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Abstract

The use of computer algebra software enables a considerable simplification of the
derivation of analytic expressions for the aberration coefficients of optical systems.
In this paper, an algorithm for the symbolic computation of the intrinsic and ex-
trinsic contributions of spherical surfaces to the higher-order aberration coefficients
is described. This algorithm can be easily implemented in any major computer al-
gebra language. As an example, two Mathematica programs producing tbe analytic
expressions are given. With these programs, all aberration coefficients of third, fifth
and seventh order have been obtained.

1 Introduction

Aberration theory has been used for a long time for gaining a deeper insight into the
f performances and limitations of optical systems throughout the lens design process. Even
i if presently only third-order (Seidel) coefficients are widely used in practical applications,
, it is known that for the design of high-quality optical systems higher order aberration
! coefficients caD be a powerful tooI.rl 

Intuitively, optical systems are of ten designed in such a war that the ray paths inside
f the system are as "relaxed" as possible, i.e. the incidence angles, ray heights and slopes

tend to be everywhere as small as permitted by the aperture and field requirements. Any
i surface for which these ray parameters are toa large CaD be a major source of aberrations.

Th~ use of analytic e~pressions. f~r the aberrat.ion c?e~cients caD consi~erably fac~litateI 
OptlCal system analysis by provldmg a tooI for ldentuymg the problematlc surfaces m the

.system.

As will be shown in what follows, the various aberration coefficients are given by Slims of
surface contributions. For aberration coefficients of order higher than three each surface
contribution consists of an intrinsic part, expressed in terms of paraxial marginal and

.chief ray data (incidence angles, ray heights and slopes) at the given surface, and an

.Permanent Address: Institute of Atomic Physics, Department of Lasers, P.O.B. MG-6, 76900
Bucharest, Romania, e-mail:bociort@ifa.ro
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extrinsic part, due to lower order aberrations incoming from other surfaces. Thus, if the
performances of a design are unsatisfactory, the surfaces which are the most important
sources of aberrations can be identified by successively determining which aberration
coefficients, which surface contributions of them and which marginal or chief ray data
determining these surface contributions are toa large. This information could be used
e.g. for determining which element should be split.

Presently, several commercially available optical design programs can provide fifth-order
aberration results. (For historical remarks about fifth order aberrations see e.g. [St].)
In same cases, however, considering even higher-order effects might be important. For
instance, Shafer has given an example of a system corrected for all third- and fifth-order
aberrations, but where aberrations of seventh order and higher are so large that the
system performs worse than a system which is not even corrected at third-order level
([Sh]).

Because the complexity of the aberration coefficients increases rapidly with each addi-
tional order, the derivation of analytic expressions for the coefficients of order higher
than three is a difficult task. Computer algebra has been proven to be a powerful tooI
for the derivation of analytic expressions of aberration coefficients.( See e.g. Ref. [BK].)
Therefore, analytic expressions for the aberration coefficients up to the seventh-order
have been derived as part of the RIACA Optics Project. The derivation method used is
an adaptation for computer algebra of an earlier method developed by Buchdahl ([Bu]).

For rotationally symmetric optical systems, Buchdahl has developed several decades ago
a remarkably efficient technique for deriving high-order aberration coefficients. However,
the effort made by its author to improve computational efficiency (i.e. to reduce the
number of necessary calculations) has unfortunately obscured the elegant basic ideas of
the method. Reading Buchdahl's work [Bu] is not an easy matter for the newcomer.

Nowadays, considering the capabilities of computer algebra software, computational ef-
ficiency is less important than insight into the derivation. For improving clarity, it
becomes preferabIe to compute the aberration coefficients in a straightforward mannner
by adapting several basic ideas of Buchdahl to a farm suitable for computer algebra and
by translating them directly into computer algebra code. The principal aim of this paper
is to give a detailed description of such a simplified version of Buchdahl's method. In
the following, we consider only spherical surfaces.

It is assumed that the reader is familiar with paraxial optics and Seidel theory. (For
the basics, see e.g. [We].) Af ter developing the necessary prerequisites in the first five
sections, the algorithm for the derivation of the analytic expressions of the aberration
coefficients will be described in §6. As an example, two Mathematica programs generating
these expressions will be given in Appendices A and B.
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Figure 1: Ray Parameters of the Marginal and Chief Rays at the First Surface of the
System

2 Paraxial approximation

Consider a rotationally symmetric optical system. We denote the object plane by P,
the paraxial image plane by Q and the stop plane by S. We define an arbitrary ray )
through the system by its normalized coordinates in the object plane (T."T,,)-the field
coordinates and in th-e stop plane (u." u" )-the apert ure coordinates. Thus, if the stop
radius is TS and the maximalobject height is Tp, then the Cartesian coordinates are
related to the normalized coordinates, at the stop plane by

Xs = TSU." ys = TSU" (1)

and at the object plane by

Xp = TpT." yp = TpT", (2)

(The special case when the object is at infinity will be discussed in the next section.)

