Seismic Interferometry:
History and Present Status

Edited by

Kees Wapenaar
Deyan Draganov
Johan O. A. Robertsson

Geophysics Reprint Series No. 26
Michael A. Pelissier, managing editor
The cover figure shows one of the first applications of seismic interferometry, applied to solar oscillations. The figure is a compilation of figures from a 1999 paper by Rickett and Claerbout in THE LEADING EDGE (Vol. 18, pp. 957–960). The full paper can be found in Chapter 3: Highlights of Seismic Interferometry until 2003.
Table of Contents

About the Editors ... xi

Chapter 1 Introduction ... 1

Acknowledgments ... 3
References ... 3
Suggestions for further reading ... 3

Chapter 2 Seismic Interferometry without Equations 9

GEOPHYSICS bright spots .. 10

Seismic interferometry — Turning noise into signal 14

Virtual surface seismic data from downhole passive arrays 23

Virtual source applications to imaging and reservoir monitoring 29

From order to disorder to order: A philosophical view on seismic interferometry 37

Chapter 3 Highlights of Seismic Interferometry until 2003 43

Synthesis of a layered medium from its acoustic transmission response 44

Levinson inversion of earthquake geometry SH-transmission seismograms in the presence of noise .. 50

Time reversed acoustics .. 66

Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring ... 73
Theory of daylight/interferometric imaging: Tutorial 77

On the emergence of the Green’s function in the correlations of a diffuse field 81

Long-range correlations in the diffuse seismic coda 88

Short Note — Synthesis of an inhomogeneous medium from its acoustic transmission response ... 91

Recovering the Green’s function from field-field correlations in an open scattering medium (L) ... 95

Chapter 4 Green’s Function Reconstruction ... 99
Introduction .. 99
Diffuse wavefields ... 99
Deterministic wavefields ... 100

Diffuse fields in ultrasonics and seismology .. 102

Extracting the Green’s function from the correlation of coda waves:
A derivation based on stationary phase ... 107

P-waves from cross-correlation of seismic noise .. 115

Correlation of random wavefields: An interdisciplinary review 119

Green’s functions extraction and surface-wave tomography from microseisms in southern California ... 130

Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia ... 139
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval of reflections from seismic background-noise measurements</td>
<td>144</td>
</tr>
<tr>
<td>Nonreciprocal Green’s function retrieval by cross correlation</td>
<td>148</td>
</tr>
<tr>
<td>Extracting the Green’s function of attenuating heterogeneous acoustic media from uncorrelated waves</td>
<td>155</td>
</tr>
<tr>
<td>Emergence of the acoustic Green’s function from thermal noise</td>
<td>162</td>
</tr>
<tr>
<td>Unified Green’s function retrieval by cross-correlation: Connection with energy principles</td>
<td>169</td>
</tr>
<tr>
<td>Consistency of the spatial autocorrelation method with seismic interferometry and its consequence</td>
<td>183</td>
</tr>
<tr>
<td>Green’s function representations for seismic interferometry</td>
<td>200</td>
</tr>
<tr>
<td>Kees Wapenaar and Jacob Fokkema, 2006, GEOPHYSICS, 71, no. 4, Seismic Interferometry supplement, SI33–SI46.</td>
<td></td>
</tr>
<tr>
<td>Interferometric modeling of wave propagation in inhomogeneous elastic media using time reversal and reciprocity</td>
<td>214</td>
</tr>
<tr>
<td>Seismic interferometry: Reconstructing the earth’s reflection response</td>
<td>228</td>
</tr>
<tr>
<td>Deyan Draganov, Kees Wapenaar, and Jan Thorbecke, 2006, GEOPHYSICS, 71, no. 4, Seismic Interferometry supplement, SI61–SI70.</td>
<td></td>
</tr>
<tr>
<td>Removing free-surface multiples from teleseismic transmission and constructed reflection responses using reciprocity and the inverse scattering series</td>
<td>238</td>
</tr>
<tr>
<td>Unified Green’s function retrieval by cross correlation</td>
<td>246</td>
</tr>
<tr>
<td>On estimating the impulse response between receivers in a controlled ultrasonic experiment</td>
<td>250</td>
</tr>
<tr>
<td>K. van Wijk, 2006, GEOPHYSICS, 71, no. 4, Seismic Interferometry supplement, SI79–SI84.</td>
<td></td>
</tr>
<tr>
<td>Seismic interferometry with a TBM source of transmitted and reflected waves</td>
<td>256</td>
</tr>
<tr>
<td>Improved Green’s functions for passive-source structural studies</td>
<td>265</td>
</tr>
</tbody>
</table>
Transmission to reflection transformation of teleseismic wavefields .. 273

Application of seismic interferometry to natural earthquakes measured by small-scale array 282

Interferometric prediction and least squares subtraction of surface waves .. 287

Interferometric surface-wave isolation and removal ... 291
David F. Halliday, Andrew Curtis, Johan O. A. Robertsson, and Dirk-Jan van Manen, 2007, Geophysics, 72, no. 5, A69–A73.

