (volgende pagina).
De staafkracht in de drukstaaf boven de oplegging overschrijdt de kracht die de buis kan leveren. In dit geval doet er echter niet toe, omdat deze kracht niet door de buis hoeft te worden overgebracht, maar direct vanuit de staaf naar de oplegging wordt geleid. Omdat de gordingen direct op de drukvirticaal rusten, hoeven de buizen in knoop 14 en 26 ook niet de volledige kracht van $F_{v;d} = 168,7$ kN over te brengen, maar kan deze met 14,1 kN (knooplast) worden verminderd. Hiermee komt de over te dragen kracht op $F_{v;d} = 154,7$ kN.

Ter plaatse van de knopen 2 & 12, 14 & 15 en 25 & 26 bedraagt de over te brengen kracht dus $F_{v;d} = 154,7$ kN, waarvoor een dubbele buis is vereist. Voor de overige knopen is deze kracht lager dan $F_{v;u} = 134,6$ kN (capaciteit enkele buis). De gekozen verbindingen voldoen.

Toetsing van de stijfheid van de ligger als geheel

De doorbuiging t.p.v. midden ligger mag niet meer bedragen dan:

$$u_{eind,ver;d} \leq 0,004 \cdot l = 0,004 \cdot 30.000 = 120 \text{ mm (t.g.v. elastische doorbuiging alleen)}$$

De optredende waarde van 54,9 mm (zonder verplaatsingen in de verbindingen) valt ruimschoots binnen de limiet.

Conclusie: het ontwerp voldoet.

4.6 Evaluatie

Ten einde de toetsing eenvoudig te houden, is het ontwerp dat ook geweest. Dit leidt tot de volgende opmerkingen:

− Optimalisatie van het ontwerp is mogelijk. In plaats van bijvoorbeeld alle wandstaven van gelijke afmetingen te voorzien (per soort), kunnen de dimensies ook aangepast worden aan de optredende kracht. Vanwege de randafstand kan de hoogte van de profielen niet verder worden beperkt, maar wel kan bij een verkleining van de dikte meer Lignostone worden gebruikt. Ook kan eventueel aan de regel een niet-prismatische doorsnede over de lengte van de ligger worden gegeven.

− De toepassing van 2×18 mm Lignostone DVW per snede leidt tot een relatief grote breedte van het totale vakwerk. Het staafpakket zoals getoond in Figuur 18 (pagina 15) heeft een totale dikte van 479 mm, waarvan 144 mm (30%) moet worden toegeschreven aan de lokale versterking met DVW.

Deze afstand kan worden verkleind door als alternatief voor het DVW staalplaten toe te passen. Deze hebben een hogere (schuif)sterkte, waardoor de dikte kan worden gereduceerd. Rekening houdend met het voorkomen van plooiingen, zal de dikte per snede ca. 2×5 mm staal (S235) bedragen. Hierdoor komt de breedte van de ligger op 375 mm. De staalplaten nemen dan samen nog maar 40 mm (11%) voor hun rekening.

Overigens is de voorgeschreven waarde van 18 mm Lignostone arbitrair. Met 12 mm is in testresultaten een vergelijkbaar kracht-territormingsdiagram verkregen.
De bepaalde waarde voor de elastische vervorming is te laag. Dit wordt onder andere veroorzaakt doordat de effectieve stijfheid van de trekdiagonale lager is dan in de berekeningen is meegenomen. Dit werd al bij de beperkingen ten aanzien van de toetsing vermeld. In onderstaand kader is deze effectieve stijfheid berekend (zonder materiaal-factoren mee te nemen).

\[k_{staafdeel} = \frac{EA}{l} = \frac{13.700 \times (100 - 250)}{2500 \sqrt{2}} = 96874 \ \text{N/mm}^2 \]

\[k_{staafdeel} = \frac{EA}{l} = \frac{13.700 \times (50 - 250)}{2500 \sqrt{2}} = 48437 \ \text{N/mm}^2 \]

\[k_{buis} = 65.000 \ \text{N/mm}^2 \ \text{(per snede)} \]

combinatie (parallelsysteem) van 2 seriesystemen:

\[\frac{2}{k_{equiv.\ \text{staaf}}} = \frac{1}{k_{buis}} + \frac{1}{k_{staafdeel}} + \frac{1}{k_{buis}} = \frac{2}{k_{buis}} + \frac{1}{k_{staafdeel}} \]

\[\frac{2}{65.000} + \frac{1}{48437} \]

\[k_{equiv.\ \text{staaf}} = 38.899 \ \text{N/mm}^2 \]

De stijfheid van deze (slanke) trekstaaf blijkt in werkelijkheid minder dan de helft te zijn van de waarde waarmee is gerekend. De werkelijk optredende elastische vervorming wordt daarom ruim 2 maal zo groot geschat als berekend. Deze vervorming kan eenvoudig mee worden gecompenseerd door de zeeg.

In dit geval is er voor gekozen de gordingen direct te laten rusten op de uiteinden van de verticale wandstaven. Dit heeft gevolgen voor de grootte van de krachten die de verbindingen werkelijk moeten overdragen. Bij het ontwerpen van deze aansluiting dient dan ook aan dit uitgangspunt te worden voldaan. Wanneer voor dit ontwerp de belasting vanuit de gordingen op de regel wordt overgedragen, moeten de verbindingen grotere krachten overbrengen en blijken ze niet meer te voldoen.

Tot slot een opmerking over de rand- en eindafstanden. Voor drukstaven is het gewenst dat de weerstand tegen knikken in beide hoofdrichtingen ongeveer gelijk is. De gestelde eisen leiden in dit geval tot relatief hoge profielen, waardoor de knikfactor \(k_{com} \) voor knikken in de zwakke richting vrij laag uitpakt. Hierdoor is de efficiëntie van de wandstaven laag; het materiaal wordt dus lang niet volledig benut.
5 Vierendeelligger ontwerp

5.1 Inleiding

In paragraaf 3.2 werd de visuele aantrekkelijkheid van vierendeelliggers al genoemd. Met name wanneer de constructie zichtbaar is speelt dit een rol. Doordat in vierendeelliggers geen diagonalen aanwezig zijn die het zicht belemmeren, ogen ze veel transparanter.

Voor het ontwerp van de vierendeelligger is eveneens gebruik gemaakt van de geëxpandeerde buisverbinding. Om kinematische bepaaldheid te verkrijgen, dienen de verbindingen een zekere rotatiestijfheid te bezitten. Daarom moeten per knoop minimaal twee buizen aanwezig zijn. Voor dit geval is het constructieschema (wederom vooruitlopend op het ontwerp) weergegeven in onderstaande figuur.

![Figuur 25 Mechanicaschema vierendeelligger](image)

5.2 Ontwerp

Voor het ontwerp van de vierendeelligger wordt uitgegaan van dezelfde gegevens als bij de referentie-vakwerkligger gehanteerd zijn. Als additionele eisen gelden:
- de inwendige hefboomsarm wordt gelijk gekozen als bij het vakwerk (2,5 m)
- de optredende doorbuiging mag niet groter zijn dan bij de vakwerkligger het geval is

De verticaal worden tussen de dubbel uitgevoerde regels geplaatst.

De totale overspanningslengte bedraagt weer 30 m. Door te kiezen voor vierkante openingen, is de veldlengte ook weer 2,5 m. De vierendeelliggers zijn ten opzichte van elkaar op een h.o.h. afstand van 5,0 m geplaatst.

Het hele ontwerp wordt weer uitgevoerd in de houtsoort GL32h. Analoog aan de ontwerpkeuzes voor het vakwerk, wordt ook hier voor zowel de boven- als de onderregel eenzelfde profiel gekozen. En weer zijn alle verticaal aan elkaar gelijk. Ditmaal worden geen klossen toegepast ter reductie van de kniklengte; blijkt niet maatgebend.

Ook nu is het vakwerk scharnierend opgelegd aan de uiteinden. De oplegging is weer over de volledige breedte van vakwerk aanwezig, en de gordingen rusten ook weer direct op de uiteinden van de verticale drukstaven. Om de 5,0 m rust een gording op de vierendeelligger, i.p.v. op elke knoop zoals bij het vakwerk het geval was.