At each surface, the position and direction of a ray passing through the system are fully
determined by the x and y coordinates of its point of intersection with the surface and
by the optical direction cosines { and 77, corresponding to x and y. (The optical direction
cosines are the direction cosines multiplied by the refractive index,)

It can be shown ([Bo], [Ho]) that in the paraxial approximation (the lowest order ap-
proximation in u." u"' T."T,,) x, y, { and 77 are for all surfaces of the system given by
linear combinations of the aperture and field coordinates. The coefficients are then height
and slope of the paraxially traced marginal and chief rays at that surface. If we denote
paraxial coordinates by a tilde, we thus have

x = mT., + hu." t = -nwT., -nuu." (3)

ii = mT" + hu", 7) = -nwT" -nuu".
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Here, the refractive index is denoted by n, the paraxial marginal and chief ray heights
are denoted hand mand the corresponding marginal and chief ray slopes are denoted u
and w. (See Figure 1.) The sign convention adopted here lor u and w is that their signs
are the opposite of those of the corresponding direction caBines. (This is why we have
minus signs in the equations lor f. and 1/.)

We will also use that h, m, u, ware not independent. In fact, the quantity H defined by

H = mnu -hnw (4)

retains the same value throughout the system. (See e.g. [Ho].) For this reason H is called
the paraxial system invariant. It plays an essential fale in Buchdahl's deductions.

Generally, we adopt the following notation: Quantities af ter refraction are denoted by
a prime whereas quantities before refraction are lelt unprimed. Thus, in Eqs (3), n, u,
w, f. and 1/ are quantities prior to refraction. Of course, similar relations exist lor the
corresponding primed quantities.

3 Quasi-invariants

For an arbitrary ray, consider the two components of the transverse aberration vector of
the ray. As usual, these components are defined at the paraxial image plane by

3", = XQ -xQ, 3" = YQ -YQ. (5)

Our aim in this work is to compute the coefficients of the power series expansions of 3",
and 3" with respect to u"', u"' T"" T".

Consider first Eqs (3), which hold lor the paraxial approximations of the ray parameters.
For a reason which will become apparent in §6, we start by seeking certain quantities
which caD be related to the given ray such that relations similar to Eqs (3) hold exactly
lor them. More precisely, we look lor eight quantities X, iJ, ~, 1], Û"', Û", f"" f" such that
at every surface of the system we have

x = mf", + hû"" ~ = -nwf", -nuû"" (6)

iJ = mf" + hû", 1] = -nwf" -nuû".

The first requirement lor determining the new quantities is that in the paraxial approx-
imation Eqs (6) reduce to Eqs (3). Thus, the paraxial approximations of û"', Û", f""
f" must be the quantities u"" u"' T"" T" which, by definition «1) and (2)) are surface-
independent. Following Buchdahl, any quantity which reduces to such an invariant in the
paraxiallimit will be called a quasi-invariant. Clearly, û"', Û", f"" f" are such quantities.

The basic idea is now to relate the aberrations produced byeach surface to the changes
of the quasi-invariants at that surface. Therefore, we require that the quasi-invariants
associated to the field and apert ure coordinates are free of aberrations at the object and
stop planes, i.e. that they reduce to the corresponding ray coordinates,

f",p = T"" f"p = T" (7)

4
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o-zs = Uz, o-yS = Uy. (8)

~ Since at the object plane we have m = Tp and h = 0 and at the stop plane we haveI 

h = T. and m = 0, it follows by comparing Eqs (6) with Eqs (1) and (2) that at these
t two planes we have

~ x = x, y = y. (9)

I We now require that Eqs (9) must be valid at each plane surface.
~

The components :Sz and :Sy of the transverse aberration can be expressed through the
~ quasi-invariants. By denoting the maximal paraxial image height by TQ, it follows fromI 

Eqn (5) that
~ :Sz = xQ -xQ = TQ(TzQ -7"z). (10)I 

A similar relation is valid for the y-component. Let us however consider for the moment
~ only the x-component. Obviously, the total change of Tz from the object to the image
I plane can be written as sum of all individual changes in the system.rI 

TzQ -7"z = TzQ -Tz'P = L ~Tz. (11)

For determining the expressions of the quasi-invariants, consider Eqs (6) as systems of
linear equations with unknowns o-z, 0-11' Tz, Ty. It follows from Eqs (6) and (4) that at
each surface of the system we have

Tz = ~(nux + kt) (12)

and 1.
o-z = -:H(nwx + m~). (13)l

Let us now determine the precise farm of x, y, t, iJ. The usual assumption in aberration
theory is that transfer through an homogeneous medium does not contribute to the
aberrations. Therefore, we simply require that the change of T z vanishes at transfer
through a homogeneous medium.

Consider first the case of the transfer between two planes separated by the distance z.
It can be easily verified that the transfer contributions vanish for

t = ~, iJ = ~, (14)
(. (.

where (. is the optical direction caBine with respect to the z-axis,

(. = yn2 -~2 -712. (15)

In fact, at transfer, n, u, ~, and (. remain unchanged. Thus, we have

~x = ~x = {z, ~h = -uz (16)
(.