On the relation between seismic interferometry and the migration resolution function 296

Electromagnetic Green’s functions retrieval by cross-correlation and cross-convolution in media with losses ... 302

Global-scale seismic interferometry: Theory and numerical examples .. 307

Chapter 5 Redatuming ... 331
Introduction .. 331

Fermat’s interferometric principle for target-oriented traveltime tomography 333

The virtual source method: Theory and case study .. 337

On the fundamentals of the virtual source method .. 349

A theoretical overview of model-based and correlation-based redatuning methods 354

Redatuming CDP data below salt with VSP Green’s function ... 362

Spurious multiples in seismic interferometry of primaries .. 367

Chapter 6 Imaging

Introduction
Diffuse wavefields
Deterministic wavefields
References

Imaging passive seismic data .. 479

Passive seismic reflectivity imaging with ocean-bottom cable data 490

Using symmetry breaking in time reversal mirror for attenuation determination 495

Interferometric imaging condition for wave-equation migration 500

Cross-correlation of random fields: Mathematical approach and applications 515

Interferometric/daylight seismic imaging ... 534

Crosscorrelogram migration of inverse vertical seismic profile data 549

Comparison between interferometric migration and reduced-time migration 560
of common-depth-point data

Imaging of multiple reflections ... 568

Migration of interbed multiple reflections ... 580

Telesismic shot-profile migration ... 585

Salt-flank delineation by interferometric imaging of transmitted P- to S-waves 594

A novel application of time-reversed acoustics: Salt-dome flank imaging using walkaway VSP surveys ... 605
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferometric imaging of a salt flank using walkaway VSP data</td>
<td>610</td>
</tr>
<tr>
<td>Target-oriented interferometric tomography for GPR data</td>
<td>614</td>
</tr>
<tr>
<td>3D wave-equation interferometric migration of VSP free-surface multiples</td>
<td>620</td>
</tr>
</tbody>
</table>
About the Editors

Kees Wapenaar has been professor of applied geophysics at Delft University of Technology in the Netherlands since 1999 and is the 2007–2009 SEG editor. From 1986 until 1999, he was associate professor and one of the project leaders of the DELPHI consortium, a project on seismic imaging and characterization. His main research interests are wave theory and its applications in geophysical imaging and characterization, multicomponent seismics, and seismic interferometry. He has published one book and 99 journal papers on those subjects. Wapenaar’s research in seismic interferometry started in 2002. He coedited a supplement of Geophysics (2006, the basis for this reprint book) and a special issue of Geophysical Prospecting (2008) on interferometry and related subjects. He coorganized several workshops and special sessions at SEG, AGU, EAGE, and SEGI conventions. He received two awards from SEG in 2006, for best paper in Geophysics and honorable mention for best paper in The Leading Edge, both on seismic interferometry.

Wapenaar received an M.Sc. in 1981 and a Ph.D. in 1986, both in applied physics at Delft.

Deyan Draganov has been an associate editor of Geophysics since 2005. His main research interests are wave propagation and seismic interferometry. His research in seismic interferometry started in 2002, and he has published seven articles on that subject. He coedited a supplement of Geophysics in 2006 which is the basis for this reprint book. He received an award for best student poster paper at the SEG annual meeting in 2003.

Draganov received an M.Sc. in 2002 and a Ph.D. in 2007. He is a postdoctoral research fellow in the section of applied geophysics and petrophysics at Delft University of Technology in the Netherlands.

Johan O. A. Robertsson joined Schlumberger Cambridge Research in 1996. He has held different positions in Schlumberger and WesternGeco and is now research director of geophysics at Schlumberger Cambridge Research. His research interests include theory and modeling of wave propagation, seismic interferometry, and seismic data acquisition and processing. On those subjects, he has published book chapters and 42 papers in peer-reviewed journals. He coedited a supplement of Geophysics (2006) which is the basis for this reprint book. Robertsson is an assistant editor of Geophysics and an associate editor of Geophysical Journal International. He is a member of SEG, EAGE, and AGU.

Robertsson received an M.Sc. in engineering physics from Uppsala University, Sweden, in 1991 and a Ph.D. in geophysics from Rice University, Houston, Texas, in 1994. He was a postdoctoral research fellow at the Institute of Geophysics at the Swiss Federal Institute of Technology (ETH) in Zurich in 1995–1996.