De opbouw van het staafpakket van de vierendeelligger is getoond in Figuur 26 (volgende pagina).
De staafafmetingen zijn gegeven in Tabel 7, evenals de staatlengte ℓ met bijbehorende kniklengte ℓ_{buc}:

Tabel 7 Staafafmetingen vierendeelligger

<table>
<thead>
<tr>
<th></th>
<th>b [mm]</th>
<th>h [mm]</th>
<th>ℓ [mm]</th>
<th>ℓ_{buc} [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>regel</td>
<td>2 x 150</td>
<td>600</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>verticaal</td>
<td>200</td>
<td>550</td>
<td>2500</td>
<td>2500</td>
</tr>
</tbody>
</table>

Voor elke verbinding zijn 4 buizen $\varnothing 35$ mm + 4 buizen $\varnothing 28$ mm toegepast. De straal van de denkbeeldige cirkel waarop de grootste buizen liggen, bedraagt vanuit het hart van de verbinding 230 mm (buitencirkel). Voor de kleinere buizen is dit 150 mm (binnencirkel). Hiermee wordt aan de eisen t.a.v. de minimale rand- en eindafstanden voldaan.

De vierendeelligger is in Figuur 27 in aanzicht weergegeven (volgende pagina).
Figuur 27 Vooraanzicht vierendeelligger
5.3 Belastingen

Voor de vierendeelligger is dezelfde belastingcombinatie beschouwd als voor het N-vakwerk. Deze combinatie in de UGT wordt gevormd door de belasting ten gevolge van het eigen gewicht van de constructie, de belasting door het op de constructie rustende dak + ballastlaag en een variabele belasting, bijvoorbeeld sneeuw. De totale belasting in de uiterste grenstoestand (uitgedrukt als per lengte verdeelde belasting) bedraagt 12,97 kN/m.

De belasting die via de gordingen wordt uitgeoefend op de vierendeelligger, is ingevoerd door om de 5,0 m een puntlast op de vierendeelligger te zetten (vanuit de gordingen) en het eigen gewicht is per staaf als neerwaarts gerichte verdeelde belasting ingevoerd. In Tabel 8 is de grootte van de puntlasten berekend.

Voor de ‘randknopen’ dient slechts de halve waarde dient te worden ingevoerd.

5.4 Krachtsverdeling

Vierendeelliggers zijn altijd statisch onbepaald. Handberekeningsmethoden voor statisch onbepaalde constructies zijn wel beschikbaar, maar deze gaan vaak uit van bepaalde veronderstellingen waardoor ze niet algemeen toepasbaar zijn. Daarnaast vereisen ze veel werk.

Met de opkomst van de computer vormt ook het statisch onbepaald-zijn van constructies geen belemmering meer. Computerprogramma’s maken meestal gebruik van de verplaatsingenmethode. De eindige-elementenmethode is hiervan een uitwerking die vooral is toegespitst op computer toepassingen [6]. Het computerprogramma MatrixFrame werkt volgens deze methodiek. Voor de berekening van deze vierendeelligger is gebruik gemaakt van MatrixFrame. Voor een snelle indruk van de krachtsverdeling, en ten behoeve van een visuele controle, zijn de momenten-, dwarskrachten-, en normaalkrachtenlijn getoond in Figuur 28 (volgende pagina) voor de halve ligger, i.v.m. symmetrie.
De doorbuiging in de bruikbaarheidsgrenstoestand, ten gevolge van elastische vervorming alleen, bedraagt 51,0 mm. Dit is na correctie voor de waarde van de elasticiteitsmodulus. Bij deze berekening is er vanuit gegaan dat er in de verbindingen alleen rotaties optreden. In Figuur 29 is de doorgebogen ligger getoond.

Eindrapport BSc-eindwerk: Houten vakwerken en vierendeelliggers
5.5 Toetsing

Net als bij het vakwerk, zijn ook voor de vierendeelligger een aantal toetsingen weggelaten. Ditmaal moesten er echter meer toetsingen worden uitgevoerd. Immers, getoetst moet worden of de optredende spanningen de toelaatbare waarden niet overschrijden, en nu treden naast normaalkrachten ook dwarskrachten en buigende momenten op. Naast de niet meegenomen toetsingen zoals vermeld in paragraaf 4.5 voor het N-vakwerk, zijn de weggelaten toetsingen:
- toetsing van de afzonderlijke staven op kippen
- (moment)capaciteit lijmverbinding
- additionele dwarskracht in de verbinding, t.g.v. snedekrachten door buigend moment

Wanneer niet aan deze laatste toetsing zou worden voldaan, kan de dikte van het Lignostone eenvoudig vergroot worden. (Hiervoor is aangenomen dat de gehele dwarskracht opname gebeurt door het DVW.) De factor k_{mod} is weer bepaald op 0,85.

Ook nu zijn de eigenlijke toetsingen weer uitgevoerd in Excel. De krachtsverdeling zoals die volgt uit de MatrixFrame-berekening is daartoe naar Excel geëxporteerd. Steeds zijn de optredende spanningen bepaald, en vergeleken met de toelaatbare waarden. Want ook al hebben alle verticalen gelijke afmetingen (idem dito voor de regels), toch moet voor elke staaf een toetsing worden uitgevoerd. Het is namelijk niet op voorhand te zeggen welke combinatie van snedekrachten tot de maatgevende situatie zal leiden. Bij het vakwerk traden slechts normaalkrachten op, en kon in een oogopslag gezien worden wat de zwaarst belaste staven waren.

Ook voor de verbindingen geldt dat elke knoop apart moet worden getoetst. Wel kan op voorhand worden gesteld dat de verbindingen nabij de opleggingen het zwaarst belast zullen worden. Hier is immers de kracht in de wandstaven, en dus ook de krachtsoverdracht, het grootst. Ook hiervoor is gebruik gemaakt van Excel. De Excel-sheet (incl. toetsingen van de doorsnedecapaciteit) is opgenomen in Bijlage F.

Deze toetsingen zijn weer in Bijlage C in formulevorm opgenomen. Omdat door de lokale versterking het gevaar op splijten van het hout sterk is verminderd, is de reductie van de schuifsterkte tot 70% ter plaatse van momentoverdragende verbindingen niet toegepast.

Toetsing van de doorsnedecapaciteit

Uit de Excel-sheet, zoals getoond in Bijlage F, valt af te lezen dat voor alle toetsingen geldt dat de optredende waarde (voor bijv. de spanning) kleiner is dan de toelaatbare waarde: alle quotiënten van de optredende en toelaatbare waarde zijn kleiner dan 100%. Om inzichtelijk te maken waar het materiaal het zwaarst wordt belast, is voor elke toetsing in Figuur 30 (volgende pagina) de grootste waarde opgenomen, met een aanduiding waar dit het geval is.
Duidelijk is dat de sterkte van de buizen maatgevend is geweest. Wat betreft de regels, daarvoor blijkt de combinatie van trek en buiging de grootste belasting te vormen. Voor de verticaLEN is druk en buiging (druk vormt een zeer klein aandeel, trek treedt helemaal niet op). De verticaLEN worden net naast de opleggingen het zwaarst belast. Hiermee staat de plaats van de zwaarst belaste verbinding direct in verband.

Toetsing van de verbindingen
Zoals al getoond in Figuur 30, bedraagt de benuttingsgraad van de capaciteit van een buis Ø35 mm 98% (buitenring). Voor de buis Ø28 mm is dit 86% (binnenring).Beide typen buizen worden in knoop 2 het zwaarst belast. De toetsing voor deze knoop is in Bijlage G uitgewerkt.

Toetsing van de stijfheid van de ligger als geheel
Als eis was gesteld dat de doorbuiging t.p.v. midden ligger niet meer mag bedragen dan die van het N-vakwerk:

\[u_{\text{eind,ser,el}} \leq 54,9 \text{ mm} \] (t.g.v. elastische doorbuiging alleen)

De optredende waarde is gelijk aan 51,0 mm (alleen rotaties in de verbindingen) waarmee aan de gestelde eis wordt voldaan.