5
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and therefore
~f., = ~(nu~x + 1~h) = 0, (17)

Consider now the case of transfer between two curved lens surfaces. At every surface
we consider the plane tangent to the surface at its vertex (the polar tangent plane) ,
Obviously, Eqn (17) also holds if instead of x we consider the quantity x defined as the
x-coordinate of the intersection point of the transferred ray (or its prolongation) with
the corresponding polar tangent plane. Thus, the quantities x and iJ in Eqn (6) must be
the polar-tangent-plane coordinates of the given ray,

A similar procedure can be followed in case the object is at infinity. We then have at
the first surface of the system (prior to refraction) nl Ui = 0 and, if the medium between
object and the first surface is homogeneous, f"l = f., and f"l = f" ' It follows then from
Eqs (6) that

ti = -ni WiT." fll = -nlWiT" (18)

or, using Eqs (14)
E.l 111 ( )~ = -WiT." ~ = -WiT", 19

Thus, if the object is at infinity, the field coordinates are defined by Eqs (18) or (19)
instead of Eqs (2),

Having established the farm of the quantities appearing in Eqs (6) we turn to the case of
refraction. As a preliminary remark we note that lor computational purposes it is more
convenient to use the quantity

Hf., = nux + ht (20)

instead of f.,. If at the paraxial image plane we write H = TQnQuQ , it follows from Eqs
(10) and (11) that

S., = ~ L ~(Hf.,), (21)
nQuQ surfaces

a similar relation being valid lor S", Equation (21) gives the decomposition of the
transverse aberration of an arbitrary ray in contributions from refraction at each surface
of the system, Thus, lor computing the aberration coefficients, we have to consider the
change of Eqn (20) at each surface and determine the coefficients of its power series
expansion with respect to 0"."0",,, T." T", Let us therefore first sec how x, iJ, t, fI change
at refraction at a given surface.

4 Refraction formulae

In the following, we limit our considerations to spherical surfaces. Let e be the surface
curvature and 8z be the z-coordinate of the ray-surface intersection point measured from
the surface vertex. The normal to the surface is the vector of unit length N having the

components
N = (N." N", Nz) = (-ex, -(!Y, 1- e8z). (22)

6



Given X, iJ, t, 'I] prior to refraction, let us determine the expressions of the same quantities
af ter refraction. Considering the transfer of the ray prior to refraction from the polar
tangent plane to the intersection point with the surface, we have

x = x + f15Z. (23)

It will turn out later during the computer algebra computations that more compact
expressions of the aberration coefficients can be obtained if instead of the refractive, 
index n we use its reciprocal valuel 

v = n-l. (24)I 

Thus, using Eqs (14) and (24), Eqn (23) reads A

x = X + v~15z. (25)

Writing a similar relation lor the ray af ter refraction, we obtain by subtraction

x' = x -15z(v't' -vb. (26)

We can determine 15z from the condition N2 = 1. Af ter same elementary calculations,
using Eqs (22) and (25), we get

U(x2 + iJ2) + 2vU15z(xt + iJ'I]) + uv2(~"2 + 'l]2)15z2 -215z + U15z2 = O. (27)

If we define

a = x2 + iJ2, !3 = v(xt + iJ'I]), -y = v2(~"2 + '1]2) + 1, (28)

the quadratic equation (27) can be written as

U'Y15z2 + 2(!3u -l)15z + ua = O. (29)

Since 15z bas to vanish lor a = !3 = 0, we find

1 -!3u -V(l -!3U)2 -u2a-y
15z = .(30)

U'Y

For determining the expression lor t' we start from the expression lor the optical ray
vector t:' = (~',77',(') af ter refraction ([Bo], [SG]),

t:'=t:+N(vn'2-n2+(t:N)2-t:N). (31)

By using the abbreviation

1
J = -( y'v,-2 -v-2 + (t:N)2 -t:N) (32)

(

the first and third component of Eqn (31) can be written

~' = ~ + NzJ(, (' = (+ NzJ(. (33)

7
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Thus, we have , , .
{' = ~ = ..!. f. + NzJ( = ..!. vf. + NzJ ( )

(' v' (+NzJ( v' I+NzJ 34

or
t' -I -v{ -(>(x + v{8z)J

( )35v' I + (I -(>8z)J .

In order to compute Eqn (32), consider first the quantity

EN f. 77 .' 8 = T = Nz( + NI/( + Nz = -(>v((x + vf.8z)f. + (y + V778z)77) + 1- (>8z, (36)

which finally reads
8 = 1- (>{3 -{rt8z. (37)

Eqn (32) caD now be written

J = V (v'-2 -v-2)(-2 + 82 -8. (38)

Since it follows from Eqs (15) and (28) that

1 f.2 772~ = (2 + (2 + 1 = -r. (39) )

Eqn (38) finally becomes

/,V2.\.A"
J=y-r(;ï2-I)+82_8. (40)

To summarize the above results: x' and {' are obtained by substituting Eqs (28), (30),
(37) and (40) into Eqs (26) and (35). Similar equations to Eqs (26) and (35) caD be
written down lor y' and r,' by replacing x by y and f. by 77.

Finally, consider the refraction at a surface of the paraxially traced marginal and chief
rays. Obviously, the ray heights at the surface hand m do not change at refraction. If i
and jare the incidence angles of the marginal and chief rays, then the quantities

i=ni, g=nj (41)

are paraxial refraction invariants. As is weIl known (see e.g. [Ho] or [Bo]), the paraxial
marginal and chief ray slopes before and af ter refraction are related to the invariants (41)
by

' h " , ., . h "" .,. ( 2)n (> -n u = n t = m = n (> -nu, n m(> -n w = n J = nJ = nm(> -nwo 4

Later on we will see that the (intrinsic) aberration coefficients caD be expressed in terms
of marginal and chief ray data. In fact, various equivalent expressions caD be obtained,
by expressing same of the quantities appearing in Eqs (42) through others. The choice
we will make is to express ray slopes prior and af ter refraction through the invariants
(41). Thus, we have

h(> m(>nu = --i, nw = --g. (43)
v v

8
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~ 5 Aberration coefficients

.As shown at the end of §3, in order to determine the aberration coeflicients we have to
compute the power series expansion with respect to Uz, uI/' Tz, TI/ of the change at a.surface 

of the quantity HTz given by Eqn (20). Let us first determine the precise farm
of this expansion from the property of rotational symmetry of the system.

Note that each of the pairs (.1;,1/), (i,r,), (3z,Xil/)' (Uz, uI/)' (Tz,TI/)' (ûz,ûl/)' (Tz,TI/)
can be regarded as a two-component vector. This means that all vectors transform in the;, 
same way under rotation about the symmetry axis of the system. Therefore, the total

~ order in Uz, uI/' Tz, TI/ for any term of the expansion of HA.Tz is always odd. We denote
the gum of all terms of order 2k + 1 in Uz, uI/' Tz, TI/ by B2k+l,z and the corresponding
gum for HA.TI/ by B2k+l,l/. Because Tz and TI/ reduce in the paraxial approximation to
Tz and TI/' which by definition do not change, the linear terms of the expansions vanish,
i.e.

Bl,z(Uz, uI/' TZ,TI/) = B1,I/(Uz'UI/' Tz, TI/) = O. (44)

Thus, the lowest order non-vanishing terms are the third-order terms and we have

HA.TI = B3,I(Uz, UI/' Tz, TI/) + ...+ B2k+l,I(Uz, UI/,Tz, TI/) + ..., 1 E {x,y}. (45)

Note also that the quantities

2- 2 2 2 2 2 ( )U -Uz + UI/' UT= UzTz + UI/TI/' T =Tz+TI/ 46

remain unchanged under rotation.about the symmetry axis. Consequently, we must have

B2k+l,/(Uz, UI/,Tz, TI/) = (47)

k k-j
""""' """"'( 2 k-i-' .2 iL.t L.t bTu,k-i-j,j,iUI + bTT,k-i-j,j,iTI)(U ) '(UT)'(T ) , k = 1,2, ...j 1 E {x,y}.

j=O i=O

The coeflicients bTu and bTT describe the contributions of the given surface to the total
aberrations of the system. The technique for deriving their analytic expressions will be
given in the next section.

If the coeflicients bTu and bTT are determined for each surface of the system, it follows
from Eqn (21) that the components of the transverse aberration vector can be written

as

81 = ~(A3,'(Uz,UI/,TZ,TI/) + ...+ A2k+ll(Uz,UI/,TZ,TI/) + ...), 1 E {x,y}, (48)nQuQ ,

where

A2k+l,I(Uz,UI/,TZ,TI/) = (49)

k k-j
""""' """"' 2 k-i-' .2 iL.t L.t(aTu,k-i-j,j,iUI + aTT,k-i-j,j,iTI)(U ) '(UT)'(T ) , k = 1,2, ...j 1 E {x,y}.

j=O i=O

9
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In Eqn (49) aTu and aTT are the tot al aberration coefficients of the system. They are
obtained by summing up all individual surface contributions

aTm,i,j,k = L bTm,i,j,k, mE {U,T}. (50)
surfacesI

It turns out that for each value of k, the number of coefficients bTm appearing in Eqn
(47) is in fact larger than the number of coefficients resulting from Hamilton's theory.
However, retaining this excess of coefficients simplifies considerably the derivation of
analytic expressions for them. For a discussion of the relationships between coefficients
we refer the reader to [Bu].

Let us now see how the quasi-invariants (12) and (13) CaD be expressed at a given surface
in terms of the aberration coefficients.