Conclusie: het ontwerp voldoet.
5.6 Evaluatie

Net als bij het N-vakwerk, is ook het ontwerp van de vierendeelligger eenvoudig geweest. De volgende opmerkingen kunnen worden gemaakt:

− De toepassing van rotatiestijve verbindingen leidt tot grote staafafmetingen. De stijfheid van de verbindingen is namelijk van groot belang om de totale doorbuiging van het vakwerk te beperken. Uit een berekening waarin volledig momentvaste verbindingen waren toegepast, kwam naar voren dat de dan optredende doorbuiging nog kleiner was dan die van het N-vakwerk. Ook de benodigde profielafmetingen waren veel kleiner.

− Niet de staven, maar de verbindingmiddelen blijken maatgevend (binnen het kader van de beperkingen van de doorbuiging). Om de buizen een voldoende groot moment te kunnen laten overdragen, moeten deze zo ver mogelijk van het middelpunt van de verbinding worden geplaatst. In combinatie met de vereiste rand- en eindafstanden zijn hierdoor grotere staafafmetingen nodig. (In dit ontwerp zijn geen dubbele buizen toegepast. Geprobeerd is zo te ontwerpen dat met 6 buizen $\emptyset 35+\emptyset 28$ mm per knoop kon worden volstaan. Dat bleek echter niet mogelijk.)

− Net als bij het N-vakwerk kan de vierendeelligger worden geoptimaliseerd door de afmetingen van de staven aan te passen aan de optredende kracht. Omdat deze ligger echter statisch onbepaald is, wijzigt de krachtsverdeling ook steeds. Optimalisatie is dus een iteratieve bezigheid.

− De bepaalde waarde voor de elastische vervorming is weer te laag. De verbindingen kunnen namelijk ook vervormen ten gevolge van trek- en drukkrachten in de staven (naast vervormingen ten gevolge van de optredende momenten – rotaties). Omdat per knoop meerdere buizen zijn toegepast, zal dit wel minder zijn dan bij het N-vakwerk.

− In dit geval is (weer) gekozen om de gordingen direct te laten rusten op de uiteinden van de verticale wandstaven. Dit heeft gevolgen voor de grootte van de krachten die de verbindingen werkelijk moeten overdragen. Bij het ontwerpen van deze aansluiting dient dan ook aan dit uitgangspunt te worden voldaan.
6 Vergelijking N-vakwerk met vierendeelligger

Om te kunnen beoordelen of de ontworpen vierendeelligger een alternatief kan zijn voor het ontworpen N-vakwerk, zijn in de volgende tabel verschillende gegevens over beide constructies vermeld.

<table>
<thead>
<tr>
<th>Tabel 9 Vergelijking N-vakwerk met vierendeelligger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>overspanningslengte</td>
</tr>
<tr>
<td>inwendige hefboomsarm</td>
</tr>
<tr>
<td>(uitwendige) constructiehoogte</td>
</tr>
<tr>
<td>aantal knopen</td>
</tr>
<tr>
<td>aantal staven (dubbele staven en de complete regel gelden als één staaf)</td>
</tr>
<tr>
<td>aantal enkele buizen Ø35 mm</td>
</tr>
<tr>
<td>aantal extra buizen Ø28 mm (al dan niet dubbel)</td>
</tr>
<tr>
<td>aantal boorgaten (nadat er Lignostone op is gelijmd)</td>
</tr>
<tr>
<td>totale oppervlakte Lignostone (volledig aansluitvlak)</td>
</tr>
<tr>
<td>houtvolume (op basis van afmetingen systeemlijnen)</td>
</tr>
<tr>
<td>aandeel eigen gewicht op totale belasting (UGT)</td>
</tr>
<tr>
<td>doorzicht (oppervlakte lege ruimte tussen regels)³</td>
</tr>
<tr>
<td>doorbuiging</td>
</tr>
</tbody>
</table>

* benadering voor architectonische aantrekkelijkheid

Uit deze tabel blijkt, dat voor de (hogere) vierendeelligger:
- meer hout nodig is
- meer buizen nodig zijn
- veel meer gaten moeten worden geboord
- veel meer Lignostone nodig is

De conclusie is dan ook dat een vierendeelligger qua materiaal en arbeid veel duurder is dan een N-vakwerk. Dit behoeft geen verbazing te wekken: het dragen van belastingen door buiging van de staven, is veel minder efficiënt dan opname door normaalkrachten alleen. De hier toegepaste Lignoforce buisverbinding leidt, onder deze ontwerpvoorwaarden, nog steeds tot een ontwerp waarin rand- en eindafstanden in grote mate de afmetingen van de staven van de vierendeelligger bepalen.

Ook op het esthetische vlak scoort de vierendeelligger niet beter dan het N-vakwerk. Dit komt doordat de grote profielafmetingen van met name de wandstaven het doorzicht belemmeren. De hoogte van de verticaLEN is van een gelijke orde grootte als de hoogte van de regels. Het is fraaiier wanneer de verticaLEN slank ten opzichte van de regels kunnen worden uitgevoerd.

Als kanttekening kan geplaatst worden, dat hier niet gezocht is naar een optimaal ontwerp voor (zowel het N-vakwerk als) de vierendeelligger. Vooral de vereiste lage doorbuiging (gelijk aan die van het N-vakwerk) leidt voor de vierendeelligger tot zware profielen.
7 Optimalisatie vierendeelligger

7.1 Inleiding

Uit het voorgaande onderzoek is gebleken dat een houten vierendeelligger materiaal-
inefficiënter is dan een N-vakwerk in hout. Een houten vierendeelligger is echter wel
mogelijk! Dat is een constatering die nieuw is.

In dit hoofdstuk worden een aantal min of meer geoptimaliseerde vierendeelliggers met elkaar
vergelijken. Ook nu is voor elke knoop eenzelfde verbinding toegepast, en per staaltje één
profiel. De berekeningsmethode is gelijk gebleven. Als stijfheidseis is nu echter gesteld dat de
bijkomende doorbuiging niet meer dan 1/250-ste deel van de lengte van de overspanning mag
bedragen. Bij de fabricage kan namelijk een zeeg aangebracht worden om alle onmiddellijk
optredende en kruipvervorming te compenseren. Ditmaal worden mogelijke varianten
gepresenteerd, zonder dat de krachtsverdeling in de constructie wordt getoond. Alle toetsingen zijn echter wel uitgevoerd en voldoende bevonden.

De gevonden varianten zijn ten slotte vergeleken met het ‘basisontwerp’ zoals bepaald in
Hoofdstuk 5.

7.2 Vermindering van het houtvolume

Een van de aspecten waarop kan worden geoptimaliseerd, is het houtvolume. Dit bepaalt voor
een groot deel het uiterlijk van de ligger. Vooral de hoogte van de profielen is hierbij van
belang. Wanneer deze worden verlaagd, neemt daarmee ook de afstand van de verbinding-
middelen tot het rotatiecentrum van de verbinding af. Bij een gelijkblijvende vereiste sterkte
van de verbinding, zal dus het aantal verbindingsmiddelen toe moeten nemen. Dit kan worden
bewerkstelligd door buizen met een kleinere diameter te nemen. Daarvoor zijn de vereiste
rand- en tussenafstanden namelijk kleiner. Vanwege de lagere sterkte van deze buizen zal het
totale aantal verbindingsmiddelen toe moeten nemen.

Het zoeken naar een combinatie van buizen welke de gewenste sterkte kan bieden over een zo
klein mogelijk oppervlak (van de knoop), heeft geleid tot de twee alternatieve ontwerpen van
Tabel 10.