As suggested by Eqs (7), Ûz and ÛII caD be obtained at an arbitrary surface by ad ding to
the ó,berration-free values Uz and Uil at the stop plane S the changes due to all surfaces
between the stop and the considered surface. However, we must distinguish between
surfaces situated before and af ter the stop. We adopt the convent ion that 6. always
denotes the change at refraction of a given quantity for a ray propagating from the
object plane to the image plane. Therefore, if the considered surface is situated before
the stop, the contributions to 6.ûl from the surfaces situated in between must be add~d
with changed sign. Otherwise, the contributions will be added as usual. This special
summation convention will be denoted by

Ûl = UI :i: L 6.ûl. (51)
-8+

Similarly, by considering the surfaces between the object plane Pand the given surface,
we have

Tl = Tl + L6.Tl. (52)
p+

Since all surfaces are situated af ter the object plane, in Eqn (52) the surface contributions
are always added with unchanged sign. For H6.ûl (I = x,y), power series expansions
similar to Eqs (45) and (47) can be written. Let buu and bUT be the coefficients appearing
in the expansions of H 6.ûl (These coefficients describe pupil aberrations). If for m = T, U
we define

1Sum,i,j,k = :i:ïï L bum,i,j,k (53)
-8+

and
1STm,i,j,k = ïï L bTm,i,j,k, (54)

p+

Eqs (51) and (52) caD be written as

Ûl = U, + SuuUl + SuTTl, Tl = Tl + STuUl + STTTl, (55)

10
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where we have used the abbreviations

00 k k-i

Smn = LLLSmn,k-i-i,i,i(u2)k-i-i(UT)i(T2)i, m,n E {U,T}. (56)

k=li=Oi=O

Thus, the relationships between the quasi-invariants at a given surface and the surface
contributions to the aberration coefficients are given by Eqs (53)-(56).

6 Intrinsic and extrinsic surface contributions

In this section an algorithm for the symbolic computation of the surface contributions
bTO" and bTT to the aberration coefficients of the system aTO" and aTT will be described.

As can be seen from Eqs (45) and (47), for determining the coefficients bTO" and bTT , it
suffices to consider the quantity HAf",. It follows from Eqs (20) and (43) that

Al A

HAf", = he (':'- -~
) -f(.i' -.i) + h(~' -~). (57)

v' v

By substituting in Eqn (57) the refraction formulae developed in §4, H Af", will be ex-
pressed in terms of.i, iJ, ~, 1]. Consider then the power series expansion of HAf", with
respect to .i, iJ, ~, 1]. Because of the rotational symmetry we have

HAf", = Tl",,(.i, iJ, ~, 1]) + Ta"" (.i, iJ, ~, 1]) + ...+ T2k+l"" (.i, iJ, ~, 1]) + ...(58)

where T2k+l"" denotes the sum of all terms of total order 2k + 1 in .i, iJ, ~, 1].

Let us first show that Tl"" = O. Consider the linear approximation for the refraction
formulae of §4. Keeping only the lowest order terms, the equations (23), (14), (15), (28),
(37) and (40) become

Al A A n
( )x = x = x, { = {, (. = n, 'Y = 1, 0 = 1, J = --1. 59

n'

In the linear approximation, the first of Eqs (33) then reads

{' = { -pxAn. (60)

Consequently, Eqn (57) becomes

Tl ,'" (.i, iJ, ~, 1]) = hexAn + h({' -{) = O. (61)

Thus, the lowest order non-vanishing term in Eqn (58) is the third order term Ta"".

By means of Eqs (6) and (55)-(56), .i, iJ, ~, 1] can be expressed through u"', uil' T"" Til.
Let us examine for a given value of k, the structure of T2k+l"" if the latter quantity is
expressed through u"', Uil' T"" Til' Consider first the terms of lowest total order in u"', Uil'
T"" Til' These terms are of order 2k + 1 and are obtained by keeping in Eqs (55) only the
lowest order contributions

o-/=u/, f,=T/, lE{x,y}. (62)

11
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Denote the sum of these terms by C2k+l,z. As in the case of Eqn (47), we have

k k-j
C2k+l,I(Uz, Uv' T z, TV) = L L(CTCJ,k-i-j,j,iUz + CTT,k-i-j,j,iTz)(u2)k-i-j (UTY (T2)i.

j=O i=O

(63)
We arrive now at an essential point. Because of the similarity between Eqs (6) and
(3), the approximation (62) means that-formally-the paraxial relations (3) can be
substituted in T2k+l,z instead of the exact relations (6)

C2k+l,z(Uz, uv' Tz, Tv) = T2k+l,z(X, fj,{, ij). (64)

Thus, the coefficients CTCJ and CTT can be effectively determined by computing the power
series expansion (58), substituting Eqs (3) and (43) in the right-hand side of Eqn (64)
and collecting the coefficients of the various powers of aperture and field coordinates
according to Eqn (63). The coefficients CTCJ and CTT will then be expressed in terms of
marginal and chief ray data at the given surface.

Ir we use computer algebra, the above calculations can be performed more effectively
when we collect the coefficients of the quantities Uz, Tz, u2, UT , T2 instead of those of
Uz, Uv, Tz, TV. For this purpose, it is convenient to substitute in Eqs (28)

x2 + fj2 = m2T2 + 2mhTu + h2q2, f + ij2 = n2w2T2 + 2n2uwTu + n2u2u2 (65)

x{ + fjij = -(nwmT2 + (nwh + num)Tu + nuhu2).

The above relations can be easily derived fIom Eqs (3). Formally, Uz, Tz, u2, UT, T2 will
then be regarded as independent quantities, i.e. Eqs (46) will not be substituted in the

actual computer algebra calculations.

Another important observation should also be made now. Observing again the similarity
between Eqs (3) and (6), arelation similar to Eqn (64) must hold if the paraxial ray

parameters are replaced by the exact ones

T2k+l,z(X,iJ,~,iJ) = C2k+l,z(Ûz,ûv,fz,fv). (66)

Thus, the entire expansion ofT2k+l,z in terms of Uz, uv' Tz, Tv can be effectively computed
by replacing in Eqs (63) the aperture and field coordinates by the corresponding quasi-

invariants

k k-j

T2k+l,z(X, iJ, ~, iJ) = L L(~CJ,k-i-j,j,iÛI + ~T,k-i-j,j,ifl)(û2)k-i-j (ûfY (f2)i. (67)
j=O i=O

In the above equation abbreviations similar to Eqs (46) have been used, i.e.

A2 A2 A2 A A A A A A A2 A2 A2 (68)U = Uz + uv' UT = UzTz + UVTv, T = Tz + TV.

By substituting Eqs (55)-(56) into the right-hand side of Eqn (67), T2k+l,z win be ex-

pressed in terms of Uz, uv' Tz, TV.

12



Compare now Eqs (58) and (67) with Eqs (45) and (47). We obtain the fundamental

relationship

00 k k-j
~ ~ ~ ( 2 k-i-' .2 iLot Lot Lot b.,.",k-i-j,j,iUI + b.,..,.,k-i-j,j,iTl)(U ) '(U7")'(7" ) = (69)