<table>
<thead>
<tr>
<th>Variant 1</th>
<th>profiel regel [mm²]</th>
<th>profiel verticaal [mm²]</th>
<th>toegepaste verbindingsmiddelen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2×100×650</td>
<td>200×450</td>
<td>hoeken: 4 Ø28+22, zijkant: 4 Ø28</td>
</tr>
<tr>
<td>Variant 2</td>
<td>2×100×600</td>
<td>250×400</td>
<td>hoeken: 4 Ø22+18, zijkant: 6 Ø22, boven/onder: 2 Ø22+18</td>
</tr>
</tbody>
</table>

Uit deze tabel valt af te lezen dat bij een vermindering van het houtvolume het aantal
verbindingsmiddelen aanzienlijk toeneemt. Het voordeel van de buizen dat door de hogere
sterkte minder verbindingsmiddelen (traditioneel: stiften) noodzakelijk zijn, wordt hiermee
grotendeels teniet gedaan.
Ter impressie is de vierendeelligger van Variant 2 in onderstaande figuur getekend voor een 10 m hoog gebouw (uitgangspunt ontwerp). In vergelijking met het ‘basisontwerp’ is deze variant inderdaad mooier, doordat de verticalen duidelijk slanker uitgevoerd zijn dan de regels (factor hoogte regel / hoogte verticaal is gestegen van 1,09 naar 1,50).

Figuur 31 Aanzicht draagconstructie met vierendeelligger Variant 2

7.3 Vermindering van het aantal buizen per knoop

Vanuit economisch opzicht geredeneerd, is reductie van het aantal buizen een voor de hand liggende optimalisatie. Immers, het aanbrengen van de verbindingsmiddelen is arbeids-intensief en dus duur. Tegelijkertijd kan de ligger visueel aantrekkelijker worden (minder buizen zichtbaar). Om met een geringer aantal buizen toch een voldoende hoge sterkte te behalen, moet of de sterkte van de buizen worden verhoogd, of de staafafmetingen moeten worden vergroot. Het toenemen van de staafafmetingen is echter juist onwenselijk. Daarom is geprobeerd deze toenam zo klein mogelijk te houden. Als maximale hoogte van de regel is 700 mm gehanteerd. Verder is vanuit esthetisch oogpunt gekozen om de verticalen nooit hoger te laten zijn dan de regel.

In Tabel 11 zijn een aantal alternatieve ontwerpen getoond, waarbij minder buizen zijn toegepast. Hier is een dubbele buis gerekend als één verbindingsmiddel, voornamelijk vanwege het genoemde esthetische aspect.

<table>
<thead>
<tr>
<th>Tabel 11 Varianten vierendeelligger met minder verbindingsmiddelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>profiel regel [mm²]</td>
</tr>
<tr>
<td>Variant 3</td>
</tr>
<tr>
<td>Variant 4</td>
</tr>
<tr>
<td>Variant 5</td>
</tr>
</tbody>
</table>
7.4 **Toevoegen trekdiagonale in de eindvelden**

Als laatste optimalisatieaspect is gekeken naar het effect van het aanbrengen van een trekdiagonaal in de eindvelden. In dit geval is geen sprake meer van een zuivere vierendeelligger! Vanuit praktische overwegingen kan hiervan echter afgeweken worden. Door het toevoegen van een of meer slanke trekdiagonalen in de eindvelden wordt de vorm (zeker in het midden) niet ernstig verstoord, terwijl mogelijk wel belangrijk bespaard kan worden op de materiaal- en vervaardigingskosten.

De trekdiagonale zijn aangebracht door twee maal een schetsplaat tussen de verticaal en de regel te plaatsen, waaraan via een verbindingsplaat de trekstaaf is bevestigd. In Figuur 32 is hiervan een principeschets gegeven. De buizen doorsnijden nu tevens de schetsplaten.

![Figuur 32 Principedetail verbinding trekdiagonaal](image)

De Excel-sheet waarin de toetsingen uitgevoerd zijn, is voor deze berekening aangepast. Nu zijn namelijk in de knopen waar een trekstaaf op uitkomt, vier snedes aanwezig. Per (dubbel-)snede moet een andere samengestelde kracht worden overgedragen. Daarom wordt nu voor de knopen met trekstaaf, voor elke (dubbel)snede apart een toetsing uitgevoerd. In Bijlage H is de analyse van de over te dragen krachten per snede opgenomen. Deze aanpassing heeft geleid tot enkele nieuwe varianten, welke vermeld staan in Tabel 12 (volgende pagina). Voor de berekening is een netto-doorsnede van de trekstaaf ter grootte van 2.000 mm² gehanteerd.
Optimalisatie vierendeelligger

Hoofdstuk 7

Tabel 12 Varianten vierendeelligger met twee trekdiagonale

<table>
<thead>
<tr>
<th>Variant</th>
<th>profiel regel [mm²]</th>
<th>profiel verticaal [mm²]</th>
<th>toegepaste verbindingsmiddelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant 6</td>
<td>2×125×550</td>
<td>200×450</td>
<td>hoeken: 4 Ø35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>midden: 1 Ø35</td>
</tr>
<tr>
<td>Variant 7</td>
<td>2×100×600</td>
<td>200×500</td>
<td>hoeken: 4 Ø35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>zijkant: 2 Ø28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>boven/onder: 2 Ø28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>midden: 1 Ø28</td>
</tr>
<tr>
<td>Variant 8</td>
<td>2×100×500</td>
<td>200×350</td>
<td>hoeken: 4 Ø28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>midden: 1 Ø28</td>
</tr>
</tbody>
</table>

Bij de laatste (slankste) variant, nr. 8, wordt voor de regel een efficiëntie behaald van 86% (trek + buiging) en voor de verticale wandstaaf zelfs 98% (druk + buiging). Hier heeft de verbinding dus inderdaad een sterkte die vergelijkbaar is met de sterkte van de aangesloten staafdelen. Deze variant is weergegeven in Figuur 33.

![Figuur 33 Aanzicht draagconstructie met vierendeelligger Variant 8](image)

Logischerwijs zal naarmate meer trekdiagonale worden aangebracht, het aantal verbindingsmiddelen en/of de staafafmetingen verder afnemen. Het N-vakwerk wordt immers steeds dichter benaderd.

N.B. Eerst is gekeken naar het verbinden van de trekstaaf via de middenbuis alleen. In dat geval is echter de krachtsoverdracht in de verbinding niet eenduidig uit het evenwicht af te leiden, waarom hiervan is afgezien. Voor de getekende verbinding wordt uitgegaan van een gelijke verdeling van de trekkracht uit de diagonaal per buis.
7.5 Vergelijking varianten

Figuur 34 en Tabel 13 (volgende pagina) tonen een vergelijking tussen de alternatieve vierendeelliggers en het ‘basisontwerp’ uit Hoofdstuk 5. Uit de uitgevoerde berekeningen blijkt dat voor de overspanning van 30 m de sterkte van de verbindingen maatgevend is voor het ontwerp. Dit is een conclusie die in tegenspraak is met de belofte dat de nieuwe Lignoforce buisverbinding een einde zou maken aan de invloed van de verbinding op de grootte van de staafprofielen. Na de verbindingen, is buiging en dwarskracht maatgevend, met name voor de verticaLEN. Aan de eis voor de (bijkomende) doorbuiging wordt steeds ruimschoots voldaan.

Voor elk gevonden alternatief ontwerp is verdere optimalisatie mogelijk. Een voor de hand liggende mogelijkheid is het variëren van het aantal verbindingsmiddelen per knoop naar de over te dragen kracht. Deze kracht neemt naar het midden van de ligger toe af. Grofweg bedraagt het verschil in de benuttingsgraad van de maximaal belaste buis tussen twee opeenvolgende knopen 20 procentpunten. Dat bleek al uit de berekening voor de vierendeelligger die met het N-vakwerk werd vergeleken, en ook voor de alternatieve ontwerpen is een soortgelijk verloop gevonden. Het optimaliseren hierop zal dus voor de verschillende varianten een min of meer gelijke invloed hebben.

Al met al luidt de conclusie dat door te optimaliseren inderdaad een houten vierendeelligger is te maken die aantrekkelijk oogt (transparant is). Met name Variant 2, met de hoge ratio tussen de hoogte van de regel en die van de verticaal, is visueel aantrekkelijk. Verder blijkt dat door een kleine ‘storing’ in het patroon aan te brengen, een verdere reductie van de staafafmetingen kan worden bereikt. Daarvoor zal echter meestal wel het aantal verbindingsmiddelen toe moeten nemen, waardoor de kosten omhoog worden gedreven. Niet de economische, maar architectonische of functionele motieven zullen dus doorslaggevend moeten zijn.

![Figuur 34 Vergelijking vierendeelligger-varianten](image)

Eindrapport BSc-eindwerk: *Houten vakwerken en vierendeelliggers*
Tabel 13 Vergelijking vierendeelligger-varianten

<table>
<thead>
<tr>
<th></th>
<th>Referentie</th>
<th>Var. 1</th>
<th>Var. 2</th>
<th>Var. 3</th>
<th>Var. 4</th>
<th>Var. 5</th>
<th>Var. 6</th>
<th>Var. 7</th>
<th>Var. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_{regel}</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>250</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>h_{regel}</td>
<td>600</td>
<td>650</td>
<td>600</td>
<td>700</td>
<td>700</td>
<td>650</td>
<td>650</td>
<td>600</td>
<td>500</td>
</tr>
<tr>
<td>$b_{verticaal}$</td>
<td>200</td>
<td>200</td>
<td>250</td>
<td>200</td>
<td>160</td>
<td>160</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>$h_{verticaal}$</td>
<td>550</td>
<td>450</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>500</td>
<td>450</td>
<td>500</td>
<td>350</td>
</tr>
<tr>
<td>constructiehoogte</td>
<td>3,10</td>
<td>3,15</td>
<td>3,10</td>
<td>3,20</td>
<td>3,20</td>
<td>3,15</td>
<td>3,05</td>
<td>3,10</td>
<td>3,00</td>
</tr>
<tr>
<td>$h_{regel} / h_{verticaal}$</td>
<td>1,09</td>
<td>1,44</td>
<td>1,50</td>
<td>1,56</td>
<td>1,40</td>
<td>1,30</td>
<td>1,22</td>
<td>1,20</td>
<td>1,43</td>
</tr>
<tr>
<td>houtvolume</td>
<td>14,38</td>
<td>10,73</td>
<td>10,45</td>
<td>11,33</td>
<td>11,00</td>
<td>10,40</td>
<td>11,18</td>
<td>10,45</td>
<td>8,28</td>
</tr>
<tr>
<td>houtoppervlak (aanzicht)</td>
<td>53,88</td>
<td>53,63</td>
<td>49,00</td>
<td>56,63</td>
<td>58,25</td>
<td>55,25</td>
<td>47,63</td>
<td>52,25</td>
<td>41,38</td>
</tr>
<tr>
<td>oppervlak Lignostone</td>
<td>34,32</td>
<td>30,42</td>
<td>24,96</td>
<td>32,76</td>
<td>36,40</td>
<td>33,80</td>
<td>25,74</td>
<td>31,20</td>
<td>18,20</td>
</tr>
<tr>
<td>doorzicht</td>
<td>44,46</td>
<td>45,51</td>
<td>47,88</td>
<td>44,28</td>
<td>43,20</td>
<td>44,40</td>
<td>47,97</td>
<td>45,60</td>
<td>51,60</td>
</tr>
<tr>
<td>aantal enkele buizen</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>aantal dubbele buizen</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>aantal boorgaten per knoop</td>
<td>24</td>
<td>24</td>
<td>36</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>handelingen per knoop (boren + plaatsen buizen)</td>
<td>32</td>
<td>36</td>
<td>54</td>
<td>24</td>
<td>24</td>
<td>28</td>
<td>20</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>knoopstijfheid (BGT)</td>
<td>38065</td>
<td>49610</td>
<td>63704,8</td>
<td>38800</td>
<td>38512,5</td>
<td>39662,5</td>
<td>16900</td>
<td>24050</td>
<td>19946,2</td>
</tr>
</tbody>
</table>
8 Conclusies en aanbevelingen

8.1 Conclusies

Als eerste conclusie mag wel worden genoteerd dat het construeren van een vierendeelligger in hout mogelijk is bij toepassing van de Lignoforce verbinding. Verder is gebleken dat in vergelijking met een houten (N-)vakwerk een vierendeelligger duurder is in materiaal en arbeid. Dat komt doordat meer verbindingen nodig zijn, en doordat de krachtsverdracht via buiging inefficiënter is dan die via normaalkrachten. Functionele of architectonische overwegingen zullen dus de doorslag moeten geven.

In geval van het N-vakwerk bleek dat met één buis per knoop kon worden volstaan. De voorgeschreven rand- en eindafstanden leidden wel tot staalprofielen met een lage knikfactor k_{com} voor knikken in de zwakke richting (hoger i.p.v. vierkanter profiel). De efficiëntie van deze staven is hierdoor laag. Zoals verwacht was de stijfheid van de constructie ruim voldoende. Bij de vierendeelligger (“basisontwerp”) moesten de profielen hoger worden gemaakt dan noodzakelijk was voor de sterkte, om de verbindingsmiddelen te kunnen plaatsen. Hier is dus nog steeds de verbinding maatgevend: de sterkte is niet gelijkwaardig aan die van de aangesloten staven. Door te voldoen aan de sterkte-eisen, wordt automatisch voldaan aan de eisen voor de stijfheid (voor de bijkomende doorbuiging); deze is niet maatgevend.

Een andere conclusie is dat door te optimaliseren naar houtvolume, een vierendeelligger met een tamelijk grote $h_{regel} / h_{verticaal}$ ratio kan worden ontworpen. Vooral dit aspect bepaald of de vierendeelligger gunstige gevolgen heeft voor de krachtswerking in de ligger (meer krachtsverdracht via normaalkrachten). Daardoor kan het houtvolume en/of het aantal verbindingsmiddelen aanzienlijk worden gereduceerd.

8.2 Aanbevelingen

In principe betrof dit onderzoek een gesloten opdracht: het ontwerpen van zowel een vakwerk als een vierendeelligger van 30 m, en deze ontwerpen te vergelijken met betrekking tot het houtgebruik en de verbindingen. Er kunnen echter wel suggesties voor een vervolgonderzoek worden gedaan wat meer gericht is op het mechanisch gedrag van de vierendeelligger. Voor de ligger van 30 m lang, met een inwendige hefboomarm van 2,5 m bleek de stijfheid van de constructie niet maatgevend. Onderzocht kan worden bij welke verhouding tussen de overspanningslengte en de hoogte van de ligger (inwendig dan wel uitwendig) dit verandert.

Een andere suggestie is te onderzoeken welke overspanningen kunnen worden bereikt met houten bogen, waarbij de boog uitgevoerd is als vierendeelligger. Voornamelijk vanuit esthetisch oogpunt is dit een interessant optie. Over het gedrag van de verbinding van twee houten staven met een stalen trekstang (via schetsplaten) is weinig bekend vanuit experimenteel onderzoek. Het ligt voor de hand deze lacune op te vullen. Een en ander kan aangevuld worden met EEM-analyses.

Tot slot wordt de optie geopperd een onderzoek op te zetten naar de invloed van extra opleggingen op het gedrag van de vierendeelligger.
Literatuurlijst

[13] www.delta.tudelft.nl Website van het weekblad van de TU Delft.
 - Klooster, L. van, *Delfse constructie krijgt prijs*, nr. 29, jaargang 27, 8 september 1995
 - Bonnet, I., *Nieuwe verbinding snijdt hout*, nr. 33, jaargang 30, 5 november 1998

[14] www.berekeningvanconstructies.be Online-versie van het (verouderde) boek *Berekening van constructies* van de Belgische professor Vanderpitte.
Bijlage A Ontwerpgegevens buizen

De hier vermelde gegevens zijn grotendeels te vinden op de website over de Lignoforce buisverbinding van de sectie Hout- en houtconstructies van de TU Delft [11]. Voor zowel voor enkele als voor dubbele buizen geldt dat de gegeven waarden voor de sterkte per snede onafhankelijk zijn van de hoek tussen de kracht en de houtvezelrichting.

A.1 Enkele buis

De ontwerpgegevens voor de toepassing van enkele buizen zijn weergegeven in Tabel 14.