k=lj=Oi=O

00 k k-j
~~~ ( A + A)( A2) k-i-j ( AA) j ( A2) i Lot Lot Lot C""',k-i-j,j,iU' C.,..,.,k-i-j,j,i7"1 U U7" 7" .

k=lj=Oi=O

Thus, the coefficients b.,." and b.,..,. can be obtained by substituting Eqs (55)-(56) into
the right-hand side of Eqn (69) and equating the coefficients of equal powers of aperture
and field coordinates on both sides. In order to obtain the right-hand side of Eqn (69)
in terms of Uz, Tz, u2, UT, T2, instead of Eqs (68) we substitute the following relations

f resulting from Eqs (55)

û2 = (I+S"")2u2+2S".,.(I+S,,,,)uT+S~.,.T2, f2 = S~"u2+2S.,.,,(I+S.,..,.)uT+(I+S.,..,.)2T2

(70)I ûf = S.,.,,(1 + S",,)u2 + (S".,.S.,." + (1 + S",,)(1 + S.,..,.))U7" + S".,.(1 + S.,..,.)T2.

The coefficients

b.,.m,k-i-j,j,i, j = O..kj i = O..k -jj mE {u, T}

are, lor k = 1, the third-order (or primary) contributions of the given surface to the
total aberrations, lor k = 2, the fifth-order (or secondary) contributions, lor k = 3, the
seventh-order (or tertiary) contributions, etc. Let us examine, lor a given value of k,
which terms in Eqn (58) produce contributions to the coefficients b.,." and bi.,..

Consider first the case k = 1. Since TI,z = 0, contributions result only from the term
( T3,z .Therefore, lor the third order coefficients we have

b.,.m,l-i-j,j,i = c..m,l-i-j,j,i. (71)

Consider now the coefficients of order five and higher, i.e. k > 1. At a particular surface
in the system, the term T2k+l,z contributes to the coefficient b.,.m,k-i-j,j,i with the term
C.,.m,k-i-j,j,i which is expressed in terms of marginal and chief ray data at that surface.
Therefore, the coefficients c.,." and c.,..,. are called intrinsic surface contributions.

However, contributions result also from the terms T2k'+I,z with k' < k. As can be seen
from Eqs (67) and (53)-(56), these terms are products of lower-order intrinsic contribu-
tions C.,.m,k'-i-j,j,i with coefficients s"", s".,., s.,." , s.,..,.. Since according to Eqs (53)-(54)
the latter coefficients are sums of surface contributions coming from other surfaces, the
contributions resulting from the terms T2k'+I,z are called extrinsic surface contributions.
Denoting their sum lor all k' < k by d.,.m, we obtain

d.,.m,k-i-j,j,i = b.,.m,k-i-j,j,i -C.,.m,k-i-j,j,i, mE {U,T}. (72)

13
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Seidel aberrations corresponding coefficients

f- spherical aberration -2~u,l,O,O
coma -~u,O,l,O = -2CTT,1,O,O, 

astigmatism -~T,O,l,O
Petzval curvature ~T,O,l,O -2cTu,O,O,1

distortion -2~T,O,O,1

, Table 1: The third-order Seidel aberrations and their coefficientsI.I 

7 Results

~ The above algorithm for the derivation of aberration coefficients can be easily translated

~ into any major computer algebra language. As an example, two Mathematica programsl
generating analytic expressions for the intrinsic and extrinsic surface col1~ributions are
given in Appendices A and B together with the corresponding results up to the fifth
order.

I With these programs, all seventh-order coefficients have also been obtained. The compu-
tations have been performed on a Silicon Graphics Challenge L computer with two 150
MHz R4400 MIPS processors and 128 MB internal memory. However, these computa-
tions are feasible on smaller computers as weIl.

In the case of the intrinsic surface contributions, it turns out that for spherical surfaces
we have arelation between the ~u and CTT coefficients of the farm

9~T,k-i-j,j,i = ï~u,k-i-j,j,i (73)

which is valid for all orders. Thus, only the cTu coefficients are printed out in Appendix
A. (In the output, the indices 0" and T have been replaced by s and t. The surface
curvature e and the reciprocal of the refractive index v' are denoted by e and vv.)

The familiar expressions of the Seidel aberration coefficients ([Bo], [We]) can be easily
derived fIom the third-order coefficients given in Appendix A. Using Eqs (42) and (73)
it follows af ter same elementary algebra that we have the correspondence as shown in
the table below. As can be Been in the case of coma, not all six coefficients CTU and ~T
are independent. This excess of coefficients bas been already noted in §5.

Because of the complexity of the expressions for the fifth-order coefficients, a comparison
with the literature bas been made only for spherical aberration. The expressions for
the intrinsic and extrinsic fifth-order spherical aberration CTu,2,O,O and dTu,2,O,O turned
out to be equivalent to those given in [St]. The main limitation in determining analytic