<table>
<thead>
<tr>
<th>Uitwendige diameter buis</th>
<th>Wanddikte buis</th>
<th>Uitwendige diameter buis na expanderen</th>
<th>Boorgat diameter</th>
<th>Minimum dikte Lignostone</th>
<th>Sluitring diameter</th>
<th>Karakteristieke sterkte per snede</th>
<th>Stijfheid per snede (gemiddeld)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,2</td>
<td>2,35</td>
<td>18</td>
<td>18</td>
<td>12</td>
<td>50</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>21,3</td>
<td>2,65</td>
<td>22</td>
<td>22</td>
<td>14</td>
<td>76</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>26,9</td>
<td>2,65</td>
<td>28</td>
<td>28</td>
<td>16</td>
<td>85</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>33,7</td>
<td>3,25</td>
<td>35</td>
<td>35</td>
<td>18</td>
<td>95</td>
<td>4</td>
<td>35</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
</tbody>
</table>

Voor een nauwkeurige berekening kan gebruik gemaakt worden van de waarden in Tabel 15. De formule die deze relatie beschrijft is nogmaals gegeven in paragraaf A.3.

<table>
<thead>
<tr>
<th>Uitwendige diameter buis na expanderen</th>
<th>Niet-lineaire krachtvervormingsrelatie</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>43</td>
<td>0,91</td>
<td>26,6</td>
<td>1,62</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>80</td>
<td>1,64</td>
<td>32,2</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>125</td>
<td>1,48</td>
<td>63,4</td>
<td>1,32</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>kN/mm</td>
<td>kN/mm</td>
<td>kN</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

A.2 Dubbele buizen

De ontwerpgegevens voor de toepassing van dubbele buizen zijn weergegeven in Tabel 16.

<table>
<thead>
<tr>
<th>Buisdiameters</th>
<th>Minimum dikte Lignostone</th>
<th>Karakteristieke sterkte per snede</th>
<th>Stijfheid per snede</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,2+13,5</td>
<td>12</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>21,3+17,2</td>
<td>14</td>
<td>66</td>
<td>71</td>
</tr>
<tr>
<td>26,9+21,3</td>
<td>16</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>33,7+26,9</td>
<td>18</td>
<td>115</td>
<td>80</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>kN</td>
<td>kN/mm</td>
</tr>
</tbody>
</table>
Voor een nauwkeurige berekening kan gebruik gemaakt worden van de waarden in Tabel 17. De formule die deze relatie beschrijft is nogmaals gegeven in paragraaf A.3.

<table>
<thead>
<tr>
<th>Buisdiameters</th>
<th>Niet-lineaire krachtvervormingsrelatie</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,2+13,5</td>
<td>17,2+13,5</td>
<td>80</td>
<td>0,75</td>
<td>40</td>
<td>1,15</td>
</tr>
<tr>
<td>21,3+17,2</td>
<td>21,3+17,2</td>
<td>140</td>
<td>0,36</td>
<td>63,6</td>
<td>1,92</td>
</tr>
<tr>
<td>26,9+21,3</td>
<td>26,9+21,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33,7+26,9</td>
<td>33,7+26,9</td>
<td>130</td>
<td>1,42</td>
<td>108</td>
<td>1,82</td>
</tr>
</tbody>
</table>

A.3 Niet-lineaire krachtvervormingsrelatie

De relatie wordt gegeven door de formule:

\[
F = \frac{(a - b) \cdot \delta}{d \sqrt{1 + \left(\frac{(a - b) \delta}{c}\right)^d}} + b \cdot \delta
\]

De parameters hierin zijn:

- **a**: de initiële stijfheid
- **b**: de stijfheid in het vloeistadium
- **c**: de snedekracht waarbij de buis plastisch begint te vervormen
- **d**: een parameter die de kromming in de curve weergeeft
Bijlage B Knikcurve GL32h

De knikcurve voor sterkteklasse GL32h volgens NEN6760 is getoond in Figuur 35.

![Diagram showing the curve of k_{com} as a function of the slenderness λ for strength class GL32h](image-url)
Bijlage C Toetsingsformules

C.1 Formules t.b.v. toetsing vakwerkliggers:

Uiterste grenstoestand

Staaf belast op trek:

$$f_{r:0:d} = f_{r:0:rep} \frac{k_{mod}}{\gamma_m} k_h$$

met

$$k_h = \left(\frac{600}{h} \right)^{0.1} \leq 1,1$$

$$\sigma_{r:0:d} = \frac{N_{r:0:d}}{A}$$

(zoeker gatverzwakking)

$$\sigma_{r:0:d} \leq f_{r:0:d}$$

Staaf belast op druk:

$$f_{c:0:d} = f_{c:0:rep} \frac{k_{mod}}{\gamma_m}$$

$$\sigma_{c:0:d} = \frac{N_{c:0:d}}{A}$$

$$\sigma_{c:0:d} \leq f_{c:0:d}$$

Staaf belast op knik:

$$f_{c:0:d} = f_{c:0:rep} \frac{k_{mod}}{\gamma_m}$$

$$\sigma_{c:0:d} = \frac{N_{c:0:d}}{k_{com}} \cdot A$$

met k_{com} uit de knikcurve in Bijlage B

$$\sigma_{c:0:d} \leq f_{c:0:d}$$

Buisverbinding belast op afschuiving:

$$F_{vu} = F_{v:rep} \frac{k_{mod}}{\gamma_m}$$

(per snede)

$$F_{v:ld} \leq n \cdot F_{vu}$$

met n het aantal werkzame sneden

Bruikbaarheidsgrenstoestand

Doorbuiging t.p.v. midden ligger:

$$u_{eind,xer:ld} \leq 0.004 \cdot l \text{ mm (ten gevolge van elastische doorbuiging alleen)}$$
C.2 Formules t.b.v. toetsing vierendeelligger:

Uiterste grenstoestand

Staaf belast op trek:

\[f_{r,0;0} = f_{r,0;\text{rep}} \frac{k_{\text{mod}} \gamma_m k_h}{\gamma_m} \text{ met } k_h = \left(\frac{600}{h} \right)^{0.1} \leq 1.1 \]

\[\sigma_{r,0;0} = \frac{N_{r,0;0}}{A} \text{ (zonder gatverzwakking)} \]

\[\sigma_{r,0;0} = \frac{N_{r,0;0}}{A} \leq f_{r,0;0} \]

Staaf belast op druk:

\[f_{c,0;0} = f_{c,0;\text{rep}} \frac{k_{\text{mod}} \gamma_m}{\gamma_m} \]

\[\sigma_{c,0;0} = \frac{N_{c,0;0}}{A} \]

\[\sigma_{c,0;0} \leq f_{c,0;0} \]

Staaf belast op buiging:

\[f_{m,0;0} = f_{m,0;\text{rep}} \frac{k_{\text{mod}} \gamma_m}{\gamma_m} \]

\[\sigma_{m,0;0} = \frac{M_d}{W} = \frac{M_d}{\frac{1}{6} bh^2} \]

\[\sigma_{m,0;0} \leq f_{m,0;0} \]

Staaf belast op afschuiving:

\[f_{v,0;0} = f_{v,0;\text{rep}} \frac{k_{\text{mod}} \gamma_m}{\gamma_m} \]

\[\sigma_{v,0;0} = \frac{3 V_d}{2 bh} \]

\[\sigma_{v,0;0} \leq f_{v,0;0} \]

Staaf belast op knik:

\[f_{k,0;0} = f_{k,0;\text{rep}} \frac{k_{\text{mod}} \gamma_m}{\gamma_m} \]

\[\sigma_{k,0;0} = \frac{N_{c,0;0}}{k_{\text{com}} A} \text{ met } k_{\text{com}} \text{ uit de kniecurve in Bijlage B} \]

\[\sigma_{k,0;0} \leq f_{k,0;0} \]

Staaf belast op een combinatie van trek en buiging:

\[\frac{\sigma_{r,0;0}}{f_{r,0;0}} + \frac{\sigma_{m,0;0}}{f_{m,0;0}} \leq 1 \]

Staaf belast op een combinatie van druk en buiging:

\[\frac{\sigma_{c,0;0}}{f_{c,0;0}} + \frac{\sigma_{m,0;0}}{f_{m,0;0}} \leq 1 \]
Buisverbinding belast op afschuiving:

\[F_{vu} = F_{v,rep} \frac{k_{\text{mod}}}{\gamma_m} \text{ per snede} \]

\[F_{v,d} \leq n \cdot F_{vu} \text{ met } n \text{ het aantal werkzame sneden} \]

(per buis moet eerste de maximale kracht worden samengesteld)

Bruikbaarheidsgrenstoestand

Doorbuiging t.p.v. midden ligger:

\[u_{\text{eind},ser;cl} \leq 0,004 \cdot l \text{ mm (ten gevolge van elastische doorbuiging alleen)} \]
Bijlage D Analytische berekening N-vakwerk

De krachtsverdeling voor het N-vakwerk is ook bepaald met de methode van knoopevenwicht (toegepast op het halve vakwerk). Tevens wordt hier duidelijk gemaakt waarom de kracht in de boven- en onderregel van elkaar verschilt.

Eindrapport BSc-eindwerk: Houten vakwerken en vierendeelliggers
Bijlage E Toetsing N-vakwerk

Op de volgende pagina’s is de Excel-sheet weergegeven waarin de berekeningen voor het N-vakwerk zijn uitgevoerd.

<table>
<thead>
<tr>
<th>Toetsing N-vakwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabelen</td>
</tr>
<tr>
<td>UGT</td>
</tr>
<tr>
<td>γ_m</td>
</tr>
<tr>
<td>k_{mod}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materiaaleigenschappen GL32h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = \text{rep}$</td>
</tr>
<tr>
<td>$f_{t0;i}$</td>
</tr>
<tr>
<td>$f_{c0;i}$</td>
</tr>
<tr>
<td>ρ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Staafafmetingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
</tr>
<tr>
<td>regel</td>
</tr>
<tr>
<td>verticaal</td>
</tr>
<tr>
<td>diagonaal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doorsnedegrootheden</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>regel</td>
</tr>
<tr>
<td>verticaal</td>
</tr>
<tr>
<td>diagonaal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gegevens buis ϕ35</th>
</tr>
</thead>
<tbody>
<tr>
<td>i = rep</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>F_{ci}</td>
</tr>
<tr>
<td>$k_{buis;i}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capaciteit verbinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>aantal buizen</td>
</tr>
<tr>
<td>totale verbinding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puntlasten</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{rep}</td>
</tr>
<tr>
<td>eigen gewicht (vakwerk)</td>
</tr>
<tr>
<td>rustende belasting (dak)</td>
</tr>
<tr>
<td>variabele belasting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kN/knoop</th>
<th>kN/knoop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28,12</td>
</tr>
<tr>
<td>staafnr.</td>
<td>profiel</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>regel</td>
</tr>
<tr>
<td>2</td>
<td>regel</td>
</tr>
<tr>
<td>3</td>
<td>regel</td>
</tr>
<tr>
<td>4</td>
<td>regel</td>
</tr>
<tr>
<td>5</td>
<td>regel</td>
</tr>
<tr>
<td>6</td>
<td>regel</td>
</tr>
<tr>
<td>7</td>
<td>regel</td>
</tr>
<tr>
<td>8</td>
<td>regel</td>
</tr>
<tr>
<td>9</td>
<td>regel</td>
</tr>
<tr>
<td>10</td>
<td>regel</td>
</tr>
<tr>
<td>11</td>
<td>regel</td>
</tr>
<tr>
<td>12</td>
<td>regel</td>
</tr>
<tr>
<td>13</td>
<td>regel</td>
</tr>
<tr>
<td>14</td>
<td>regel</td>
</tr>
<tr>
<td>15</td>
<td>regel</td>
</tr>
<tr>
<td>16</td>
<td>regel</td>
</tr>
<tr>
<td>17</td>
<td>regel</td>
</tr>
<tr>
<td>18</td>
<td>regel</td>
</tr>
<tr>
<td>19</td>
<td>regel</td>
</tr>
<tr>
<td>20</td>
<td>regel</td>
</tr>
<tr>
<td>21</td>
<td>regel</td>
</tr>
<tr>
<td>22</td>
<td>regel</td>
</tr>
<tr>
<td>23</td>
<td>regel</td>
</tr>
<tr>
<td>24</td>
<td>regel</td>
</tr>
</tbody>
</table>
Bijlage F Toetsing vierendeelligger

Op de volgende pagina’s is de Excel-sheet weergegeven waarin de berekeningen voor de vierendeelligger zijn uitgevoerd.

Toetsing vierendeelligger

<table>
<thead>
<tr>
<th>Variabelen</th>
<th>UGT</th>
<th>BGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>modelfactor γ₀₀₀₉</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>modificatiefactor kₑₑₑₑ</td>
<td>0.85</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materiaaleigenschappen GL32h</th>
<th>i = rep</th>
<th>i = d</th>
</tr>
</thead>
<tbody>
<tr>
<td>fₑ₀₀₀₀</td>
<td>22.5</td>
<td>15.9 N/mm²</td>
</tr>
<tr>
<td>fₑ₀₀₀₁</td>
<td>29</td>
<td>20.5 N/mm²</td>
</tr>
<tr>
<td>fₑ₀₀₀₂</td>
<td>3.8</td>
<td>2.7 N/mm²</td>
</tr>
<tr>
<td>fₑ₀₀₀₃</td>
<td>32</td>
<td>22.7 N/mm²</td>
</tr>
<tr>
<td>Eₑₑₑₑ</td>
<td>11100</td>
<td>7800 N/mm²</td>
</tr>
<tr>
<td>ρ</td>
<td>430</td>
<td>430 kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materiaaleigenschappen Lignostone DVW</th>
<th>i = rep</th>
<th>i = d</th>
</tr>
</thead>
<tbody>
<tr>
<td>fₑ₀₀₀₀</td>
<td>30</td>
<td>21.3 N/mm²</td>
</tr>
</tbody>
</table>

Staafafmetingen

<table>
<thead>
<tr>
<th>Regel</th>
<th>Verticaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Regel</td>
<td>300</td>
</tr>
<tr>
<td>Verticaal</td>
<td>200</td>
</tr>
</tbody>
</table>

Doorsnedegrootheden

<table>
<thead>
<tr>
<th>Regel</th>
<th>Verticaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>l₀</td>
</tr>
<tr>
<td>mm²</td>
<td>mm³</td>
</tr>
<tr>
<td>Regel</td>
<td>180000</td>
</tr>
<tr>
<td>Verticaal</td>
<td>110000</td>
</tr>
</tbody>
</table>

Gegevens buizen

<table>
<thead>
<tr>
<th>Buitenring: D</th>
<th>Binnenring: D</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>h</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Regel</td>
<td>35</td>
</tr>
<tr>
<td>Lignostone</td>
<td>35</td>
</tr>
<tr>
<td>Regel</td>
<td>28</td>
</tr>
<tr>
<td>Lignostone</td>
<td>28</td>
</tr>
</tbody>
</table>

Capaciteit/stijfheid verbinding

<table>
<thead>
<tr>
<th>Aantal buizen</th>
<th>R</th>
<th>h₀</th>
<th>Kₑₑₑₑ in BGT</th>
<th>Kₑₑₑₑ in UGT</th>
<th>Fₑₑₑₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regel</td>
<td>4</td>
<td>230.49</td>
<td>212500</td>
<td>2</td>
<td>27625</td>
</tr>
<tr>
<td>Binnenste ring</td>
<td>4</td>
<td>150.00</td>
<td>90000</td>
<td>2</td>
<td>10440</td>
</tr>
<tr>
<td>Totaal</td>
<td>8</td>
<td>302000</td>
<td>38065</td>
<td>26962.708</td>
<td>52.50</td>
</tr>
</tbody>
</table>

Puntlasten

<table>
<thead>
<tr>
<th>Fₑₑₑₑ</th>
<th>Fₑₑₑₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>rustende belasting (dak)</td>
<td>12.50</td>
</tr>
<tr>
<td>variabele belasting</td>
<td>25.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kN/knoop</th>
<th>kN/knoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.50</td>
<td>52.50</td>
</tr>
</tbody>
</table>
Toetsing vierendeelligger Bijlage F