expressions for aberration coefficients of order Beven and higher comes fIom the rapid
growth with each additional order of the size of the extrinsic contributions. Already at
the seventh order the latter expressions are of considerable length and have therefore not

15

~

-



Ir

hdeltattx=h*e*(xx/vv-x/v)-f(xx-x)+h(pp-p); (*Eq.59*)

(* x2=x~2+y~2 *)

(* xp=x*p+y*q *)

(* p2=p-2+q~2 *)

vxp=v*xp; (*Eq.29*)

.vpl=v-2*p2+1; (*Eq.30*)

z=(1-vxp*e-Sqrt[(1-vxp*e)-2-e-2*x2*vp1])/(e*vpl); (*Eq.32*)
tet=l-vxp*e-vpl*e*z; (*Eq.39*)

capj=Sqrt[«v/vv)-2-1)*vpl+tet-2]-tet; (*Eq.42*)

pp=1/vv*(v*p-e*(x+v*p*z)*capj)/(1+(1-e*z)*capj); (*Eq.37*)
xx=x-(vv*pp-v*p)*z; (*Eq.26*)

(* 2 *)

ser[u_,i_] :=Collect[Factor[

Expand[(PowerExpand[Normal[Series[u/.attl,{o,O,i}]]]/.att2)]
] ,0] ;

att1={x->0*xo,y->0*yo,p->0*po,q->0*qo,x2->0~2*x20,xp->0~2*xpo,p2->0-2*p20};
att2={xo->x,yo->y,po->p,qo->q,x20->x2,xpo->xp,p20->p2};

sermax=ser[hdeltattx,2*kmax+l]; (*Eq.60*)
tk[k_] :=Expand[Coefficient[sermax,0,2*k+l]]

(* 3 *)

nw=-(g-m*e/v); (*Eq.45*)
nu=-(f-h*e/v);

repl={

x->m*tx+h*sx, (*Eq. 3*)

p->-nw*tx-nu*sx,l

(* s2=sx-2+sy-2 *)

(* st=sx*tx+sy*ty *)

(* t2=tx-2+ty-2 *)

x2->m~2*t2+2*m*h*st+h~2*s2, (*Eq.67*) ~

xp->-(nw*m*t2+(nw*h+nu*m)*st+nu*h*s2),
p2->nw~2*t2+2*nu*nw*st+nu~2*s2
};

Do[

17



2 2 2 2

(2 e g h m + e fm -3 e g h v -6 e f g m v +

2 2 2 2 2
3 f g v + e g h vv + 2 e f g m vv -3 f g vv)) I 2

2 c[tsl0l] = (f (-v + vv)

33 322 223
(2 e g h m + e f h m -2 e g h v-

2 2 222 2 2

10 e f g h m v + 6 e f g h v + 6 e f g h m v -

223 2 2 222
3 f g h v + 2 e f g h m vv -2 e f h m vv +

2 2 2 3 2
3 e f g h vvv + 2 e f g h m v vv + e f m vvv-

222 222 2 2 .

3 f g h v vv -3 e f g h vv -4 e f g h m vv +

322 22 2 223
e f m vv + 3 f g h v vv + 3 f g h vv )) I 4

2 c[tsOll] = (f (-v + vv)

322 222 2 2
(3 e g h m -8 e g h m v -5 e f g h m v +

223 322 2 2

e f m v+3eg h v +gefg hmv -

33 222 2 2
3 f g h v + 2 e g h m vv -e f g h m vv-

223 32 2
e f m vv + e g h v vv + 4 e f g h m v vv +

22 32 322
e f g m vvv -3 f g h v vv -2 e g h vv -

2 2 2 2 2 3 2
5 e f g h m vv + e f g m vv + 3 f g h v vv +

3 3
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ttx=repl[tx+sx*caps[t,s]+tx*caps[t,t]];

ss2=repl[ (*Eq.72*)
s2*(1 + 2*caps[s,s] + caps[s,s]-2) + t2*caps[s,t]-2

+ st*(2*caps[s,t] + 2*caps[s,s]*caps[s,t])]j

sstt=repl[
s2*(caps[t,s] + caps[t,s]*caps[s,s]) + st*(1 + caps[t,t] + caps[s,s]

+ caps[t,t]*caps[s,s] + caps[t,s]*caps[s,t])

+ t2*(caps[s, t] + caps[t,t]*caps[s,t])]j

tt2=repl[
s2*caps[t,s]-2 + st*(2*caps[t,s] + 2*caps[t,s]*caps[t,t])
+ t2*(1 + 2*caps[t,t] + caps[t,t]~2)];

total=Sum[ (*rhs of Eq.71*)

(ssx*c[t,s,k-i-j,j,i]+ttx*c[t,t,k-i-j,j,i])*ss2~(k-i-j)*sstt-j*tt2-i
,{k,1,kmax-1},{j,O,k},{i,O,k-j}]j

intrinsic=repl[Sum[ (* intrinsic part to be subtracted *)

(sx*c[t,s,k-i-j,j,i]+tx*c[t,t,k-i-j,j,i])*s2~(k-i-j)*st-j*t2~i
,{k,1,kmax-1},{j,O,k},{i,O,k-j}]];

sermax=Collect[Expand[total-intrinsic] ,0];

(* 2 *)

DoE
dk[k] =Coefficient [sermax,0,2*k+1]

,{k,1,kmax}]

00[( (*lhs of Eq.71*)

d[t,s,k-i-j,j,i]=Factor[Coefficient[dk[k],sx*s2-(k-i-j)*st-j*t2~i]];

d[t,t,k-i-j,j,i]=Factor[Coefficient[dk[k],tx*s2-(k-i-j)*st~j*t2~i]]
),{k,1,kmax},{i,O,k},{j,O,k-i}]

(* Print *)i 

00[( Print[k," d[ts",k-i-j,j,i,"] = ",d[t,s,k-i-j,j,i]];I 
Print [k, " d[tt",k-i-j,j,i,"] = ",d[t,t,k-i-j,j,i]]

),{k,1,kmax},{i,O,k},{j,O,k-i}]

B.2 The output for kma," = 2

2

{Power}
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". cc

2 c[t, t, 0, 0, 1] 8[t, 8, 1, 0, 0] +

C[t, t, 1,0,0] 8[t, t, 0, 1,0] +

2 c[t, t, 0, 1,0] 8[t, t, 1,0, 0]
2 d[t8020] = 2 C[t, 8, 0, 1,0] 8[8, 8, 0, 1,0] +I! 

2 C[t, 8, 1,0,0] 8[8, t, 0, 1,0] +i

2 C[t, 8, 0, 0, 1] 8[t, 8, 0, 1,0] +

c[t, t, 0, 1,0] 8[t, 8, 0, 1,0] +

C[t, 8, 0, 1,0] 8[t, t, 0, 1,0]
2 d [tt020] = c [t, t, 0, 1, 0] 8 [8, 8, 0, 1, 0] +

C[t, 8,0, 1,0] 8[8, t, 0, 1,0] +

2 c[t, t, 1, 0, 0] 8[8, t, 0, 1,0] +

2 c[t, t, 0, 0, 1] 8[t, 8, 0, 1,0] +

2 c[t, t, 0, 1,0] 8[t, t, 0, 1,0]
2 d[t8101] = 3 C[t, 8, 1,0, 0] 8[8, 8, 0, 0, 1] +

C[t, 8, 0, 0, 1] 8[8, 8, 1,0,0] +

C[t, 8, 0, 1,0] 8[8, t, 1,0,0] +

C[t, 8, 0, 1, 0] 8[t, 8, 0, 0, 1] +

C[t, t, 1, 0, 0] 8[t, 8, 0, 0, 1] +

C[t, t, 0, 0, 1] 8[t, 8, 1, 0, 0] +

2 C[t, 8,0, 0, 1] 8[t, t, 1, 0, 0]
2 d[tt101] = 2 c[t, t, 1,0,0] 8[8, 8, 0, 0, 1] +

C[t, 8, 1, 0, 0] 8[8, t, 0, 0, 1] +

C[t, 8, 0, 0, 1] 8[8, t, 1,0,0] +

c[t, t, 0, 1,0] 8[8, t, 1,0,0] +

c[t, t, 0, 1, 0] 8[t, 8, 0, 0, 1] +
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3 c[t, t, 0, 0, 1] sEt, t, 0, 0, 1]
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