Toetsing vierendeelligger

<table>
<thead>
<tr>
<th>staalnr.</th>
<th>profiel</th>
<th>teksn.</th>
<th>N_{x}</th>
<th>N_{y}</th>
<th>M_{x}</th>
<th>M_{y}</th>
<th>M_{xy}</th>
<th>M_{xz}</th>
<th>N_{xy}</th>
<th>N_{xz}</th>
<th>V_{x}</th>
<th>V_{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-20</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,71</td>
<td>7,25</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-21</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,66</td>
<td>4,19</td>
<td>12%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-22</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,69</td>
<td>4,38</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-23</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,44</td>
<td>1,19</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-24</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,64</td>
<td>4,16</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-25</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,64</td>
<td>4,02</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-26</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,42</td>
<td>1,07</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-27</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,47</td>
<td>0,96</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-28</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,47</td>
<td>0,91</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-29</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,37</td>
<td>0,78</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-30</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,27</td>
<td>0,51</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-31</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,27</td>
<td>0,51</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-32</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,20</td>
<td>0,38</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-33</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,12</td>
<td>0,23</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-34</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,12</td>
<td>0,23</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-35</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,09</td>
<td>0,20</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-36</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,05</td>
<td>0,17</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-37</td>
<td>T</td>
<td>$-130,66$</td>
<td>643,7</td>
<td>130,49</td>
<td>0,58</td>
<td>0,05</td>
<td>0,17</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-38</td>
<td>T</td>
<td>$-124,85$</td>
<td>471,49</td>
<td>56,17</td>
<td>1,69</td>
<td>0,03</td>
<td>0,15</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>1-39</td>
<td>T</td>
<td>$-226,82$</td>
<td>778,75</td>
<td>75,43</td>
<td>1,26</td>
<td>0,02</td>
<td>0,14</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

注釈

- **Note**: 所に示された数字は、各プロフィールの特性を示しています。これらの数値は、材料の強度テスト結果に基づいて計算されたもので、設計に必要な詳細を提供するのに役立ちます。

Eindrapport BSc-eindwerk: Houten vakwerken en vierendeelligers

52
Bijlage G Voorbeeldberekening momentverbinding

De berekening die hieronder is opgenomen, betreft knoop 2 van de vierendeelligger die in Hoofdstuk 5 werd ontworpen. In deze knoop bleek de belasting per buis het grootst te zijn.

De over te brengen krachten vanuit de verticale staaf zijn (staafkrachten):
- verticale kracht : 3,54 kN (naar beneden)
- horizontale kracht : 122,95 kN (naar links)
- moment : 153,86 kNm (linksom)

De hierna volgende berekening toont aan dat de capaciteit van zwaarst belaste de buizen, en daarmee van de hele verbinding, voldoet.
Opbouw verbinding

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>Aantal</th>
<th>Schaal (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>4</td>
<td>150,0</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>230,5</td>
</tr>
</tbody>
</table>

Gegevens buiten per snede

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>F_{ure} (kN)</th>
<th>$F_{u,n}$ (kN)</th>
<th>k_{re} (kN/mm)</th>
<th>k_{u} (kN/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>70</td>
<td>43,6</td>
<td>58</td>
<td>41,1</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
<td>67,3</td>
<td>65</td>
<td>46,0</td>
</tr>
</tbody>
</table>

Gegevens buiten per dubbel snede

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>F_{ure} (kN)</th>
<th>$F_{u,n}$ (kN)</th>
<th>k_{re} (kN/mm)</th>
<th>k_{u} (kN/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>140</td>
<td>99,17</td>
<td>116</td>
<td>82,2</td>
</tr>
<tr>
<td>35</td>
<td>190</td>
<td>134,58</td>
<td>180</td>
<td>93,0</td>
</tr>
</tbody>
</table>

Tussen de representatieve waarden en die in de UCI uit een factor

$$
\frac{k_{mod}}{f_{m}} = \frac{0,85}{1,2} = 0,708
$$
Rotatiestijfheid Verbinding

BGT:

\[K_r = \sum k_i \cdot n_i^2 \]
\[= 116 \cdot (4 \cdot 159^2) + 130 \cdot (4 \cdot 289^2) \]
\[= 38067 \text{ kNm/rad} \]
\[= 38067 \text{ kNm/rad} \]

UGT:

\[K_r = \sum k_i \cdot n_i^2 \]
\[= 832 \cdot (4 \cdot 159^2) + 930 \cdot (4 \cdot 220^2) \]
\[= 2694932 \text{ kNm/rad} \]
\[= 26949 \text{ kNm/rad} \]

(Kleine verschillen met Excel-sheets t.g.v. afronden.)
Voorbeeldberekening momentverbinding

Voor elke buis geldt:

\[F_M = \frac{123.95}{8} \geq 15.37 \text{ kN} \]

\[F_V = \frac{3.54}{8} = 0.44 \text{ kN} \]

Van de buikenring is buis nr. 1 het zwaarst belast. De krochet t.g.v. het moment is:

\[F_M = M \cdot \frac{K \cdot r}{K_r} = 153.06 \cdot \frac{330.230.5}{2694.9} = 121.07 \text{ kN} \]

De totale kracht op deze buis is dus:

\[F_{tot} = \sqrt{(F_M + \alpha_M \cdot F_M)^2 + (F_V + \alpha_V \cdot F_V)^2} \]
Voorbeeldberekening momentverbinding

\[\lambda_H = \frac{150}{2395} = 0.065 \]
\[\lambda_V = \frac{175}{2395} = 0.076 \]

dus:
\[F_{tot} = \sqrt{(15.37 + 96.5 \cdot 121.07^2) + (0.44 + 9.76 \cdot 121.07)^2} \]
\[= 131.89 \text{ kN} \]

Voor de binnenvulling geldt dat buis 2 het zwaarst wordt belast (\(F_H > F_V \)). Hierop is de kracht t.g.v. het moment:
\[F_M = M \cdot \frac{k.r}{kr} = 153.86 \cdot \frac{82.2150}{26949} \]
\[= 79.40 \text{ kN} \]

Dus is de totale kracht op deze buis:
\[F_{tot} = \sqrt{(F_H + F_M)^2 + F_V^2} \]
\[= \sqrt{(15.37 + 70.49)^2 + 9.76^2} \]
\[= 85.77 \text{ kN} \]
Voorbeeldberekening momentverbinding

Toetsing uicl buizen

Voor buis 1 (Ø35) geldt dat

\[F_{ud} \leq F_{u} = 134,58 \text{ kN} \]

Met \(F_{ud} = F_{tot} \) (voor buis 1) blijkt dat

\[F_{tot} = 131,89 < 134,58 \text{ kN} \] voldoet!

De mate van benutting bedraagt 98%.

Voor buis 2 (Ø20) geldt dat

\[F_{ud} \leq F_{u} = 93,17 \text{ kN} \]

Met \(F_{ud} = F_{tot} \) (voor buis 2) blijkt dat

\[F_{tot} = 85,77 < 93,17 \text{ kN} \] voldoet!

Hier bedraagt de mate van benutting 86%.

Conclusie: de verbinding voldoet.
Bijlage H Krachtsoverdracht in verbinding met trekstaaf

Onderstaand is aangegeven hoe de krachtsoverdracht plaatsvindt in de verbindingen van de ‘aangepaste’ vierendeelligger waar een trekstaaf is aangesloten.
Knooppunt 2/12 (onder)

Verticale krachtsaandraad

\[\frac{1}{2} N_{regel_1} \quad \frac{1}{2} N_{regel_2} \]

Horizontale krachtsaandraad

\[\frac{1}{2} N_{regel_1} \quad \frac{1}{2} N_{regel_2} \]

Zijaanzicht/doorsnede

\[\frac{1}{2} N_{regel_1} \quad \frac{1}{2} N_{regel_2} \]

Bovenaanzicht/doorsnede

Wij moeten beide scheidse het gehele moment over dragen.
<table>
<thead>
<tr>
<th>Snede I</th>
<th>Hor.</th>
<th>Vert.</th>
<th>Mom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Regel 1</td>
<td>Regel 1 + Regel 2</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

| Snede II | Verticaal | Verticaal | M |

Uitbreidingen (meerdere trekdiagonalen) kunnen gemakkelijk worden gemaakt.

Boven zijde: zonodig N verticaal met F verminderen.